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Preface

This book covers piping calculations for liquids and gases in single
phase steady state flow for various industrial applications. Pipe sizing
and capacity calculations are covered mainly with additional analysis of
strength requirement for pipes. In each case the basic theory necessary
is presented first followed by several example problems fully worked out
illustrating the concepts discussed in each chapter. Unlike a textbook
or a handbook the focus is on solving actual practical problems that the
engineer or technical professional may encounter in their daily work.
The calculation manual approach has been found to be very successful
and I want to thank Ken McCombs of McGraw-Hill for suggesting this
format.

The book consists of ten chapters and three appendices. As far as
possible calculations are illustrated using both US Customary System
of units as well as the metric or SI units. Piping calculations involving
water are covered in the first three chapters titled Water Systems Pip-
ing, Fire Protection Piping Systems and Wastewater and Stormwater
Piping. Water Systems Piping address transportation of water in short
and long distance pipelines. Pressure loss calculations, pumping horse-
power required and pump analysis are discussed with numerous exam-
ples. The chapter on Fire Protection Piping Systems covers sprinkler
system design for residential and commercial buildings. Wastewater
Systems chapter addresses how wastewater and stormwater piping
is designed. Open channel gravity flow in sewer lines are also dis-
cussed.

Chapter 4 introduces the basics of steam piping systems. Flow of sat-
urated and superheated steam through pipes and nozzles are discussed
and concepts explained using example problems.

Chapter 5 covers the flow of compressed air in piping systems includ-
ing flow through nozzles and restrictions. Chapter 6 addresses trans-
portation of oil and petroleum products through short and long distance
pipelines. Various pressure drop equations used in the oil industry are
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xvi Preface

reviewed using practical examples. Series and parallel piping config-
urations are analyzed along with pumping requirements and pump
performance. Economic analysis is used to compare alternatives for ex-
panding pipeline throughput.

Chapter 7 covers transportation of natural gas and other compress-
ible fluids through pipeline. Calculations illustrate how gas piping are
sized, pressures required and how compressor stations are located on
long distance gas pipelines. Economic analysis of pipe loops versus com-
pression for expanding throughput are discussed. Fuel Gas Distribution
Piping System is covered in chapter 8. In this chapter low pressure gas
piping are analyzed with examples involving Compressed Natural Gas
(CNG) and Liquefied Petroleum Gas (LPG).

Chapter 9 covers Cryogenic and Refrigeration Systems Piping. Com-
monly used cryogenic fluids are reviewed and capacity and pipe sizing
illustrated. Since two phase flow may occur in some cryogenic piping
systems, the Lockhart and Martinelli correlation method is used in ex-
plaining flow of cryogenic fluids. A typical compression refrigeration
cycle is explained and pipe sizing illustrated for the suction and dis-
charge lines.

Finally, chapter 10 discusses transportation of slurry and sludge sys-
tems through pipelines. Both newtonian and nonnewtonian slurry sys-
tems are discussed along with different Bingham and pseudo-plastic
slurries and their behavior in pipe flow. Homogenous and heteroge-
neous flow are covered in addition to pressure drop calculations in
slurry pipelines.

I would like to thank Ken McCombs of McGraw-Hill for suggesting
the subject matter and format for the book and working with me on
finalizing the contents. He was also aggressive in followthrough to get
the manuscript completed within the agreed time period. I enjoyed
working with him and hope to work on another project with McGraw-
Hill in the near future. Lucy Mullins did most of the copyediting. She
was very meticulous and thorough in her work and I learned a lot from
her about editing technical books. Ben Kolstad, Editorial Services Man-
ager of International Typesetting and Composition (ITC), coordinated
the work wonderfully. Neha Rathor and her team at ITC did the type-
setting. I found ITC’s work to be very prompt, professional, and of high
quality.

Needless to say, I received a lot of help during the preparation of
the manuscript. In particular I want to thank my wife Pramila for
the many hours she spent on the computer typing the manuscript and
meticulously proof reading to create the final work product. My father-
in-law, A. Mukundan, a retired engineer and consultant, also provided
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valuable guidance and help in proofing the manuscript. Finally, I would
like to dedicate this book to my mother, who passed away recently, but
she definitely was aware of my upcoming book and provided her usual
encouragement throughout my effort.

E. Shashi Menon
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Chapter

1
Water Systems Piping

Introduction

Water systems piping consists of pipes, valves, fittings, pumps, and as-
sociated appurtenances that make up water transportation systems.
These systems may be used to transport fresh water or nonpotable wa-
ter at room temperatures or at elevated temperatures. In this chapter
we will discuss the physical properties of water and how pressure drop
due to friction is calculated using the various formulas. In addition, to-
tal pressure required and an estimate of the power required to transport
water in pipelines will be covered. Some cost comparisons for economic
transportation of various pipeline systems will also be discussed.

1.1 Properties of Water

1.1.1 Mass and weight

Mass is defined as the quantity of matter. It is measured in slugs (slug)
in U.S. Customary System (USCS) units and kilograms (kg) in Système
International (SI) units. A given mass of water will occupy a certain
volume at a particular temperature and pressure. For example, a mass
of water may be contained in a volume of 500 cubic feet (ft3) at a temper-
ature of 60◦F and a pressure of 14.7 pounds per square inch (lb/in2 or
psi). Water, like most liquids, is considered incompressible. Therefore,
pressure and temperature have a negligible effect on its volume. How-
ever, if the properties of water are known at standard conditions such
as 60◦F and 14.7 psi pressure, these properties will be slightly different
at other temperatures and pressures. By the principle of conservation
of mass, the mass of a given quantity of water will remain the same at
all temperatures and pressures.

1



2 Chapter One

Weight is defined as the gravitational force exerted on a given mass
at a particular location. Hence the weight varies slightly with the geo-
graphic location. By Newton’s second law the weight is simply the prod-
uct of the mass and the acceleration due to gravity at that location. Thus

W = mg (1.1)

where W = weight, lb
m= mass, slug
g = acceleration due to gravity, ft/s2

In USCS units g is approximately 32.2 ft/s2, and in SI units it is
9.81 m/s2. In SI units, weight is measured in newtons (N) and mass
is measured in kilograms. Sometimes mass is referred to as pound-
mass (lbm) and force as pound-force (lbf) in USCS units. Numerically
we say that 1 lbm has a weight of 1 lbf.

1.1.2 Density and specific weight

Density is defined as mass per unit volume. It is expressed as slug/ft3

in USCS units. Thus, if 100 ft3 of water has a mass of 200 slug, the
density is 200/100 or 2 slug/ft3. In SI units, density is expressed in
kg/m3. Therefore water is said to have an approximate density of 1000
kg/m3at room temperature.

Specific weight, also referred to as weight density, is defined as the
weight per unit volume. By the relationship between weight and mass
discussed earlier, we can state that the specific weight is as follows:

γ = ρg (1.2)

where γ = specific weight, lb/ft3

ρ = density, slug/ft3

g = acceleration due to gravity

The volume of water is usually measured in gallons (gal) or cubic
ft (ft3) in USCS units. In SI units, cubic meters (m3) and liters (L) are
used. Correspondingly, the flow rate in water pipelines is measured
in gallons per minute (gal/min), million gallons per day (Mgal/day),
and cubic feet per second (ft3/s) in USCS units. In SI units, flow rate
is measured in cubic meters per hour (m3/h) or liters per second (L/s).
One ft3 equals 7.48 gal. One m3equals 1000 L, and 1 gal equals
3.785 L. A table of conversion factors for various units is provided in
App. A.
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Example 1.1 Water at 60◦F fills a tank of volume 1000 ft3 at atmospheric
pressure. If the weight of water in the tank is 31.2 tons, calculate its density
and specific weight.

Solution

Specific weight = weight
volume

= 31.2 × 2000
1000

= 62.40 lb/ft3

From Eq. (1.2) the density is

Density = specific weight
g

= 62.4
32.2

= 1.9379 slug/ft3

Example 1.2 A tank has a volume of 5 m3 and contains water at 20◦C.
Assuming a density of 990 kg/m3, calculate the weight of the water in the
tank. What is the specific weight in N/m3 using a value of 9.81 m/s2 for
gravitational acceleration?

Solution

Mass of water = volume × density = 5 × 990 = 4950 kg

Weight of water = mass × g = 4950 × 9.81 = 48,559.5 N = 48.56 kN

Specific weight = weight
volume

= 48.56
5

= 9.712 N/m3

1.1.3 Specific gravity

Specific gravity is a measure of how heavy a liquid is compared to water.
It is a ratio of the density of a liquid to the density of water at the same
temperature. Since we are dealing with water only in this chapter, the
specific gravity of water by definition is always equal to 1.00.

1.1.4 Viscosity

Viscosity is a measure of a liquid’s resistance to flow. Each layer of water
flowing through a pipe exerts a certain amount of frictional resistance to
the adjacent layer. This is illustrated in the shear stress versus velocity
gradient curve shown in Fig. 1.1a. Newton proposed an equation that
relates the frictional shear stress between adjacent layers of flowing
liquid with the velocity variation across a section of the pipe as shown
in the following:

Shear stress = µ × velocity gradient

or

τ = µ
dv
dy

(1.3)
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Figure 1.1 Shear stress versus velocity gradient curve.

where τ = shear stress
µ = absolute viscosity, (lb · s)/ft2 or slug/(ft · s)

dv
dy

= velocity gradient

The proportionality constant µ in Eq. (1.3) is referred to as the absolute
viscosity or dynamic viscosity. In SI units, µ is expressed in poise or
centipoise (cP).

The viscosity of water, like that of most liquids, decreases with an
increase in temperature, and vice versa. Under room temperature con-
ditions water has an absolute viscosity of 1 cP.

Kinematic viscosity is defined as the absolute viscosity divided by the
density. Thus

ν = µ

ρ
(1.4)

where ν = kinematic viscosity, ft2/s
µ = absolute viscosity, (lb · s)/ft2 or slug/(ft · s)
ρ = density, slug/ft3

In SI units, kinematic viscosity is expressed as stokes or centistokes
(cSt). Under room temperature conditions water has a kinematic vis-
cosity of 1.0 cSt. Properties of water are listed in Table 1.1.

Example 1.3 Water has a dynamic viscosity of 1 cP at 20◦C. Calculate the
kinematic viscosity in SI units.

Solution

Kinematic viscosity = absolute viscosity µ

density ρ

= 1.0 × 10−2 × 0.1 (N · s)/m2

1.0 × 1000 kg/m3
= 10−6 m2/s

since 1.0 N = 1.0 (kg · m)/s2.
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TABLE 1.1 Properties of Water at Atmospheric Pressure

Temperature Density Specific weight Dynamic viscosity Vapor pressure
◦F slug/ft3 lb/ft3 (lb · s)/ft2 psia

USCS units

32 1.94 62.4 3.75 × 10−5 0.08
40 1.94 62.4 3.24 × 10−5 0.12
50 1.94 62.4 2.74 × 10−5 0.17
60 1.94 62.4 2.36 × 10−5 0.26
70 1.94 62.3 2.04 × 10−5 0.36
80 1.93 62.2 1.80 × 10−5 0.51
90 1.93 62.1 1.59 × 10−5 0.70

100 1.93 62.0 1.42 × 10−5 0.96

Temperature Density Specific weight Dynamic viscosity Vapor pressure
◦C kg/m3 kN/m3 (N · s)/m2 kPa

SI units

0 1000 9.81 1.75 × 10−3 0.611
10 1000 9.81 1.30 × 10−3 1.230
20 998 9.79 1.02 × 10−3 2.340
30 996 9.77 8.00 × 10−4 4.240
40 992 9.73 6.51 × 10−4 7.380
50 988 9.69 5.41 × 10−4 12.300
60 984 9.65 4.60 × 10−4 19.900
70 978 9.59 4.02 × 10−4 31.200
80 971 9.53 3.50 × 10−4 47.400
90 965 9.47 3.11 × 10−4 70.100

100 958 9.40 2.82 ×10−4 101.300

1.2 Pressure

Pressure is defined as the force per unit area. The pressure at a location
in a body of water is by Pascal’s law constant in all directions. In USCS
units pressure is measured in lb/in2 (psi), and in SI units it is expressed
as N/m2 or pascals (Pa). Other units for pressure include lb/ft2, kilopas-
cals (kPa), megapascals (MPa), kg/cm2, and bar. Conversion factors are
listed in App. A.

Therefore, at a depth of 100 ft below the free surface of a water tank
the intensity of pressure, or simply the pressure, is the force per unit
area. Mathematically, the column of water of height 100 ft exerts a force
equal to the weight of the water column over an area of 1 in2. We can
calculate the pressures as follows:

Pressure = weight of 100-ft column of area 1.0 in2

1.0 in2

= 100 × (1/144) × 62.4
1.0
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In this equation, we have assumed the specific weight of water to be
62.4 lb/ft3. Therefore, simplifying the equation, we obtain

Pressure at a depth of 100 ft = 43.33 lb/in2 (psi)

A general equation for the pressure in a liquid at a depth h is

P = γ h (1.5)

where P = pressure, psi
γ = specific weight of liquid
h = liquid depth

Variable γ may also be replaced with ρg where ρ is the density and g
is gravitational acceleration.

Generally, pressure in a body of water or a water pipeline is referred
to in psi above that of the atmospheric pressure. This is also known
as the gauge pressure as measured by a pressure gauge. The absolute
pressure is the sum of the gauge pressure and the atmospheric pressure
at the specified location. Mathematically,

Pabs = Pgauge + Patm (1.6)

To distinguish between the two pressures, psig is used for gauge pres-
sure and psia is used for the absolute pressure. In most calculations
involving water pipelines the gauge pressure is used. Unless otherwise
specified, psi means the gauge pressure.

Liquid pressure may also be referred to as head pressure, in which
case it is expressed in feet of liquid head (or meters in SI units). There-
fore, a pressure of 1000 psi in a liquid such as water is said to be equiv-
alent to a pressure head of

h = 1000 × 144
62.4

= 2308 ft

In a more general form, the pressure P in psi and liquid head h in
feet for a specific gravity of Sg are related by

P = h × Sg
2.31

(1.7)

where P = pressure, psi
h = liquid head, ft

Sg = specific gravity of water
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In SI units, pressure P in kilopascals and head h in meters are related
by the following equation:

P = h × Sg
0.102

(1.8)

Example 1.4 Calculate the pressure in psi at a water depth of 100 ft assum-
ing the specific weight of water is 62.4 lb/ft3. What is the equivalent pressure
in kilopascals? If the atmospheric pressure is 14.7 psi, calculate the absolute
pressure at that location.

Solution Using Eq. (1.5), we calculate the pressure:

P = γ h = 62.4 lb/ft3 × 100 ft = 6240 lb/ft2

= 6240
144

lb/in2 = 43.33 psig

Absolute pressure = 43.33 + 14.7 = 58.03 psia

In SI units we can calculate the pressures as follows:

Pressure = 62.4 × 1
2.2025

(3.281)3 kg/m3 ×
(

100
3.281

m

)
(9.81 m/s2)

= 2.992 × 105( kg · m)/(s2 · m2)

= 2.992 × 105 N/m2 = 299.2 kPa

Alternatively,

Pressure in kPa = pressure in psi
0.145

= 43.33
0.145

= 298.83 kPa

The 0.1 percent discrepancy between the values is due to conversion factor
round-off.

1.3 Velocity

The velocity of flow in a water pipeline depends on the pipe size and flow
rate. If the flow rate is uniform throughout the pipeline (steady flow),
the velocity at every cross section along the pipe will be a constant value.
However, there is a variation in velocity along the pipe cross section.
The velocity at the pipe wall will be zero, increasing to a maximum at
the centerline of the pipe. This is illustrated in Fig. 1.1b.

We can define a bulk velocity or an average velocity of flow as follows:

Velocity = flow rate
area of flow
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Considering a circular pipe with an inside diameter D and a flow rate
of Q, we can calculate the average velocity as

V = Q
π D2/4

(1.9)

Employing consistent units of flow rate Q in ft3/s and pipe diameter in
inches, the velocity in ft/s is as follows:

V = 144Q
π D2/4

or

V = 183.3461
Q
D2 (1.10)

where V = velocity, ft/s
Q = flow rate, ft3/s
D = inside diameter, in

Additional formulas for velocity in different units are as follows:

V = 0.4085
Q
D2 (1.11)

where V = velocity, ft/s
Q = flow rate, gal/min
D = inside diameter, in

In SI units, the velocity equation is as follows:

V = 353.6777
Q
D2 (1.12)

where V = velocity, m/s
Q = flow rate, m3/h
D = inside diameter, mm

Example 1.5 Water flows through an NPS 16 pipeline (0.250-in wall thick-
ness) at the rate of 3000 gal/min. Calculate the average velocity for steady
flow. (Note: The designation NPS 16 means nominal pipe size of 16 in.)

Solution From Eq. (1.11), the average flow velocity is

V = 0.4085
3000
15.52

= 5.10 ft/s

Example 1.6 Water flows through a DN 200 pipeline (10-mm wall thickness)
at the rate of 75 L/s. Calculate the average velocity for steady flow.
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Solution The designation DN 200 means metric pipe size of 200-mm outside
diameter. It corresponds to NPS 8 in USCS units. From Eq. (1.12) the average
flow velocity is

V = 353.6777

(
75 × 60 × 60 × 10−3

1802

)
= 2.95 m/s

The variation of flow velocity in a pipe depends on the type of flow.
In laminar flow, the velocity variation is parabolic. As the flow rate be-
comes turbulent the velocity profile approximates a trapezoidal shape.
Both types of flow are depicted in Fig. 1.1b. Laminar and turbulent
flows are discussed in Sec. 1.5 after we introduce the concept of the
Reynolds number.

1.4 Reynolds Number

The Reynolds number is a dimensionless parameter of flow. It depends
on the pipe size, flow rate, liquid viscosity, and density. It is calculated
from the following equation:

R = VDρ

µ
(1.13)

or

R = VD
ν

(1.14)

where R = Reynolds number, dimensionless
V = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = mass density of liquid, slug/ft3

µ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s

Since R must be dimensionless, a consistent set of units must be used
for all items in Eq. (1.13) to ensure that all units cancel out and R has
no dimensions.

Other variations of the Reynolds number for different units are as
follows:

R = 3162.5
Q
Dν

(1.15)

where R = Reynolds number, dimensionless
Q = flow rate, gal/min
D = inside diameter of pipe, in
ν = kinematic viscosity, cSt
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In SI units, the Reynolds number is expressed as follows:

R = 353,678
Q

νD
(1.16)

where R = Reynolds number, dimensionless
Q = flow rate, m3/h
D = inside diameter of pipe, mm
ν = kinematic viscosity, cSt

Example 1.7 Water flows through a 20-in pipeline (0.375-in wall thickness)
at 6000 gal/min. Calculate the average velocity and Reynolds number of flow.
Assume water has a viscosity of 1.0 cSt.

Solution Using Eq. (1.11), the average velocity is calculated as follows:

V = 0.4085
6000

19.252
= 6.61 ft/s

From Eq. (1.15), the Reynolds number is

R = 3162.5
6000

19.25 × 1.0
= 985,714

Example 1.8 Water flows through a 400-mm pipeline (10-mm wall thick-
ness) at 640 m3/h. Calculate the average velocity and Reynolds number of
flow. Assume water has a viscosity of 1.0 cSt.

Solution From Eq. (1.12) the average velocity is

V = 353.6777
640
3802

= 1.57 m/s

From Eq. (1.16) the Reynolds number is

R = 353,678
640

380 × 1.0
= 595,668

1.5 Types of Flow

Flow through pipe can be classified as laminar flow, turbulent flow, or
critical flow depending on the Reynolds number of flow. If the flow is
such that the Reynolds number is less than 2000 to 2100, the flow is
said to be laminar. When the Reynolds number is greater than 4000,
the flow is said to be turbulent. Critical flow occurs when the Reynolds
number is in the range of 2100 to 4000. Laminar flow is characterized by
smooth flow in which no eddies or turbulence are visible. The flow is said
to occur in laminations. If dye was injected into a transparent pipeline,
laminar flow would be manifested in the form of smooth streamlines
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of dye. Turbulent flow occurs at higher velocities and is accompanied
by eddies and other disturbances in the liquid. Mathematically, if R
represents the Reynolds number of flow, the flow types are defined as
follows:

Laminar flow: R ≤ 2100

Critical flow: 2100 < R ≤ 4000

Turbulent flow: R > 4000

In the critical flow regime, where the Reynolds number is between 2100
and 4000, the flow is undefined as far as pressure drop calculations are
concerned.

1.6 Pressure Drop Due to Friction

As water flows through a pipe there is friction between the adjacent lay-
ers of water and between the water molecules and the pipe wall. This
friction causes energy to be lost, being converted from pressure energy
and kinetic energy to heat. The pressure continuously decreases as
water flows down the pipe from the upstream end to the downstream
end. The amount of pressure loss due to friction, also known as head
loss due to friction, depends on the flow rate, properties of water (spe-
cific gravity and viscosity), pipe diameter, pipe length, and internal
roughness of the pipe. Before we discuss the frictional pressure loss in
a pipeline we must introduce Bernoulli’s equation, which is a form of
the energy equation for liquid flow in a pipeline.

1.6.1 Bernoulli’s equation

Bernoulli’s equation is another way of stating the principle of conser-
vation of energy applied to liquid flow through a pipeline. At each point
along the pipeline the total energy of the liquid is computed by tak-
ing into consideration the liquid energy due to pressure, velocity, and
elevation combined with any energy input, energy output, and energy
losses. The total energy of the liquid contained in the pipeline at any
point is a constant. This is also known as the principle of conservation
of energy.

Consider a liquid flow through a pipeline from point A to point B as
shown in Fig. 1.2. The elevation of point A is ZA and the elevation at B
is ZB above some common datum, such as mean sea level. The pressure
at point A is PA and that at B is PB. It is assumed that the pipe diameter
at A and B are different, and hence the flow velocity at A and B will
be represented by VA and VB, respectively. A particle of the liquid of
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Flow

Pressure PA

Pressure PB

A

B

ZBZA

Datum for elevations

Figure 1.2 Total energy of water in pipe flow.

unit weight at point A in the pipeline possesses a total energy E which
consists of three components:

Potential energy = ZA

Pressure energy = PA

γ

Kinetic energy =
(

VA

2g

)2

where γ is the specific weight of liquid.
Therefore the total energy E is

E = ZA + PA

γ
+ VA

2

2g
(1.17)

Since each term in Eq. (1.17) has dimensions of length, we refer to the
total energy at point A as HA in feet of liquid head. Therefore, rewriting
the total energy in feet of liquid head at point A, we obtain

HA = ZA + PA

γ
+ VA

2

2g
(1.18)

Similarly, the same unit weight of liquid at point B has a total energy
per unit weight equal to HB given by

HB = ZB + PB

γ
+ VB

2

2g
(1.19)

By the principle of conservation of energy

HA = HB (1.20)
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Therefore,

ZA + PA

γ
+ VA

2

2g
= ZB + PB

γ
+ VB

2

2g
(1.21)

In Eq. (1.21), referred to as Bernoulli’s equation, we have not consid-
ered any energy added to the liquid, energy taken out of the liquid, or
energy losses due to friction. Therefore, modifying Eq. (1.21) to take
into account the addition of energy (such as from a pump at A) and
accounting for frictional head losses hf , we get the more common form
of Bernoulli’s equation as follows:

ZA + PA

γ
+ VA

2

2g
+ Hp = ZB + PB

γ
+ VB

2

2g
+ hf (1.22)

where HP is the equivalent head added to the liquid by the pump at
A and hf represents the total frictional head losses between points A
and B.

We will next discuss how the head loss due to friction hf in Bernoulli’s
equation is calculated for various conditions of water flow in pipelines.
We begin with the classical pressure drop equation known as the Darcy-
Weisbach equation, or simply the Darcy equation.

1.6.2 Darcy equation

The Darcy equation, also called Darcy-Weisbach equation, is one of the
oldest formulas used in classical fluid mechanics. It can be used to cal-
culate the pressure drop in pipes transporting any type of fluid, such
as a liquid or gas.

As water flows through a pipe from point A to point B the pressure
decreases due to friction between the water and the pipe wall. The Darcy
equation may be used to calculate the pressure drop in water pipes as
follows:

h = f
L
D

V 2

2g
(1.23)

where h = frictional pressure loss, ft of head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = inside pipe diameter, ft
V = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

In USCS units, g = 32.2 ft/s2, and in SI units, g = 9.81 m/s2.
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Note that the Darcy equation gives the frictional pressure loss in
feet of head of water. It can be converted to pressure loss in psi using
Eq. (1.7). The term V 2/2g in the Darcy equation is called the velocity
head, and it represents the kinetic energy of the water. The term velocity
head will be used in subsequent sections of this chapter when discussing
frictional head loss through pipe fittings and valves.

Another form of the Darcy equation with frictional pressure drop
expressed in psi/mi and using a flow rate instead of velocity is as follows:

Pm = 71.16
f Q2

D5 (1.24)

where Pm = frictional pressure loss, psi/mi
f = Darcy friction factor, dimensionless

Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the Darcy equation may be written as

h = 50.94
f LV 2

D
(1.25)

where h = frictional pressure loss, meters of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
V = average flow velocity, m/s

Another version of the Darcy equation in SI units is as follows:

Pkm = (6.2475 × 1010)
f Q2

D5 (1.26)

where Pkm = pressure drop due to friction, kPa/km
Q = liquid flow rate, m3/h
f = Darcy friction factor, dimensionless
D = pipe inside diameter, mm

In order to calculate the friction loss in a water pipeline using the
Darcy equation, we must know the friction factor f . The friction factor
f in the Darcy equation is the only unknown on the right-hand side
of Eq. (1.23). This friction factor is a nondimensional number between
0.0 and 0.1 (usually around 0.02 for turbulent flow) that depends on
the internal roughness of the pipe, the pipe diameter, and the Reynolds
number, and therefore the type of flow (laminar or turbulent).
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For laminar flow, the friction factor f depends only on the Reynolds
number and is calculated as follows:

f = 64
R

(1.27)

where f is the friction factor for laminar flow and R is the Reynolds
number for laminar flow (R < 2100) (dimensionless).

Therefore, if the Reynolds number for a particular flow is 1200, the
friction factor for this laminar flow is 64/1200 = 0.0533. If this pipeline
has a 400-mm inside diameter and water flows through it at 500 m3/h,
the pressure loss per kilometer would be, from Eq. (1.26),

Pkm = 6.2475 × 1010 × 0.0533 × (500)2

(400)5 = 81.3 kPa/km

If the flow is turbulent (R > 4000), calculation of the friction factor
is not as straightforward as that for laminar flow. We will discuss this
next.

1.6.3 Colebrook-White equation

In turbulent flow the calculation of friction factor f is more complex. The
friction factor depends on the pipe inside diameter, the pipe roughness,
and the Reynolds number. Based on work by Moody, Colebrook-White,
and others, the following empirical equation, known as the Colebrook-
White equation, has been proposed for calculating the friction factor in
turbulent flow:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

R
√

f

)
(1.28)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in
R = Reynolds number, dimensionless

The absolute pipe roughness depends on the internal condition of
the pipe. Generally a value of 0.002 in or 0.05 mm is used in most
calculations, unless better data are available. Table 1.2 lists the pipe
roughness for various types of pipe. The ratio e/D is known as the
relative pipe roughness and is dimensionless since both pipe absolute
roughness e and pipe inside diameter D are expressed in the same units
(inches in USCS units and millimeters in SI units). Therefore, Eq. (1.28)
remains the same for SI units, except that, as stated, the absolute pipe
roughness e and the pipe diameter D are both expressed in millimeters.
All other terms in the equation are dimensionless.
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TABLE 1.2 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0

It can be seen from Eq. (1.28) that the calculation of the friction factor
f is not straightforward since it appears on both sides of the equation.
Successive iteration or a trial-and-error approach is used to solve for
the friction factor.

1.6.4 Moody diagram

The Moody diagram is a graphical plot of the friction factor f for all flow
regimes (laminar, critical, and turbulent ) against the Reynolds num-
ber at various values of the relative roughness of pipe. The graphical
method of determining the friction factor for turbulent flow using the
Moody diagram (see Fig. 1.3) is discussed next.

For a given Reynolds number on the horizontal axis, a vertical line
is drawn up to the curve representing the relative roughness e/D. The
friction factor is then read by going horizontally to the vertical axis
on the left. It can be seen from the Moody diagram that the turbulent
region is further divided into two regions: the “transition zone” and
the “complete turbulence in rough pipes” zone. The lower boundary is
designated as “smooth pipes,” and the transition zone extends up to
the dashed line. Beyond the dashed line is the complete turbulence in
rough pipes zone. In this zone the friction factor depends very little
on the Reynolds number and more on the relative roughness. This is
evident from the Colebrook-White equation, where at large Reynolds
numbers, the second term within the parentheses approaches zero. The
friction factor thus depends only on the first term, which is proportional
to the relative roughness e/D. In contrast, in the transition zone both
R and e/D influence the value of friction factor f .

Example 1.9 Water flows through a 16-in pipeline (0.375-in wall thickness)
at 3000 gal/min. Assuming a pipe roughness of 0.002 in, calculate the friction
factor and head loss due to friction in 1000 ft of pipe length.



Laminar
flow

Critical
zone Transition

zone Complete turbulence in rough pipes

Lam
inar flow

 f = 64/R
e

Smooth pipes

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.025

0.02

0.015

0.01

0.009

0.008

Fr
ic

tio
n 

fa
ct

or
 f

× 103 × 104 × 105 × 106

Reynolds number Re = VD
n

103 104 1052 3 4 5 6 2 3 4 5 6 8 1062 3 4 5 6 8 1072 3 4 5 6 8 1082 3 4 5 6 88

= 0.000,001

e
D = 0.000,005

e
D

0.000,01

0.000,05

0.0001

0.0002

0.0004
0.0006
0.0008
0.001

0.002

0.004

0.006

0.008
0.01

0.015

0.02

0.03

0.04
0.05

e D
R

el
at

iv
e 

ro
ug

hn
es

s

Figure 1.3 Moody diagram.

17



18 Chapter One

Solution Using Eq. (1.11) we calculate the average flow velocity:

V = 0.4085
3000

(15.25)2
= 5.27 ft/s

Using Eq. (1.15) we calculate the Reynolds number as follows:

R = 3162.5
3000

15.25 × 1.0
= 622,131

Thus the flow is turbulent, and we can use the Colebrook-White equation
(1.28) to calculate the friction factor.

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

f

)

This equation must be solved for f by trial and error. First assume that
f = 0.02. Substituting in the preceding equation, we get a better approxi-
mation for f as follows:

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.02

)
or f = 0.0142

Recalculating using this value

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

(622,131
√

0.0142

)
or f = 0.0145

and finally

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.0145

)
or f = 0.0144

Thus the friction factor is 0.0144. (We could also have used the Moody dia-
gram to find the friction factor graphically, for Reynolds number R = 622,131
and e/D = 0.002/15.25 = 0.0001. From the graph, we get f = 0.0145, which
is close enough.)

The head loss due to friction can now be calculated using the Darcy equa-
tion (1.23).

h = 0.0144
1000 × 12

15.25
5.272

64.4
= 4.89 ft of head of water

Converting to psi using Eq. (1.7), we get

Pressure drop due to friction = 4.89 × 1.0
2.31

= 2.12 psi

Example 1.10 A concrete pipe (2-m inside diameter) is used to transport
water from a pumping facility to a storage tank 5 km away. Neglecting any
difference in elevations, calculate the friction factor and pressure loss in
kPa/km due to friction at a flow rate of 34,000 m3/h. Assume a pipe roughness
of 0.05 mm. If a delivery pressure of 4 kPa must be maintained at the delivery
point and the storage tank is at an elevation of 200 m above that of the
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pumping facility, calculate the pressure required at the pumping facility at
the given flow rate, using the Moody diagram.

Solution The average flow velocity is calculated using Eq. (1.12).

V = 353.6777
34,000
(2000)2

= 3.01 m/s

Next using Eq. (1.16), we get the Reynolds number as follows:

R = 353,678
34,000

1.0 × 2000
= 6,012,526

Therefore, the flow is turbulent. We can use the Colebrook-White equation or
the Moody diagram to determine the friction factor. The relative roughness
is

e
D

= 0.05
2000

= 0.00003

Using the obtained values for relative roughness and the Reynolds number,
from the Moody diagram we get friction factor f = 0.01.

The pressure drop due to friction can now be calculated using the Darcy
equation (1.23) for the entire 5-km length of pipe as

h = 0.01
5000
2.0

3.012

2 × 9.81
= 11.54 m of head of water

Using Eq. (1.8) we calculate the pressure drop in kilopascals as

Total pressure drop in 5 km = 11.54 × 1.0
0.102

= 113.14 kPa

Therefore,

Pressure drop in kPa/km = 113.14
5

= 22.63 kPa/km

The pressure required at the pumping facility is calculated by adding the
following three items:

1. Pressure drop due to friction for 5-km length.

2. The static elevation difference between the pumping facility and storage
tank.

3. The delivery pressure required at the storage tank.

We can also state the calculation mathematically.

Pt = Pf + Pelev + Pdel (1.29)

where Pt = total pressure required at pump
Pf = frictional pressure head

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage tank
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All pressures must be in the same units: either meters of head or kilopascals.

Pt = 113.14 kPa + 200 m + 4 kPa

Changing all units to kilopascals we get

Pt = 113.14 + 200 × 1.0
0.102

+ 4 = 2077.92 kPa

Therefore, the pressure required at the pumping facility is 2078 kPa.

1.6.5 Hazen-Williams equation

A more popular approach to the calculation of head loss in water piping
systems is the use of the Hazen-Williams equation. In this method a
coefficient C known as the Hazen-Williams C factor is used to account
for the internal pipe roughness or efficiency. Unlike the Moody diagram
or the Colebrook-White equation, the Hazen-Williams equation does not
require use of the Reynolds number or viscosity of water to calculate
the head loss due to friction.

The Hazen-Williams equation for head loss is expressed as follows:

h = 4.73 L(Q/C)1.852

D4.87 (1.30)

where h = frictional head loss, ft
L = length of pipe, ft
D = inside diameter of pipe, ft
Q = flow rate, ft3/s
C = Hazen-Williams C factor or roughness coefficient,

dimensionless

Commonly used values of the Hazen-Williams C factor for various ap-
plications are listed in Table 1.3.

TABLE 1.3 Hazen-Williams C Factor

Pipe material C factor

Smooth pipes (all metals) 130–140
Cast iron (old) 100
Iron (worn/pitted) 60–80
Polyvinyl chloride (PVC) 150
Brick 100
Smooth wood 120
Smooth masonry 120
Vitrified clay 110
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On examining the Hazen-Williams equation, we see that the head
loss due to friction is calculated in feet of head, similar to the Darcy
equation. The value of h can be converted to psi using the head-to-psi
conversion [Eq. (1.7)]. Although the Hazen-Williams equation appears
to be simpler to use than the Colebrook-White and Darcy equations to
calculate the pressure drop, the unknown term C can cause uncertain-
ties in the pressure drop calculation.

Usually, the C factor, or Hazen-Williams roughness coefficient, is
based on experience with the water pipeline system, such as the pipe
material or internal condition of the pipeline system. When designing
a new pipeline, proper judgment must be exercised in choosing a C
factor since considerable variation in pressure drop can occur by se-
lecting a particular value of C compared to another. Because of the
inverse proportionality effect of C on the head loss h, using C = 140
instead of C = 100 will result in a [1 − ( 100

140

)1.852] or 46 percent less
pressure drop. Therefore, it is important that the C value be chosen
judiciously.

Other forms of the Hazen-Williams equation using different units
are discussed next. In the following formulas the presented equations
calculate the flow rate from a given head loss, or vice versa.

In USCS units, the following forms of the Hazen-Williams equation
are used.

Q = (6.755 × 10−3)CD2.63h0.54 (1.31)

h = 10,460
(

Q
C

)1.852 1
D4.87 (1.32)

Pm = 23,909
(

Q
C

)1.852 1
D4.87 (1.33)

where Q = flow rate, gal/min
h = friction loss, ft of water per 1000 ft of pipe

Pm = friction loss, psi per mile of pipe
D = inside diameter of pipe, in
C = Hazen-Williams C factor, dimensionless (see Table 1.3)

In SI units, the Hazen-Williams equation is expressed as follows:

Q = (9.0379 × 10−8)CD2.63
(

Pkm

Sg

)0.54

(1.34)

Pkm = 1.1101 × 1013
(

Q
C

)1.852 Sg
D4.87 (1.35)
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where Q = flow rate, m3/h
D = pipe inside diameter, mm

Pkm = frictional pressure drop, kPa/km
Sg = liquid specific gravity (water = 1.00)
C = Hazen-Williams C factor, dimensionless (see Table 1.3)

1.6.6 Manning equation

The Manning equation was originally developed for use in open-channel
flow of water. It is also sometimes used in pipe flow. The Manning equa-
tion uses the Manning index n, or roughness coefficient, which like the
Hazen-Williams C factor depends on the type and internal condition
of the pipe. The values used for the Manning index for common pipe
materials are listed in Table 1.4.

The following is a form of the Manning equation for pressure drop
due to friction in water piping systems:

Q = 1.486
n

AR2/3
(

h
L

)1/2

(1.36)

where Q = flow rate, ft3/s
A = cross-sectional area of pipe, ft2

R = hydraulic radius = D/4 for circular pipes flowing full
n = Manning index, or roughness coefficient, dimensionless
D = inside diameter of pipe, ft
h = friction loss, ft of water
L = pipe length, ft

TABLE 1.4 Manning Index

Resistance
Pipe material factor

PVC 0.009
Very smooth 0.010
Cement-lined ductile iron 0.012
New cast iron, welded steel 0.014
Old cast iron, brick 0.020
Badly corroded cast iron 0.035
Wood, concrete 0.016
Clay, new riveted steel 0.017
Canals cut through rock 0.040
Earth canals average condition 0.023
Rivers in good conditions 0.030
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In SI units, the Manning equation is expressed as follows:

Q = 1
n

AR2/3
(

h
L

)1/2

(1.37)

where Q = flow rate, m3/s
A = cross-sectional area of pipe, m2

R = hydraulic radius = D/4 for circular pipes flowing full
n = Manning index, or roughness coefficient, dimensionless
D = inside diameter of pipe, m
h = friction loss, ft of water
L = pipe length, m

Example 1.11 Water flows through a 16-in pipeline (0.375-in wall thickness)
at 3000 gal/min. Using the Hazen-Williams equation with a C factor of 120,
calculate the pressure loss due to friction in 1000 ft of pipe length.

Solution First we calculate the flow rate using Eq. (1.31):

Q = 6.755 × 10−3 × 120 × (15.25)2.63h0.54

where h is in feet of head per 1000 ft of pipe.
Rearranging the preceding equation, using Q = 3000 and solving for h, we

get

h0.54 = 3000
6.755 × 10−3 × 120 × (15.25)2.63

Therefore,

h = 7.0 ft per 1000 ft of pipe

Pressure drop = 7.0 × 1.0
2.31

= 3.03 psi

Compare this with the same problem described in Example 1.9. Using the
Colebrook-White and Darcy equations we calculated the pressure drop to be
4.89 ft per 1000 ft of pipe. Therefore, we can conclude that the C value used
in the Hazen-Williams equation in this example is too low and hence gives
us a comparatively higher pressure drop. Therefore, we will recalculate the
pressure drop using a C factor = 140 instead.

h0.54 = 3000
6.755 × 10−3 × 140 × (15.25)2.63

Therefore,

h = 5.26 ft per 1000 ft of pipe

Pressure drop = 5.26 × 1.0
2.31

= 2.28 psi

It can be seen that we are closer now to the results using the Colebrook-White
and Darcy equations. The result is still 7.6 percent higher than that obtained
using the Colebrook-White and Darcy equations. The conclusion is that the

Next Page
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C factor in the preceding Hazen-Williams calculation should probably be
slightly higher than 140. In fact, using a C factor of 146 will get the result
closer to the 4.89 ft per 1000 ft we got using the Colebrook-White equation.

Example 1.12 A concrete pipe with a 2-m inside diameter is used to trans-
port water from a pumping facility to a storage tank 5 km away. Neglecting
differences in elevation, calculate the pressure loss in kPa/km due to friction
at a flow rate of 34,000 m3/h. Use the Hazen-Williams equation with a C
factor of 140. If a delivery pressure of 400 kPa must be maintained at the
delivery point and the storage tank is at an elevation of 200 m above that of
the pumping facility, calculate the pressure required at the pumping facility
at the given flow rate.

Solution The flow rate Q in m3/h is calculated using the Hazen-Williams
equation (1.35) as follows:

Pkm = (1.1101 × 1013)

(
34,000

140

)1.852

× 1
(2000)4.87

= 24.38 kPa/km

The pressure required at the pumping facility is calculated by adding the
pressure drop due to friction to the delivery pressure required and the static
elevation head between the pumping facility and storage tank using
Eq. (1.29).

Pt = Pf + Pelev + Pdel

= (24.38 × 5) kPa + 200 m + 400 kPa

Changing all units to kPa we get

Pt = 121.9 + 200 × 1.0
0.102

+ 400 = 2482.68 kPa

Thus the pressure required at the pumping facility is 2483 kPa.

1.7 Minor Losses

So far, we have calculated the pressure drop per unit length in straight
pipe. We also calculated the total pressure drop considering several
miles of pipe from a pump station to a storage tank. Minor losses in a
water pipeline are classified as those pressure drops that are associated
with piping components such as valves and fittings. Fittings include
elbows and tees. In addition there are pressure losses associated with
pipe diameter enlargement and reduction. A pipe nozzle exiting from
a storage tank will have entrance and exit losses. All these pressure
drops are called minor losses, as they are relatively small compared to
friction loss in a straight length of pipe.

Generally, minor losses are included in calculations by using the
equivalent length of the valve or fitting or using a resistance factor or

Previous Page
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TABLE 1.5 Equivalent Lengths of
Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

K factor multiplied by the velocity head V 2/2g. The term minor losses
can be applied only where the pipeline lengths and hence the friction
losses are relatively large compared to the pressure drops in the fittings
and valves. In a situation such as plant piping and tank farm piping
the pressure drop in the straight length of pipe may be of the same
order of magnitude as that due to valves and fittings. In such cases the
term minor losses is really a misnomer. In any case, the pressure losses
through valves, fittings, etc., can be accounted for approximately using
the equivalent length or K times the velocity head method. It must
be noted that this way of calculating the minor losses is valid only in
turbulent flow. No data are available for laminar flow.

1.7.1 Valves and fittings

Table 1.5 shows the equivalent lengths of commonly used valves and
fittings in a typical water pipeline. It can be seen from this table that a
gate valve has an L/D ratio of 8 compared to straight pipe. Therefore, a
20-in-diameter gate valve may be replaced with a 20 × 8 = 160-in-long
piece of pipe that will match the frictional pressure drop through the
valve.

Example 1.13 A piping system is 2000 ft of NPS 20 pipe that has two
20-in gate valves, three 20-in ball valves, one swing check valve, and four
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90◦ standard elbows. Using the equivalent length concept, calculate the to-
tal pipe length that will include all straight pipe and valves and fittings.

Solution Using Table 1.5, we can convert all valves and fittings in terms of
20-in pipe as follows:

Two 20-in gate valves = 2 × 20 × 8 = 320 in of 20-in pipe

Three 20-in ball valves = 3 × 20 × 3 = 180 in of 20-in pipe

One 20-in swing check valve = 1 × 20 × 50 = 1000 in of 20-in pipe

Four 90◦ elbows = 4 × 20 × 30 = 2400 in of 20-in pipe

Total for all valves and fittings = 4220 in of 20-in pipe

= 351.67 ft of 20-in pipe

Adding the 2000 ft of straight pipe, the total equivalent length of straight
pipe and all fittings is

Le = 2000 + 351.67 = 2351.67 ft

The pressure drop due to friction in the preceding piping system can
now be calculated based on 2351.67 ft of pipe. It can be seen in this
example that the valves and fittings represent roughly 15 percent of
the total pipeline length. In plant piping this percentage may be higher
than that in a long-distance water pipeline. Hence, the reason for the
term minor losses.

Another approach to accounting for minor losses is using the resis-
tance coefficient or K factor. The K factor and the velocity head approach
to calculating pressure drop through valves and fittings can be analyzed
as follows using the Darcy equation. From the Darcy equation (1.23),
the pressure drop in a straight length of pipe is given by

h = f
L
D

V 2

2g
(1.38)

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and Eq. (1.38) then becomes

h = K
V 2

2g
(1.39)

In Eq. (1.39), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head V 2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(V 2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 1.6. It can be seen that the K factor depends on the



TABLE 1.6 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

27
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nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.

From Table 1.6, it can be seen that a 6-in gate valve has a K factor of
0.12, while a 20-in gate valve has a K factor of 0.10. However, both sizes
of gate valves have the same equivalent length–to–diameter ratio of 8.
The head loss through the 6-in valve can be estimated to be 0.12 (V 2/2g)
and that in the 20-in valve is 0.10 (V 2/2g). The velocities in both cases
will be different due to the difference in diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

V6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 20-in valve will be ap-
proximately

V6 = 0.4085
1000
19.52 = 1.07 ft/s

Therefore,

Head loss in 6-in gate valve = 0.12 (10.89)2

64.4
= 0.22 ft

and

Head loss in 20-in gate valve = 0.10 (1.07)2

64.4
= 0.002 ft

These head losses appear small since we have used a relatively low flow
rate in the 20-in valve. In reality the flow rate in the 20-in valve may be
as high as 6000 gal/min and the corresponding head loss will be 0.072 ft.

1.7.2 Pipe enlargement and reduction

Pipe enlargements and reductions contribute to head loss that can be
included in minor losses. For sudden enlargement of pipes, the following
head loss equation may be used:

hf = (v1 − v2)2

2g
(1.40)

where v1 and v2 are the velocities of the liquid in the two pipe sizes D1
and D2 respectively. Writing Eq. (1.40) in terms of pipe cross-sectional
areas A1 and A2,

hf =
(

1 − A1

A2

)2(v1
2

2g

)
(1.41)

for sudden enlargement. This is illustrated in Fig. 1.4.
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D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 1.4 Sudden pipe enlargement and reduction.

For sudden contraction or reduction in pipe size as shown in Fig. 1.4,
the head loss is calculated from

hf =
(

1
Cc

− 1
)

v2
2

2g
(1.42)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 1.4.

Gradual enlargement and reduction of pipe size, as shown in Fig. 1.5,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc(v1 − v2)2

2g
(1.43)

D1

D1
D2

D2

Figure 1.5 Gradual pipe enlargement and reduction.
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Figure 1.6 Gradual pipe expansion head loss coefficient.

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 1.6.

1.7.3 Pipe entrance and exit losses

The K factors for computing the head loss associated with pipe entrance
and exit are as follows:

K =



0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

1.8 Complex Piping Systems

So far we have discussed straight length of pipe with valves and fittings.
Complex piping systems include pipes of different diameters in series
and parallel configuration.

1.8.1 Series piping

Series piping in its simplest form consists of two or more different pipe
sizes connected end to end as illustrated in Fig. 1.7. Pressure drop cal-
culations in series piping may be handled in one of two ways. The first
approach would be to calculate the pressure drop in each pipe size and
add them together to obtain the total pressure drop. Another approach
is to consider one of the pipe diameters as the base size and convert
other pipe sizes into equivalent lengths of the base pipe size. The re-
sultant equivalent lengths are added together to form one long piece
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L1

D1 D2 D3

L2 L3

Figure 1.7 Series piping.

of pipe of constant diameter equal to the base diameter selected. The
pressure drop can now be calculated for this single-diameter pipeline.
Of course, all valves and fittings will also be converted to their respec-
tive equivalent pipe lengths using the L/D ratios from Table 1.5.

Consider three sections of pipe joined together in series. Using sub-
scripts 1, 2, and 3 and denoting the pipe length as L, inside diameter
as D, flow rate as Q, and velocity as V, we can calculate the equivalent
length of each pipe section in terms of a base diameter. This base diam-
eter will be selected as the diameter of the first pipe section D1. Since
equivalent length is based on the same pressure drop in the equiva-
lent pipe as the original pipe diameter, we will calculate the equivalent
length of section 2 by finding that length of diameter D1 that will match
the pressure drop in a length L2 of pipe diameter D2. Using the Darcy
equation and converting velocities in terms of flow rate from Eq. (1.11),
we can write

Head loss = f (L/D)(0.4085Q/D2)2

2g
(1.44)

For simplicity, assuming the same friction factor,

Le

D1
5 = L2

D2
5 (1.45)

Therefore, the equivalent length of section 2 based on diameter D1 is

Le = L2

(
D1

D2

)5

(1.46)

Similarly, the equivalent length of section 3 based on diameter D1 is

Le = L3

(
D1

D3

)5

(1.47)

The total equivalent length of all three pipe sections based on diameter
D1 is therefore

Lt = L1 + L2

(
D1

D2

)5

+ L3

(
D1

D3

)5

(1.48)

The total pressure drop in the three sections of pipe can now be calcu-
lated based on a single pipe of diameter D1 and length Lt.
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Example 1.14 Three pipes with 14-, 16-, and 18-in diameters, respectively,
are connected in series with pipe reducers, fittings, and valves as follows:

14-in pipeline, 0.250-in wall thickness, 2000 ft long

16-in pipeline, 0.375-in wall thickness, 3000 ft long

18-in pipeline, 0.375-in wall thickness, 5000 ft long

One 16 × 14 in reducer

One 18 × 16 in reducer

Two 14-in 90◦ elbows

Four 16-in 90◦ elbows

Six 18-in 90◦ elbows

One 14-in gate valve

One 16-in ball valve

One 18-in gate valve

(a) Use the Hazen-Williams equation with a C factor of 140 to calculate the
total pressure drop in the series water piping system at a flow rate of 3500
gal/min. Flow starts in the 14-in piping and ends in the 18-in piping.
(b) If the flow rate is increased to 6000 gal/min, estimate the new total
pressure drop in the piping system, keeping everything else the same.

Solution

(a) Since we are going to use the Hazen-Williams equation, the pipes in
series analysis will be based on the pressure loss being inversely proportional
to D4.87, where D is the inside diameter of pipe, per Eq. (1.30).

We will first calculate the total equivalent lengths of all 14-in pipe, fittings,
and valves in terms of the 14-in-diameter pipe.

Straight pipe: 14 in., 2000 ft = 2000 ft of 14-in pipe

Two 14-in 90◦ elbows = 2 × 30 × 14
12

= 70 ft of 14-in pipe

One 14-in gate valve = 1 × 8 × 14
12

= 9.33 ft of 14-in pipe

Therefore, the total equivalent length of 14-in pipe, fittings, and valves =
2079.33 ft of 14-in pipe.

Similarly we get the total equivalent length of 16-in pipe, fittings, and
valve as follows:

Straight pipe: 16-in, 3000 ft = 3000 ft of 16-in pipe

Four 16-in 90◦ elbows = 4 × 30 × 16
12

= 160 ft of 16-in pipe

One 16-in ball valve = 1 × 3 × 16
12

= 4 ft of 16-in pipe
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Therefore, the total equivalent length of 16-in pipe, fittings, and valve =
3164 ft of 16-in pipe.

Finally, we calculate the total equivalent length of 18-in pipe, fittings, and
valve as follows:

Straight pipe: 18-in, 5000 ft = 5000 ft of 18-in pipe

Six 18-in 90◦ elbows = 6 × 30 × 18
12

= 270 ft of 18-in pipe

One 18-in gate valve = 1 × 8 × 18
12

= 12 ft of 18-in pipe

Therefore, the total equivalent length of 18-in pipe, fittings, and valve =
5282 ft of 18-in pipe.

Next we convert all the preceding pipe lengths to the equivalent 14-in pipe
based on the fact that the pressure loss is inversely proportional to D4.87,
where D is the inside diameter of pipe.

2079.33 ft of 14-in pipe = 2079.33 ft of 14-in pipe

3164 ft of 16-in pipe = 3164 ×
(

13.5
15.25

)4.87

= 1748 ft of 14-in pipe

5282 ft of 18-in pipe = 5282 ×
(

13.5
17.25

)4.87

= 1601 ft of 14-in pipe

Therefore adding all the preceding lengths we get

Total equivalent length in terms of 14-in pipe = 5429 ft of 14-in pipe

We still have to account for the 16 × 14 in and 18 × 16 in reducers. The
reducers can be considered as sudden enlargements for the approximate cal-
culation of the head loss, using the K factor and velocity head method. For
sudden enlargements, the resistance coefficient K is found from

K =
[

1 −
(

d1

d2

)2
]2

(1.49)

where d1 is the smaller diameter and d2 is the larger diameter.
For the 16 × 14 in reducer,

K =
[

1 −
(

13.5
15.25

)2
]2

= 0.0468

and for the 18 × 16 in reducer,

K =
[

1 −
(

15.25
17.25

)2
]2

= 0.0477

The head loss through the reducers will then be calculated based on K(V 2/2g).
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Flow velocities in the three different pipe sizes at 3500 gal/min will be
calculated using Eq. (1.11):

Velocity in 14-in pipe: V14 = 0.4085 × 3500
(13.5)2

= 7.85 ft/s

Velocity in 16-in pipe: V16 = 0.4085 × 3500
(15.25)2

= 6.15 ft/s

Velocity in 18-in pipe: V18 = 0.4085 × 3500
(17.25)2

= 4.81 ft/s

The head loss through the 16 × 14 in reducer is

h1 = 0.0468
7.852

64.4
= 0.0448 ft

and the head loss through the 18 × 16 in reducer is

h1 = 0.0477
6.152

64.4
= 0.028 ft

These head losses are insignificant and hence can be neglected in comparison
with the head loss in straight length of pipe. Therefore, the total head loss in
the entire piping system will be based on a total equivalent length of 5429 ft
of 14-in pipe.

Using the Hazen-Williams equation (1.32) the pressure drop at 3500
gal/min is

h = 10,460

(
3500
140

)1.852 1.0
(13.5)4.87

= 12.70 ft per 1000 ft of pipe

Therefore, for the 5429 ft of equivalent 14-in pipe, the total pressure drop is

h = 12.7 × 5429
1000

= 68.95 ft = 68.95
2.31

= 29.85 psi

(b) When the flow rate is increased to 6000 gal/min, we can use proportions
to estimate the new total pressure drop in the piping as follows:

h =
(

6000
3500

)1.852

× 12.7 = 34.46 ft per 1000 ft of pipe

Therefore, the total pressure drop in 5429 ft of 14-in. pipe is

h = 34.46 × 5429
1000

= 187.09 ft = 187.09
2.31

= 81.0 psi

Example 1.15 Two pipes with 400- and 600-mm diameters, respectively, are
connected in series with pipe reducers, fittings, and valves as follows:

400-mm pipeline, 6-mm wall thickness, 600 m long

600-mm pipeline, 10-mm wall thickness, 1500 m long

One 600 × 400 mm reducer

Two 400-mm 90◦ elbows



Water Systems Piping 35

Four 600-mm 90◦ elbows

One 400-mm gate valve

One 600-mm gate valve

Use the Hazen-Williams equation with a C factor of 120 to calculate the total
pressure drop in the series water piping system at a flow rate of 250 L/s.
What will the pressure drop be if the flow rate were increased to 350 L/s?

Solution The total equivalent length on 400-mm-diameter pipe is the sum of
the following:

Straight pipe length = 600 m

Two 90◦ elbows = 2 × 30 × 400
1000

= 24 m

One gate valve = 1 × 8 × 400
1000

= 3.2 m

Thus,

Total equivalent length on 400-mm-diameter pipe = 627.2 m

The total equivalent length on 600-mm-diameter pipe is the sum of the
following:

Straight pipe length = 1500 m

Four 90◦ elbows = 4 × 30 × 600
1000

= 72 m

One gate valve = 1 × 8 × 600
1000

= 4.8 m

Thus,

Total equivalent length on 600-mm-diameter pipe = 1576.8 m

Reducers will be neglected since they have insignificant head loss. Convert
all pipe to 400-mm equivalent diameter.

1576.8 m of 600-mm pipe = 1576.8

(
388
580

)4.87

= 222.6 m of 400-mm pipe

Total equivalent length on 400-mm-diameter pipe = 627.2+222.6 = 849.8 m

Q = 250 × 10−3 × 3600 = 900 m3/h

The pressure drop from Eq. (1.35) is

Pm = 1.1101 × 1013
(

900
120

)1.852 1
(388)4.87

= 114.38 kPa/km

Total pressure drop = 114.38 × 849.8
1000

= 97.2 kPa
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When the flow rate is increased to 350 L/s, we can calculate the pressure
drop using proportions as follows:

Revised head loss at 350 L/s =
(

350
250

)1.852

× 114.38 = 213.3 kPa/km

Therefore,

Total pressure drop = 213.3 × 0.8498 = 181.3 kPa

1.8.2 Parallel piping

Water pipes in parallel are set up such that the multiple pipes are con-
nected so that water flow splits into the multiple pipes at the beginning
and the separate flow streams subsequently rejoin downstream into
another single pipe as depicted in Fig. 1.8.

Figure 1.8 shows a parallel piping system in the horizontal plane
with no change in pipe elevations. Water flows through a single pipe
AB, and at the junction B the flow splits into two pipe branches BCE
and BDE. At the downstream end at junction E, the flows rejoin to the
initial flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, shown in Fig. 1.8, two main principles of parallel
piping must be followed. These are flow conservation at any junction
point and common pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE.

Thus,

Q = QBCE + QBDE (1.50)

where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = incoming flow at junction B

The other requirement in parallel pipes concerns the pressure drop
in each branch piping. Based on this the pressure drop due to friction

A B E F

C

D

Figure 1.8 Parallel piping.
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in branch BCE must exactly equal that in branch BDE. This is because
both branches have a common starting point (B) and a common ending
point (E). Since the pressure at each of these two points is a unique
value, we can conclude that the pressure drop in branch pipe BCE and
that in branch pipe BDE are both equal to PB − PE, where PB and PE
represent the pressure at the junction points B and E, respectively.

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 1.8, if pipe AB has a diameter of 14 in and branches BCE and
BDE have diameters of 10 and 12 in, respectively, we can find some
equivalent diameter pipe of the same length as one of the branches
that will have the same pressure drop between points B and C as the
two branches. An approximate equivalent diameter can be calculated
using the Darcy equation.

The pressure loss in branch BCE (10-in diameter) can be calculated
as

h1 = f (L1/D1)V1
2

2g
(1.51)

where the subscript 1 is used for branch BCE and subscript 2 for branch
BDE.

Similarly, for branch BDE

h2 = f (L2/D2)V2
2

2g
(1.52)

For simplicity we have assumed the same friction factors for both
branches. Since h1 and h2 are equal for parallel pipes, and representing
the velocities V1 and V2 in terms of the respective flow rates Q1 and Q2,
using Eq. (1.23) we have the following equations:

f (L1/D1)V1
2

2g
= f (L2/D2)V2

2

2g
(1.53)

V1 = 0.4085
Q1

D1
2 (1.54)

V2 = 0.4085
Q2

D2
2 (1.55)

In these equations we are assuming flow rates in gal/min and diameters
in inches.

Simplifying Eqs. (1.53) to (1.55), we get

L1

D1

(
Q1

D1
2

)2

= L2

D2

(
Q2

D2
2

)2
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or

Q1

Q2
=
(

L2

L1

)0.5(D1

D2

)2.5

(1.56)

Also by conservation of flow

Q1 + Q2 = Q (1.57)

Using Eqs. (1.56) and (1.57), we can calculate the flow through each
branch in terms of the inlet flow Q. The equivalent pipe will be desig-
nated as De in diameter and Le in length. Since the equivalent pipe will
have the same pressure drop as each of the two branches, we can write

Le

De

(
Qe

De
2

)2

= L1

D1

(
Q1

D1
2

)2

(1.58)

where Qe is the same as the inlet flow Q since both branches have
been replaced with a single pipe. In Eq. (1.58), there are two unknowns
Le and De. Another equation is needed to solve for both variables. For
simplicity, we can set Le to be equal to one of the lengths L1 or L2.
With this assumption, we can solve for the equivalent diameter De as
follows:

De = D1

(
Q
Q1

)0.4

(1.59)

Example 1.16 A 10-in water pipeline consists of a 2000-ft section of NPS 12
pipe (0.250-in wall thickness) starting at point A and terminating at point
B. At point B, two pieces of pipe (4000 ft long each and NPS 10 pipe with
0.250-in wall thickness) are connected in parallel and rejoin at a point D.
From D, 3000 ft of NPS 14 pipe (0.250-in wall thickness) extends to point E.
Using the equivalent diameter method calculate the pressures and flow rate
throughout the system when transporting water at 2500 gal/min. Compare
the results by calculating the pressures and flow rates in each branch. Use
the Colebrook-White equation for the friction factor.

Solution Since the pipe loops between B and D are each NPS 10 and 4000 ft
long, the flow will be equally split between the two branches. Each branch
pipe will carry 1250 gal/min.

The equivalent diameter for section BD is found from Eq. (1.59):

De = D1

(
Q
Q1

)0.4

= 10.25 × (2)0.4 = 13.525 in

Therefore we can replace the two 4000-ft NPS 10 pipes between B and D
with a single pipe that is 4000 ft long and has a 13.525-in inside diameter.
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The Reynolds number for this pipe at 2500 gal/min is found from Eq. (1.15):

R = 3162.5 × 2500
13.525 × 1.0

= 584,566

Considering that the pipe roughness is 0.002 in for all pipes:

Relative roughness
e
D

= 0.002
13.525

= 0.0001

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section BD is [using Eq. (1.24)]

Pm = 71.16
f Q2

D5

= 71.16
0.0147 × (2500)2 × 1

(13.525)5
= 14.45 psi/mi

Therefore,

Total pressure drop in BD = 14.45 × 4000
5280

= 10.95 psi

For section AB we have,

R = 3162.5 × 2500
12.25 × 1.0

= 645,408

Relative roughness
e
D

= 0.002
12.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section AB is [using Eq. (1.24)]

Pm = 71.16
0.0147 × (2500)2 × 1

(12.25)5
= 22.66 psi/mi

Therefore,

Total pressure drop in AB = 22.66 × 2000
5280

= 8.58 psi

Finally, for section DE we have,

R = 3162.5 × 2500
13.5 × 1.0

= 585,648

Relative roughness
e
D

= 0.002
13.5

= 0.0001

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section DE is

Pm = 71.16
0.0147 × (2500)2 × 1

(13.5)5
= 14.58 psi/mi

Therefore,

Total pressure drop in DE = 14.58 × 3000
5280

= 8.28 psi
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Finally,

Total pressure drop in entire piping system = 8.58 + 10.95 + 8.28

= 27.81 psi

Next for comparison we will analyze the branch pressure drops considering
each branch separately flowing at 1250 gal/min.

R = 3162.5 × 1250
10.25 × 1.0

= 385,671

Relative roughness
e
D

= 0.002
10.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0158. The pressure drop
in section BD is [using Eq. (1.24)]

Pm = 71.16
0.0158 × (1250)2 × 1

(10.25)5
= 15.53 psi/mi

This compares with the pressure drop of 14.45 psi/mi we calculated using an
equivalent diameter of 13.525. It can be seen that the difference between the
two pressure drops is approximately 7.5 percent.

Example 1.17 A waterline 5000 m long is composed of three sections A, B,
and C. Section A has a 200-m inside diameter and is 1500 m long. Section
C has a 400-mm inside diameter and is 2000 m long. The middle section B
consists of two parallel pipes each 3000 m long. One of the parallel pipes
has a 150-mm inside diameter and the other has a 200-mm inside diameter.
Assume no elevation change throughout. Calculate the pressures and flow
rates in this piping system at a flow rate of 500 m3/h, using the Hazen-
Williams formula with a C factor of 1.20.

Solution We will replace the two 3000-m pipe branches in section B with a
single equivalent diameter pipe to be determined. Since the pressure drop
according to the Hazen-Williams equation is inversely proportional to the
4.87 power of the pipe diameter, we calculate the equivalent diameter for
section B as follows:

Qe
1.852

De4.87
= Q1

1.852

D1
4.87

= Q2
1.852

D2
4.87

Therefore,

De

D1
=
(

Qe

Q1

)0.3803

Also Qe = Q1 + Q2 and

Q1

Q2
=
(

D1

D2

)2.63

=
(

150
200

)2.63

= 0.4693
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Solving for Q1 and Q2, with Qe = 500, we get

Q1 = 159.7m3/hr and Q2 = 340.3m3/h

Therefore, the equivalent diameter is

De = D1

(
Qe

Q1

)0.3803

= 150 ×
(

500
159.7

)0.3803

= 231.52 mm

The pressure drop in section A, using Hazen-Williams equation (1.35), is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(200)4.87

= 970.95 kPa/km

�Pa = 970.95 × 1.5 = 1456.43 kPa

The pressure drop in section B, using Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(231.52)4.87

= 476.07 kPa/km

�Pb = 476.07 × 3.0 = 1428.2 kPa

The pressure drop in section C, using Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(400)4.87

= 33.20 kPa/km

�Pc = 33.2 × 2.0 = 66.41 kPa

Therefore,

Total pressure drop of sections A, B, and C = 1456.43 + 1428.20 + 66.41

= 2951.04 kPa

1.9 Total Pressure Required

So far we have examined the frictional pressure drop in water systems
piping consisting of pipe, fittings, valves, etc. We also calculated the
total pressure required to pump water through a pipeline up to a de-
livery station at an elevated point. The total pressure required at the
beginning of a pipeline, for a specified flow rate, consists of three distinct
components:

1. Frictional pressure drop

2. Elevation head

3. Delivery pressure

Pt = Pf + Pelev + Pdel from Eq. (1.29)
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The first item is simply the total frictional head loss in all straight pipe,
fittings, valves, etc. The second item accounts for the pipeline elevation
difference between the origin of the pipeline and the delivery termi-
nus. If the origin of the pipeline is at a lower elevation than that of the
pipeline terminus or delivery point, a certain amount of positive pres-
sure is required to compensate for the elevation difference. On the other
hand, if the delivery point were at a lower elevation than the beginning
of the pipeline, gravity will assist the flow and the pressure required
at the beginning of the pipeline will be reduced by this elevation differ-
ence. The third component, delivery pressure at the terminus, simply
ensures that a certain minimum pressure is maintained at the delivery
point, such as a storage tank.

For example, if a water pipeline requires 800 psi to take care of fric-
tional losses and the minimum delivery pressure required is 25 psi, the
total pressure required at the beginning of the pipeline is calculated as
follows. If there were no elevation difference between the beginning of
the pipeline and the delivery point, the elevation head (component 2)
is zero. Therefore, the total pressure Pt required is

Pt = 800 + 0 + 25 = 825 psi

Next consider elevation changes. If the elevation at the beginning is
100 ft and the elevation at the delivery point is 500 ft, then

Pt = 800 + (500 − 100) × 1.0
2.31

+ 25 = 998.16 psi

The middle term in this equation represents the static elevation head
difference converted to psi. Finally, if the elevation at the beginning is
500 ft and the elevation at the delivery point is 100 ft, then

Pt = 800 + (100 − 500) × 1.0
2.31

+ 25 = 651.84 psi

It can be seen from the preceding that the 400-ft advantage in ele-
vation in the final case reduces the total pressure required by approxi-
mately 173 psi compared to the situation where there was no elevation
difference between the beginning of the pipeline and delivery point.

1.9.1 Effect of elevation

The preceding discussion illustrated a water pipeline that had a flat el-
evation profile compared to an uphill pipeline and a downhill pipeline.
There are situations, where the ground elevation may have drastic
peaks and valleys, that require careful consideration of the pipeline
topography. In some instances, the total pressure required to transport
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a given volume of water through a long pipeline may depend more on
the ground elevation profile than the actual frictional pressure drop.
In the preceding we calculated the total pressure required for a flat
pipeline as 825 psi and an uphill pipeline to be 998 psi. In the up-
hill case the static elevation difference contributed to 17 percent of the
total pressure required. Thus the frictional component was much higher
than the elevation component. We will examine a case where the ele-
vation differences in a long pipeline dictate the total pressure required
more than the frictional head loss.

Example 1.18 A 20-in (0.375-in wall thickness) water pipeline 500 mi long
has a ground elevation profile as shown in Fig. 1.9. The elevation at Corona
is 600 ft and at Red Mesa is 2350 ft. Calculate the total pressure required at
the Corona pump station to transport 11.5 Mgal/day of water to Red Mesa
storage tanks, assuming a minimum delivery pressure of 50 psi at Red Mesa.
Use the Hazen-Williams equation with a C factor of 140. If the pipeline
operating pressure cannot exceed 1400 psi, how many pumping stations,
besides Corona, will be required to transport the given flow rate?

Solution The flow rate Q in gal/min is

Q = 11.5 × 106

24 × 60
= 7986.11 gal/min

If Pm is the head loss in psi/mi of pipe, using the Hazen-Williams equation
(1.33),

Pm = 23,909

(
7986.11

140

)1.852 1
19.254.87

= 23.76 psi/mi

Therefore,

Frictional pressure drop = 23.76 psi/mi

Hydraulic pressure gradient = 11.5 Mgal/day

Pipeline elevation profile

C

A BFlow

Corona
Elev. = 600 ft

Red Mesa
Elev. = 2350 ft

500-mi-long, 20-in pipeline

50 psi

Figure 1.9 Corona to Red Mesa pipeline.

Next Page
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The total pressure required at Corona is calculated by adding the pressure
drop due to friction to the delivery pressure required at Red Mesa and the
static elevation head between Corona and Red Mesa.

Pt = Pf + Pelev + Pdel from Eq. (1.29)

= (23.76 × 500) + 2350 − 600
2.31

+ 50

= 11,880 + 757.58 + 50 = 12,688 psi rounded off to the nearest psi

Since a total pressure of 12,688 psi at Corona far exceeds the maximum op-
erating pressure of 1400 psi, it is clear that we need additional intermediate
booster pump stations besides Corona. The approximate number of pump
stations required without exceeding the pipeline pressure of 1400 psi is

Number of pump stations = 12,688
1400

= 9.06 or 10 pump stations

With 10 pump stations the average pressure per pump station will be

Average pump station pressure = 12,688
10

= 1269 psi

1.9.2 Tight line operation

When there are drastic elevation differences in a long pipeline, some-
times the last section of the pipeline toward the delivery terminus may
operate in an open-channel flow. This means that the pipeline section
will not be full of water and there will be a vapor space above the water.
Such situations are acceptable in water pipelines compared to high
vapor pressure liquids such as liquefied petroleum gas (LPG). To pre-
vent such open-channel flow or slack line conditions, we pack the line
by providing adequate back pressure at the delivery terminus as illus-
trated in Fig. 1.10.

Pipeline pressure gradient

Pipeline elevation profile

C

DPeak

A B

Pump station
Flow

Delivery terminus

B
ac

k 
pr

es
su

re

Figure 1.10 Tight line operation.
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Hydraulic pressure gradient

Peak

Pipeline elevation profile

Open-channel flow

∆P

D

BA
Flow

C

Pump station Delivery terminus

Figure 1.11 Slack line flow.

1.9.3 Slack line flow

Slack line or open-channel flow occurs in the last segment of a long-
distance water pipeline where a large elevation difference exists be-
tween the delivery terminus and intermediate point in the pipeline as
indicated in Fig. 1.11.

If the pipeline were packed to avoid slack line flow, the hydraulic
gradient is as shown by the solid line in Fig. 1.11. However, the piping
system at the delivery terminal may not be able to handle the higher
pressure due to line pack. Therefore, we may have to reduce the pres-
sure at some point within the delivery terminal using a pressure control
valve. This is illustrated in Fig. 1.11.

1.10 Hydraulic Gradient

The graphical representation of the pressures along the pipeline, as
shown in Fig. 1.12, is called the hydraulic pressure gradient. Since ele-
vation is measured in feet, the pipeline pressures are converted to feet of
head and plotted against the distance along the pipeline superimposed

C
F

D

E

A B

Pipeline elevation profile

Pressure

Pipeline pressure gradient

Pump station Delivery terminus

Figure 1.12 Hydraulic pressure gradient.
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on the elevation profile. If we assume a beginning elevation of 100 ft,
a delivery terminus elevation of 500 ft, a total pressure of 1000 psi
required at the beginning, and a delivery pressure of 25 psi at the ter-
minus, we can plot the hydraulic pressure gradient graphically by the
following method.

At the beginning of the pipeline the point C representing the total
pressure will be plotted at a height of

100 ft + (1000 × 2.31) = 2410 ft

Similarly, at the delivery terminus the point D representing the total
head at delivery will be plotted at a height of

500 + (25 × 2.31) = 558 ft rounded off to the nearest foot

The line connecting the points C and D represents the variation of the
total head in the pipeline and is termed the hydraulic gradient. At any
intermediate point such as E along the pipeline the pipeline pressure
will be the difference between the total head represented by point F on
the hydraulic gradient and the actual elevation of the pipeline at E.

If the total head at F is 1850 ft and the pipeline elevation at E is
250 ft, the actual pipeline pressure at E is

(1850 − 250)ft = 1600
2.31

= 693 psi

It can be seen that the hydraulic gradient clears all peaks along the
pipeline. If the elevation at E were 2000 ft, we would have a negative
pressure in the pipeline at E equivalent to

(1850 − 2000)ft = −150 ft = − 150
2.31

= −65 psi

Since a negative pressure is not acceptable, the total pressure at the be-
ginning of the pipeline will have to be higher by the preceding amount.

Revised total head at A = 2410 + 150 = 2560 ft

This will result in zero gauge pressure in the pipeline at peak E. The ac-
tual pressure in the pipeline will therefore be equal to the atmospheric
pressure at that location. Since we would like to always maintain some
positive pressure above the atmospheric pressure, in this case the total
head at A must be slightly higher than 2560 ft. Assuming a 10-psi posi-
tive pressure is desired at the highest peak such as E (2000-ft elevation),
the revised total pressure at A would be

Total pressure at A = 1000 + 65 + 10 = 1075 psi
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Therefore,

Total head at C = 100 + (1075 × 2.31) = 2483 ft

This will ensure a positive pressure of 10 psi at the peak E.

1.11 Gravity Flow

Gravity flow in a water pipeline occurs when water flows from a source
at point A at a higher elevation than the delivery point B, without any
pumping pressure at A and purely under gravity. This is illustrated in
Fig. 1.13.

The volume flow rate under gravity flow for the reservoir pipe system
shown in Fig. 1.13 can be calculated as follows. If the head loss in the
pipeline is h ft/ft of pipe length, the total head loss in length L is (h× L).
Since the available driving force is the difference in tank levels at A
and B, we can write

H1 − (h × L) = H2 (1.60)

Therefore,

hL = H1 − H2 (1.61)

and

h = H1 − H2

L
(1.62)

where h = head loss in pipe, ft/ft
L = length of pipe

H1 = head in tank A
H2 = head in tank B

In the preceding analysis, we have neglected the entrance and exit
losses at A and B. Using the Hazen-Williams equation we can then
calculate flow rate based on a C value.

A

B

H1

H2

L

Q

Figure 1.13 Gravity flow from reservoir.
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Example 1.19 The gravity feed system shown in Fig. 1.13 consists of a
16-inch (0.250-in wall thickness) 3000-ft-long pipeline, with a tank elevation
at A = 500 ft and elevation at B = 150 ft. Calculate the flow rate through
this gravity flow system. Use a Hazen-Williams C factor of 130.

Solution

h = 500 − 150
3000

= 0.1167 ft/ft

Substituting in Hazen-Williams equation (1.32), we get

0.1167 × 1000 = 10,460 ×
(

Q
130

)1.852( 1
15.5

)4.87

Solving for flow rate Q,

Q = 15,484 gal/min

Compare the results using the Colebrook-White equation assuming e =
0.002.

e
D

= 0.002
15.5

= 0.0001

We will assume a friction factor f = 0.02 initially. Head loss due to friction
per Eq. (1.24) is

Pm = 71.16 × 0.02(Q2)
(15.5)5

psi/mi

or

Pm = 1.5908 × 10−6 Q2 psi/mi

=
(

1.5908 × 10−6 2.31
5280

)
Q2 ft/ft

= (6.9596 × 10−10)Q2 ft/ft

0.1167 = (6.9596 × 10−10)Q2

Solving for flow rate Q, we get

Q = 12,949 gal/min

Solving for the Reynolds number, we get

Re = 3162.5 × 12,949
15.5

× 1 = 2,642,053

From the Moody diagram, f = 0.0128. Now we recalculate Pm,

Pm = 71.16 × 0.0128 × Q2

(15.5)5
psi/mi

= 4.4541 × 10−10 Q2 ft/ft
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Solving for Q again,

Q = 16,186 gal/min

By successive iteration we arrive at the final flow rate of 16,379 gal/min
using the Colebrook-White equation. Comparing this with 15,484 gal/min
obtained using the Hazen-Williams equation, we see that the flow rate is
underestimated probably because the assumed Hazen-Williams C factor
(C = 130) was too low.

Example 1.20 The two-reservoir system described in Fig. 1.13 is modified
to include a second source of water from a tank located at C between the two
tanks located at A and B and away from the pipeline AB. The tank at C is
at an elevation of 300 ft and connects to the piping from A to B via a new
16-inch, 1000-ft-long pipe CD. The common junction D is located along the
pipe AB at a distance of 1500 ft from the tank at B. Determine the flow rates
Q1 from A to D, Q2 from C to D, and Q3 from D to B. Use the Hazen-Williams
equation with C = 130.

Solution At the common junction D we can apply the conservation of flow
principle as follows:

Q1 + Q2 = Q3

Also since D is a common junction, the head HD at point D is common to the
three legs AD, CD, and DB. Designating the head loss due to friction in the
respective pipe segments AD, CD, and DB as hf AD, hf CD, and hf DB, we can
write the following pressure balance equations for the three pipe legs.

HD = HA − hf AD

HD = HC − hf CD

HD = HB + hf DB

Since the pipe sizes are all 16 in and the C factor is 130, using the Hazen-
Williams equation (1.32) we can write

hf AD = 10,460 × LAD

1000

(
Q1

130

)1.852( 1
15.5

)4.87

= KLAD × Q1
1.852

where K is a constant for all pipes and is equal to

K = 10,460 × 1
1000

(
1

130

)1.852( 1
15.5

)4.87

= 2.0305 × 10−9

and

LAD = length of pipe from A to D = 1500 ft

Similarly, we can write

hf CD = KLCD × Q2
1.852
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and for leg DB

hf DB = KLDB × Q3
1.852

Substituting the values in the preceding HD equations, we get

HD = 500 − K × 1500 × Q1
1.852

HD = 300 − K × 1000 × Q2
1.852

HD = 150 + K × 1000 × Q3
1.852

Simplifying these equations by eliminating HD, we get the following two
equations:

1.5Q1
1.852 − Q2

1.852 = 0.2
K

(A)

1.5Q1
1.852 + Q3

1.852 = 0.35
K

(B)

Also

Q1 + Q2 = Q3 (C)

Solving for the three flow rates we get,

Q1 = 16,677 Q2 = 1000 and Q3 = 17,677

1.12 Pumping Horsepower

In the previous sections we calculated the total pressure required at
the beginning of the pipeline to transport a given volume of water over
a certain distance. We will now calculate the pumping horsepower (HP)
required to accomplish this.

Consider Example 1.18 in which we calculated the total pressure
required to pump 11.5 Mgal/day of water from Corona to Red Mesa
through a 500-mi-long, 20-in pipeline. We calculated the total pressure
required to be 12,688 psi. Since the maximum allowable working pres-
sure in the pipeline was limited to 1400 psi, we concluded that nine
additional pump stations besides Corona were required. With a total of
10 pump stations, each pump station would be discharging at a pressure
of approximately 1269 psi.

At the Corona pump station, water would enter the pump at some
minimum pressure, say 50 psi and the pumps would boost the pressure
to the required discharge pressure of 1269 psi. Effectively, the pumps
would add the energy equivalent of 1269 − 50, or 1219 psi at a flow
rate of 11.5 Mgal/day (7986.11 gal/min). The water horsepower (WHP)
required is calculated as

WHP = (1219 × 2.31) × 7986.11 × 1.0
3960

= 5679 HP
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The general equation used to calculate WHP, also known as hydraulic
horsepower (HHP), is as follows:

WHP = ft of head × (gal/min) × specific gravity
3960

(1.63)

Assuming a pump efficiency of 80 percent, the pump brake horsepower
(BHP) required is

BHP = 5679
0.8

= 7099 HP

The general equation for calculating the BHP of a pump is

BHP = ft of head × (gal/min) × (specific gravity)
3960 × effy

(1.64)

where effy is the pump efficiency expressed as a decimal value.
If the pump is driven by an electric motor with a motor efficiency of

95 percent, the drive motor HP required will be

Motor HP = 7099
0.95

= 7473 HP

The nearest standard size motor of 8000 HP would be adequate for this
application. Of course this assumes that the entire pumping require-
ment at the Corona pump station is handled by a single pump-motor
unit. In reality, to provide for operational flexibility and maintenance
two or more pumps will be configured in series or parallel configura-
tions to provide the necessary pressure at the specified flow rate. Let us
assume that two pumps are configured in parallel to provide the nec-
essary head pressure of 1219 psi (2816 ft) at the Corona pump station.
Each pump will be designed for one-half the total flow rate (7986.11) or
3993 gal/min and a head pressure of 2816 ft. If the pumps selected had
an efficiency of 80 percent, we can calculate the BHP required for each
pump as follows:

BHP = 2816 × 3993 × 1.0
3960 × 0.80

from Eq. (1.64)

= 3550 HP

Alternatively, if the pumps were configured in series instead of parallel,
each pump will be designed for the full flow rate of 7986.11 gal/min but
at half the total pressure required, or 1408 ft. The BHP required per
pump will still be the same as determined by the preceding equation.
Pumps are discussed in more detail in Sec. 1.13.
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1.13 Pumps

Pumps are installed on water pipelines to provide the necessary pres-
sure at the beginning of the pipeline to compensate for pipe friction and
any elevation head and provide the necessary delivery pressure at the
pipeline terminus. Pumps used on water pipelines are either positive
displacement (PD) type or centrifugal pumps.

PD pumps generally have higher efficiency, higher maintenance cost,
and a fixed volume flow rate at any pressure within allowable limits.
Centrifugal pumps on the other hand are more flexible in terms of flow
rates but have lower efficiency and lower operating and maintenance
cost. The majority of liquid pipelines today are driven by centrifugal
pumps.

Since pumps are designed to produce pressure at a given flow rate,
an important characteristic of a pump is its performance curve. The
performance curve is a graphic representation of how the pressure gen-
erated by a pump varies with its flow rate. Other parameters, such as
efficiency and horsepower, are also considered as part of a pump per-
formance curve.

1.13.1 Positive displacement pumps

Positive displacement (PD) pumps include piston pumps, gear pumps,
and screw pumps. These are used generally in applications where a
constant volume of liquid must be pumped against a fixed or variable
pressure.

PD pumps can effectively generate any amount of pressure at the
fixed flow rate, which depends on its geometry, as long as equipment
pressure limits are not exceeded. Since a PD pump can generate any
pressure required, we must ensure that proper pressure control de-
vices are installed to prevent rupture of the piping on the discharge
side of the PD pump. As indicated earlier, PD pumps have less flexi-
bility with flow rates and higher maintenance cost. Because of these
reasons, PD pumps are not popular in long-distance and distribution
water pipelines. Centrifugal pumps are preferred due to their flexibility
and low operating cost.

1.13.2 Centrifugal pumps

Centrifugal pumps consist of one or more rotating impellers contained
in a casing. The centrifugal force of rotation generates the pressure in
the liquid as it goes from the suction side to the discharge side of the
pump. Centrifugal pumps have a wide range of operating flow rates
with fairly good efficiency. The operating and maintenance cost of a
centrifugal pump is lower than that of a PD pump. The performance
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Figure 1.14 Performance curve for centrifugal pump.

curves of a centrifugal pump consist of head versus capacity, efficiency
versus capacity, and BHP versus capacity. The term capacity is used
synonymously with flow rate in connection with centrifugal pumps. Also
the term head is used in preference to pressure when dealing with
centrifugal pumps. Figure 1.14 shows a typical performance curve for
a centrifugal pump.

Generally, the head-capacity curve of a centrifugal pump is a drooping
curve. The highest head is generated at zero flow rate (shutoff head) and
the head decreases with an increase in the flow rate as shown in Fig.
1.14. The efficiency increases with flow rate up to the best efficiency
point (BEP) after which the efficiency drops off. The BHP calculated
using Eq. (1.64) also generally increases with flow rate but may taper off
or start decreasing at some point depending on the head-capacity curve.

The head generated by a centrifugal pump depends on the diameter
of the pump impeller and the speed at which the impeller runs. The
affinity laws of centrifugal pumps may be used to determine pump per-
formance at different impeller diameters and pump speeds. These laws
can be mathematically stated as follows:
For impeller diameter change:

Flow rate:
Q1

Q2
= D1

D2
(1.65)

Head:
H1

H2
=
(

D1

D2

)2

(1.66)
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BHP:
BHP1

BHP2
=
(

D1

D2

)3

(1.67)

For impeller speed change:

Flow rates:
Q1

Q2
= N1

N2
(1.68)

Heads:
H1

H2
=
(

N1

N2

)2

(1.69)

BHP:
BHP1

BHP2
=
(

N1

N2

)3

(1.70)

where subscript 1 refers to initial conditions and subscript 2 to final
conditions. It must be noted that the affinity laws for impeller diameter
change are accurate only for small changes in diameter. However, the
affinity laws for impeller speed change are accurate for a wide range of
impeller speeds.

Using the affinity laws if the performance of a centrifugal pump is
known at a particular diameter, the corresponding performance at a
slightly smaller diameter or slightly larger diameter can be calculated
very easily. Similarly, if the pump performance for a 10-in impeller at
3500 revolutions per minute (r/min) impeller speed is known, we can
easily calculate the performance of the same pump at 4000 r/min.

Example 1.21 The performance of a centrifugal pump with a 10-in impeller
is as shown in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 2355 0
1600 2340 57.5
2400 2280 72.0
3200 2115 79.0
3800 1920 80.0
4000 1845 79.8
4800 1545 76.0

(a) Determine the revised pump performance with a reduced impeller size
of 9 in.

(b) If the given performance is based on an impeller speed of 3560 r/min,
calculate the revised performance at an impeller speed of 3000 r/min.

Solution

(a) The ratio of impeller diameters is 9
10 = 0.9. Therefore, the Q values will

be multiplied by 0.9 and the H values will be multiplied by 0.9 × 0.9 = 0.81.
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Revised performance data are given in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 1907 0
1440 1895 57.5
2160 1847 72.0
2880 1713 79.0
3420 1555 80.0
3600 1495 79.8
4320 1252 76.0

(b) When speed is changed from 3560 to 3000 r/min, the speed ratio =
3000/3560 = 0.8427. Therefore, Q values will be multiplied by 0.8427 and H
values will be multiplied by (0.8427)2 = 0.7101. Therefore, the revised pump
performance is as shown in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 1672 0
1348 1662 57.5
2022 1619 72.0
2697 1502 79.0
3202 1363 80.0
3371 1310 79.8
4045 1097 76.0

Example 1.22 For the same pump performance described in Example 1.21,
calculate the impeller trim necessary to produce a head of 2000 ft at a flow
rate of 3200 gal/min. If this pump had a variable-speed drive and the given
performance was based on an impeller speed of 3560 r/min, what speed would
be required to achieve the same design point of 2000 ft of head at a flow rate
of 3200 gal/min?

Solution Using the affinity laws, the diameter required to produce 2000 ft of
head at 3200 gal/min is as follows:(

D
10

)2

= 2000
2115

D = 10 × 0.9724 = 9.72 in

The speed ratio can be calculated from(
N

3560

)2

= 2000
2115

Solving for speed,

N = 3560 × 0.9724 = 3462 r/min
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Strictly speaking, this approach is only approximate since the affinity laws
have to be applied along iso-efficiency curves. We must create the new H-Q
curves at the reduced impeller diameter (or speed) to ensure that at 3200
gal/min the head generated is 2000 ft. If not, adjustment must be made to
the impeller diameter (or speed). This is left as an exercise for the reader.

Net positive suction head. An important parameter related to the oper-
ation of centrifugal pumps is the concept of net positive suction head
(NPSH). This represents the absolute minimum pressure at the suction
of the pump impeller at the specified flow rate to prevent pump cavita-
tion. If the pressure falls below this value, the pump impeller may be
damaged and render the pump useless.

The calculation of NPSH available for a particular pump and piping
configuration requires knowledge of the pipe size on the suction side of
the pump, the elevation of the water source, and the elevation of the
pump impeller along with the atmospheric pressure and vapor pressure
of water at the pumping temperature. The pump vendor may specify
that a particular model of pump requires a certain amount of NPSH
(known as NPSH required or NPSHR) at a particular flow rate. Based
on the actual piping configuration, elevations, etc., the calculated NPSH
(known as NPSH available or NPSHA) must exceed the required NPSH
at the specified flow rate. Therefore,

NPSHA > NPSHR

If the NPSHR is 25 ft at a 2000 gal/min pump flow rate, then NPSHA
must be 35 ft or more, giving a 10-ft cushion. Also, typically, as the
flow rate increases, NPSHR increases fairly rapidly as can be seen from
the typical centrifugal pump curve in Fig. 1.14. Therefore, it is im-
portant that the engineer perform calculations at the expected range
of flow rates to ensure that the NPSH available is always more than
the required NPSH, per the vendor’s pump performance data. As indi-
cated earlier, insufficient NPSH available tends to cavitate or starve the
pump and eventually causes damage to the pump impeller. The dam-
aged impeller will not be able to provide the necessary head pressure
as indicated on the pump performance curve. NPSH calculation will be
illustrated using an example next.

Figure 1.15 shows a centrifugal pump installation where water is
pumped out of a storage tank that is located at a certain elevation
above that of the centerline of the pump. The piping from the storage
tank to the pump suction consists of straight pipe, valves, and fittings.
The NPSH available is calculated as follows:

NPSH = (Pa − Pv)
2.31
Sg

+ H + E1 − E2 − hf (1.71)
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Pa Water level in tank, H
Elevation of tank, E1

Elevation of pump, E2

Pressure loss in suction piping, hf

Figure 1.15 NPSH calculations.

where Pa = atmospheric pressure, psi
Pv = liquid vapor pressure at flowing temperature, psia

Sg = liquid specific gravity
H = liquid head in tank, ft
E1 = elevation of tank bottom, ft
E2 = elevation of pump suction, ft
hf = friction loss in suction piping from tank to pump suction,ft

All terms in Eq. (1.71) are known except the head loss hf . This item must
be calculated considering the flow rate, pipe size, and liquid properties.
We will use the Hazen-Williams equation with C = 120 for calculating
the head loss in the suction piping. We get

Pm = 23,909
(

3000
120

)1.852 1
13.54.87 = 29.03 psi/mi

The pressure loss in the piping from the tank to the pump = 29.03×500
5280 =

2.75 psi. Substituting the given values in Eq. (1.71) assuming the vapor
pressure of water is 0.5 psia at the pumping temperature,

NPSH = (14.7 − 0.5) × 2.31 + 10 + 102 − 95 − 2.75 = 47.05 ft

The required NPSH for the pump must be less than this value. If the
flow rate increases to 5000 gal/min and the liquid level in turn drops to
1 ft, the revised NPSH available is calculated as follows.

With the flow rate increasing from 3200 to 5000 gal/min, the pressure
loss due to friction Pm is approximately,

Pm =
(

5000
3200

)1.852

× 29.03 = 66.34 psi/mi

Head loss in 500 ft of pipe = 66.34 × 500
5280

= 6.3 psi
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Therefore,

NPSH = (14.7 − 0.5) × 2.31 + 1 + 102 − 95 − 6.3 = 34.5 ft

It can be seen that the NPSH available dropped off considerably with
the reduction in liquid level in the tank and the increased friction loss
in the suction piping at the higher flow rate.

The required NPSH for the pump (based on vendor data) must be
lower than the preceding available NPSH calculations. If the pump
data shows 38 ft NPSH required at 5000 gal/min, the preceding cal-
culation indicates that the pump will cavitate since NPSH available is
only 34.5 ft.

Specific speed. An important parameter related to centrifugal pumps
is the specific speed. The specific speed of a centrifugal pump is defined
as the speed at which a geometrically similar pump must be run such
that it will produce a head of 1 ft at a flow rate of 1 gal/min. Mathemat-
ically, the specific speed is defined as follows

NS = NQ1/2

H3/4 (1.72)

where NS = specific speed
N = impeller speed, r/min
Q = flow rate, gal/min
H = head, ft

It must be noted that in Eq. (1.72) for specific speed, the capacity Q
and head H must be measured at the best efficiency point (BEP) for the
maximum impeller diameter of the pump. For a multistage pump the
value of the head H must be calculated per stage. It can be seen from
Eq. (1.72) that low specific speed is attributed to high head pumps and
high specific speed for pumps with low head.

Similar to the specific speed another term known as suction specific
speed is also applied to centrifugal pumps. It is defined as follows:

NSS = NQ1/2

(NPSHR)3/4 (1.73)

where NSS = suction specific speed
N = impeller speed, r/min
Q = flow rate, gal/min

NPSHR = NPSH required at the BEP



Water Systems Piping 59

With single or double suction pumps the full capacity Q is used in
Eq. (1.73) for specific speed. For double suction pumps one-half the
value of Q is used in calculating the suction specific speed.

Example 1.23 Calculate the specific speed of a four-stage double suction
centrifugal pump with a 12-in-diameter impeller that runs at 3500 r/min
and generates a head of 2300 ft at a flow rate of 3500 gal/min at the BEP.
Calculate the suction specific speed of this pump, if the NPSH required is
23 ft.

Solution From Eq. (1.72), the specific speed is

NS = NQ1/2

H3/4

= 3500(3500)1/2

(2300/4)3/4
= 1763

The suction specific speed is calculated using Eq. (1.73):

NSS = NQ1/2

NPSHR3/4

= 3500(3500/2)1/2

(23)3/4
= 13,941

1.13.3 Pumps in series and parallel

In the discussions so far we considered the performance of a single cen-
trifugal pump. Sometimes, because of head limitations of a single pump
or flow rate limits, we may have to use two or more pumps together at a
pump station to provide the necessary head and flow rate. When more
than one pump is used, they may be operated in series or parallel con-
figurations. Series pumps are so arranged that each pump delivers the
same volume of water, but the total pressure generated by the com-
bination is the sum of the individual pump heads. Parallel pumps are
configured such that the total flow delivered is the sum of the flow rates
through all pumps, while each pump delivers a common head pressure.
For higher pressures, pumps are operated in series, and when larger
flow is required they are operated in parallel.

In Example 1.18 we found that the Corona pump station required
pumps that would provide a pressure of 1219 psi at a flow rate of 7986.11
gal/min. Therefore we are looking for a pump or a combination of pumps
at Corona that would provide the following:

Flow rate = 7986.11 gal/min and Head = 1219×2.31 = 2816 ft
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Pump A

Pump A

Pump B

Pump B

Q

Q Q

Q

Head H1

Head H

Head H

Q1

Head H2

Series pumps—same flow rate Q through both pumps.
Pump heads H1 and H2 are additive.

Q1 + Q2 Q1 + Q2

Q2

Parallel pumps—same head H from each pump.
Flow rates Q1 and Q2 are additive.

Figure 1.16 Pumps in series and parallel.

From a pump manufacturer’s catalog, we can select a single pump that
can match this performance. We could also select two smaller pumps
that can generate 2816 ft of head at 3993 gal/min. We would operate
these two pumps in parallel to achieve the desired flow rate and pres-
sure. Alternatively, if we chose two other pumps that would each provide
1408 ft of head at the full flow rate of 7986.11 gal/min, we would oper-
ate these pumps in series. Example of pumps in series and parallel are
shown in Fig. 1.16.

In some instances, pumps must be configured in parallel, while other
situations might require pumps be operated in series. An example of
where parallel pumps are needed would be in pipelines that have a
large elevation difference between pump stations. In such cases, if one
pump unit fails, the other pump will still be able to handle the head at
a reduced flow rate. If the pumps were in series, the failure of one pump
would cause the entire pump station to be shut down, since the single
pump will not be able to generate enough head on its own to overcome
the static elevation head between the pump stations. Figure 1.17 shows
how the performance of a single pump compares with two identical
pumps in series and parallel configurations.

Example 1.24 Two pumps with the head-capacity characteristics defined as
follows are operated in series.
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2H

H

Head

Flow rate

2QQ

One pump

Two pumps in series

Two pumps in parallel

Figure 1.17 Pump performance—series and parallel.

Pump A:

Q, gal/min 0 600 1400 2200 3200

H, ft 2400 2350 2100 1720 1200

Pump B:

Q, gal/min 0 600 1400 2200 3200

H, ft 800 780 700 520 410

(a) Calculate the combined performance of the two operated in series.

(b) When operated in series, what impeller trims must be made to either
pump, to meet the requirement of 2080 ft of head at 2200 gal/min?

(c) Can these pumps be operated in parallel configuration?

Solution

(a) Pumps in series cause the heads to be additive at the same flow rate.
Therefore, at each flow rate, we add the corresponding heads to create the
new H-Q curve for the combined pumps in series.

The combined performance of pump A and pump B in series is as follows:

Q, gal/min 0 600 1400 2200 3200

H, ft 3200 3130 2800 2240 1610
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(b) Reviewing the combined pump curve, we see that the head generated
at 2200 gal/min is 2240 ft. Since our requirement is 2080 ft of head at 2200
gal/min, clearly we must trim one of the pump impellers. We will leave the
smaller pump B alone and trim the impeller of the larger pump A to achieve
the total head of 2080 ft.

Pump A head trim required = 2240 − 2080 = 160 ft

At the desired flow rate of 2200 gal/min, pump A produces 1720 ft. We must
reduce this head by 160 ft, by trimming the impeller, or the head must become
1720 − 160 = 1560 ft. Using the affinity laws, the pump trim required is(

1560
1720

)1/2

= 0.9524 or 95.24 percent trim

It must be noted that this calculation is only approximate. We must create
the new pump performance curve at 95.24 percent trim and verify that the
trimmed pump will generate the desired head of 1560 ft at a flow rate of 2200
gal/min. This is left as an exercise for the reader.

(c) For parallel pumps, since flow is split between the pumps at the common
head, the individual pump curves should each have approximately the same
head at each flow rate, for satisfactory operation. Reviewing the individual
curves for pumps A and B, we see that the pumps are mismatched. Therefore,
these pumps are not suitable for parallel operation, since they do not have a
common head range.

Example 1.25 Two identical pumps with the head-capacity characteristic
defined as follows are operated in parallel. Calculate the resultant pump
performance.

Q, gal/min 0 600 1400 2200 3200

H, ft 2400 2350 2100 1720 1200

Solution Since the pumps operated in parallel will have common heads at the
combined flow rates, we can generate the combined pump curve by adding
the flow rates corresponding to each head value. The resulting combined
performance curve is as follows:

Q, gal/min 0 1200 2800 4400 6400

H, ft 2400 2350 2100 1720 1200

1.13.4 System head curve

A system head curve, or a system head characteristic curve, for a pipeline
is a graphic representation of how the pressure needed to pump water
through the pipeline varies with the flow rate. If the pressures required
at 1000, 2000, up to 10,000 gal/min are plotted on the vertical axis, with
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Head
H

Flow rate Q

Figure 1.18 System head curve.

the flow rates on the horizontal axis, we get the system head curve as
shown in Fig. 1.18.

It can be seen that the system curve is not linear. This is because the
pressure drop due to friction varies approximately as the square of the
flow rate, and hence the additional pressure required when the flow is
increased 2000 to 3000 gal/min is more than that required when the
flow rate increases from 1000 to 2000 gal/min.

Consider a pipeline used to transport water from point A to point
B. The pipe inside diameter is D and the length is L. By knowing the
elevation along the pipeline we can calculate the total pressure required
at any flow rate using the techniques discussed earlier. At each flow rate
we would calculate the pressure drop due to friction and multiply by
the pipe length to get the total pressure drop. Next we will add the
equivalent of the static head difference between A and B converted to
psi. Finally, the delivery pressure required at B would be added to come
up with the total pressure required similar to Eq. (1.29). The process
would be repeated for multiple flow rates so that a system head curve
can be constructed as shown in Fig. 1.18. If we plotted the feet of head
instead of pressure on the vertical axis, we could use the system curve
in conjunction with the pump curve for the pump at A. By plotting both
the pump H-Q curve and the system head curve on the same graph, we
can determine the point of operation for this pipeline with the specified
pump curve. This is shown in Fig. 1.19.

When there is no elevation difference between points A and B, the
system head curve will start at the point where the flow rate and head
are both zero. If the elevation difference were 100 ft, B being higher
than A, the system head curve will start at H = 100 ft and flow Q = 0.

This means at zero flow rate the pressure required is not zero. This
simply means that even at zero flow rate, a minimum pressure must be
present at Ato overcome the static elevation difference between Aand B.

Next Page
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Head

Flow rate

QA

HA A

Pump head

System head

Figure 1.19 Pump head curve and system head
curve.

1.13.5 Pump curve versus system
head curve

The system head curve for a pipeline is a graphic representation of the
head required to pump water through the pipeline at various flow rates
and is an increasing curve, indicating that more pressure is required
for a higher flow rate. On the other hand, the pump performance (head
versus capacity) curve shows the head the pump generates at various
flow rates, generally a drooping curve. When the required head per the
system head curve equals the available pump head, we have a match of
the required head versus the available head. This point of intersection
of the system head curve and the pump head curve is the operating
point for this particular pump and pipeline system. This is illustrated
in Fig. 1.19.

It is possible that in some cases there may not be a point of inter-
section between a system head curve and a pump curve. This may be
because the pump is too small and therefore the system head curve
starts off at a point above the shutoff head of the curve and it diverges
from the pump curve. Such a situation is shown in Fig. 1.20. It can be
seen from this figure that even though there is no operating point be-
tween the system head curve and the single pump curve, by adding a
second pump in series, we are able to get a satisfactory operating point
on the system head curve.

When we use multiple pumps in series or parallel, a combined pump
curve is generated and superimposed on the system head curve to get
the operating point. Figure 1.21 shows how for a given pipeline system
head curve, the operating point changes when we switch from a series
pump configuration to a parallel pump configuration.

Previous Page
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Head
System head

Pump head

Flow rate
Figure 1.20 Diverging pump head curve and system
head curve.

In Fig. 1.21, the pipeline system head curve is plotted along with
the pump curves. Also shown are the combined pump curves for both
series and parallel operation of two identical pumps. It can be seen
that A represents the operating point with one pump, C the operating
point for two pumps in series, and finally B the operating point with
the two pumps in parallel. Corresponding to these points, the pipeline
(and pump) flow rates are QA, QC, and QB, respectively.

The relative magnitudes of these flow rates would depend upon the
nature of the system head curve. A steep system head curve will produce
a higher flow rate with pumps in series, whereas a flat system head
curve will produce a higher flow rate with parallel pumps.

Two pumps in series

Two pumps in parallel

One pump

C
B

A

System head curve

Head H

Flow rate Q

Figure 1.21 Multiple pumps with system head curve.
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1.14 Flow Injections and Deliveries

So far we have discussed water pipelines with flow entering the pipeline
at the beginning and exiting at the end of the pipeline. There was no flow
injection or flow delivery along the pipeline between the entrance and
exit. In many instances a certain volume of water would be pumped out
of a storage tank and on its way to the destination several intermediate
deliveries may be made at various points as shown in Fig. 1.22.

In Fig. 1.22 we see a pipeline that carries 10,000 gal/min from point
A and at two intermediate points C and D delivers 2000 and 5000
gal/min, respectively, ultimately carrying the remainder of 3000 gal/min
to the termination point B. Such a water pipeline would be typical of
a small distribution system that serves three communities along the
path of the pipeline. The hydraulic analysis of such a pipeline must
take into account the different flow rates and hence the pressure drops
in each segment. The pressure drop calculation for the section of pipe
between A and C will be based on a flow rate of 10,000 gal/min. The
pressure drop in the last section between D and B would be based on
3000 gal/min. The pressure drop in the intermediate pipe segment CD
will be based on 8000 gal/min. The total pressure required for pumping
at A will be the sum of the pressure drops in the three segments AC,
CD, and DB along with adjustment for any elevation differences plus
the delivery pressure required at B. For example, if the pressure drops
in the three segments are 500, 300, and 150 psi, respectively, and the
delivery pressure required at B is 50 psi and the pipeline is on a flat
terrain, the total pressure required at A will be

500 + 300 + 150 + 50 = 1000 psi

In comparison if there were no intermediate deliveries at C and D, the
entire flow rate of 10,000 gal/min would be delivered at B necessitating
a much higher pressure at A than the 1000 psi calculated.

Similar to intermediate deliveries previously discussed, water may
be injected into the pipeline at some locations in between, causing ad-
ditional volumes to be transported through the pipeline to the termi-
nus B. These injection volumes may be from other storage facilities or

A C D B

10,000 gal/min

2000 gal/min 5000 gal/min

3000 gal/min

Figure 1.22 Water pipeline with multiple deliveries.
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10 Mgal/day
2 Mgal/day

3 Mgal/day

15 Mgal/day
BDCA

Figure 1.23 Hydraulic gradient with injections and deliveries.

water wells. The impact of the injections and deliveries on the hydraulic
pressure gradient is illustrated in Fig. 1.23.

Because of the varying flow rates in the three pipe sections, the slope
of the hydraulic gradient, which represents the pressure loss per mile,
will be different for each section. Hence the hydraulic gradient appears
as a series of broken lines. If the flow through the entire pipeline were
a constant value as in previous examples, the hydraulic gradient will
be one continuous line with a constant slope equal to the head loss per
mile. We will illustrate injection and delivery in a water pipeline system
using an example.

Example 1.26 An NPS 30 water pipeline (0.5-in wall thickness) 106 mi long
from A to B is used to transport 10,000 gal/min with intermediate deliveries
at C and D of 2000 and 3000 gal/min, respectively, as shown in Fig. 1.24. At
E, 4000 gal of water is injected into the pipeline so that a total of 9000 gal/min
is delivered to the terminus at B at 50 psi. Calculate the total pressure and
pumping HP required at A based on 80 percent pump efficiency. Use the
Hazen-Williams equation with C = 120. The elevations of points A through
E are as follows:

A = 100 ft B = 340 ft C = 180 ft D = 150 ft and E = 280 ft

Solution Section AC has a flow rate of 10,000 gal/min and is 23 mi long.
Using the Hazen-Williams equation (1.33), we calculate the pressure drop in

10,000 gal/min 9000 gal/min

4000 gal/min3000 gal/min2000 gal/min

A C D E B23 mi 38 mi 18 mi 27 mi

Figure 1.24 Example of water pipeline with injections and deliveries.
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this section of pipe to be

Pm = 23,909

(
10,000

120

)1.852( 1
29.0

)4.87

= 6.5169 psi/mi

Total pressure drop in AC = 6.52 × 23 = 149.96 psi

Elevation head for AC = 180 − 100
2.31

= 34.63 psi

Section CD has a flow rate of 8000 gal/min and is 38 mi long. Therefore,
the pressure drop is

Pm =
(

8000
10,000

)1.852

× 6.5169 = 4.3108 psi/mi

Total pressure drop in CD = 4.3108 × 38 = 163.81 psi

Elevation head for CD = 150 − 180
2.31

= −12.99 psi

Section DE flows 5000 gal/min and is 18 mi long. We calculate the pressure
drop in this section of pipe to be

Pm =
(

5000
10,000

)1.852

× 6.5169 using proportions

= 1.8052 psi/mi

Total pressure drop in DE = 1.8052 × 18 = 32.49 psi

Elevation head for DE = 280 − 150
2.31

= 56.28 psi

Section EB flows 9000 gal/min and is 27 mi long. We calculate the pressure
drop in this section of pipe to be

Pm =
(

9000
10,000

)1.852

× 6.5169 = 5.3616 psi/mi

�PEB = 5.3616 × 27 = 144.76 psi

Elevation head for EB = 340 − 280
2.31

= 25.97 psi

Adding all the pressure drops and adjusting for elevation difference we get
the total pressure required at A including the delivery pressure of 50 psi at
B as follows:

PA = (149.96 + 34.63) + (163.81 − 12.99) + (32.49 + 56.28)

+(144.76 + 25.97) + 50

Therefore, PA = 644.91 psi.
Approximately 645 psi is therefore required at the beginning of pipeline

A to pump the given volumes through the pipeline system. The pump HP
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required at A is calculated next. Assuming a pump suction pressure of 50 psi

Pump head = (645 − 50) × 2.31 = 1375 ft

Therefore, the BHP required using Eq. (1.64) is

BHP = 1375 × 10,000 × 1
3960 × 0.8

= 4341

Therefore, a 5000-HP motor-driven pump will be required at A.

1.15 Valves and Fittings

Water pipelines include several appurtenances as part of the pipeline
system. Valves, fittings, and other devices are used in a pipeline sys-
tem to accomplish certain features of pipeline operations. Valves may be
used to communicate between the pipeline and storage facilities as well
as between pumping equipment and storage tanks. There are many dif-
ferent types of valves, each performing a specific function. Gate valves
and ball valves are used in the main pipeline as well as within pump sta-
tions and tank farms. Pressure relief valves are used to protect piping
systems and facilities from overpressure due to upsets in operational
conditions. Pressure regulators and control valves are used to reduce
pressures in certain sections of piping systems as well as when deliv-
ering water to third-party pipelines which may be designed for lower
operating pressures. Check valves are found in pump stations and tank
farms to prevent backflow as well as separating the suction piping from
the discharge side of a pump installation. On long-distance pipelines
with multiple pump stations, the pigging process necessitates a com-
plex series of piping and valves to ensure that the pig passes through
the pump station piping without getting stuck.

All valves and fittings such as elbows and tees contribute to the fric-
tional pressure loss in a pipeline system. Earlier we referred to some of
these head losses as minor losses. As described earlier, each valve and
fitting is converted to an equivalent length of straight pipe for the pur-
pose of calculating the head loss in the pipeline system.

A control valve functions as a pressure reducing device and is de-
signed to maintain a specified pressure at the downstream side as
shown in Fig. 1.25.

If P1 is the upstream pressure and P2 is the downstream pressure,
the control valve is designed to handle a given flow rate Q at these pres-
sures. A coefficient of discharge Cv is typical of the control valve design
and is related to the pressures and flow rates by the following equation:

Q = Cv A(P1 − P2)1/2 (1.74)

where A is a constant.
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Upstream pressure P1

Pressure drop ∆P

Downstream pressure P2

Flow Q

Figure 1.25 Control valve.

Generally, the control valve is selected for a specific application based
on P1, P2, and Q. For example, a particular situation may require 800 psi
upstream pressure, 400 psi downstream pressure, and a flow rate of
3000 gal/min. Based on these numbers, we may calculate a Cv = 550. We
would then select the correct size of a particular vendor’s control valve
that can provide this Cv value at a specified flow rate and pressures.
For example, a 10-in valve from vendor A may have a Cv of 400, while
a 12-in valve may have a Cv = 600. Therefore, in this case we would
choose a 12-in valve to satisfy our requirement of Cv = 550.

1.16 Pipe Stress Analysis

In this section we will discuss how a pipe size is selected based on the
internal pressure necessary to transport water through the pipeline. If
1000 psi pressure is required at the beginning of a pipeline to transport
a given volume of water a certain distance, we must ensure that the pipe
has adequate wall thickness to withstand this pressure. In addition to
being able to withstand the internal pressure, the pipeline also must be
designed not to collapse under external loads such as soil loading and
vehicles in case of a buried pipeline.

Since pipe may be constructed of different materials such as rein-
forced concrete, steel, wrought iron, plastic, or fiberglass, the necessary
wall thickness will vary with the strength of the pipe material. The
majority of pipelines are constructed of some form of material conform-
ing to the American National Standards Institute (ANSI), American
Society for Testing and Materials (ASTM), American Petroleum Insti-
tute (API), American Water Works Association (AWWA), Plastic Pipe
Institute (PPI), or Federal Specification.

Barlow’s equation is used to calculate the amount of internal pressure
that a pipe can withstand, based on the pipe diameter, wall thickness,
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and the yield strength of the pipe material. Once we calculate this allow-
able internal operating pressure of the pipeline, we can then determine
a hydrostatic test pressure, to ensure safe operation. The hydrostatic
test pressure is generally 125 percent of the safe working pressure.
The pipeline will be pressurized to this hydrostatic test pressure and
the pressure held for a specified period of time to ensure no leaks and no
pipe rupture. Generally, aboveground pipelines are hydrotested to 4 h
minimum and underground pipelines for 8 h. Various local, city, state,
and federal government codes may dictate more rigorous requirements
for hydrotesting water pipelines.

Barlow’s equation. Consider a circular pipe of outside diameter D and
wall thickness T. Depending on the D/T ratio, the pipe may be classi-
fied as thin walled or thick walled. Most water pipelines constructed of
steel are thin-walled pipes. If the pipe is constructed of some material
(with a yield strength Spsi) an internal pressure of P psi will generate
stresses in the pipe material. At any point within the pipe material
two stresses are present. The hoop stress Sh acts along the circumfer-
ential direction at a pipe cross section. The longitudinal or axial stress
Sa acts along the length or axis of the pipe and therefore normal to the
pipe cross section. It can be proved that the hoop stress Sh is twice the
axial stress Sa. Therefore, the hoop stress becomes the controlling stress
that determines the pipe wall thickness required. As the internal pres-
sure P is increased, both Sh and Sa increase, but Sh will reach the yield
stress of the material first. Therefore, the wall thickness necessary to
withstand the internal pressure P will be governed by the hoop stress
Sh generated in the pipe of diameter D and yield strength S.

Barlow’s equation is as follows

Sh = PD
2T

(1.75)

The corresponding formula for the axial (or longitudinal) stress Sa is

Sa = PD
4T

(1.76)

Equation (1.75) for hoop stress is modified slightly by applying a design
factor to limit the stress and a seam joint factor to account for the
method of manufacture of pipe. The modified equation for calculating
the internal design pressure in a pipe in U.S. Customary units is as
follows:

P = 2TSEF
D

(1.77)
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where P = internal pipe design pressure, psi
D = pipe outside diameter, in
T = nominal pipe wall thickness, in
S= specified minimum yield strength (SMYS) of pipe

material, psig
E = seam joint factor, 1.0 for seamless and submerged

arc welded (SAW) pipes (see Table 1.7)
F = design factor, usually 0.72 for water and petroleum

pipelines

The design factor is sometimes reduced from the 0.72 value in the
case of offshore platform piping or when certain city regulations re-
quire buried pipelines to be operated at a lower pressure. Equation
(1.77) for calculating the internal design pressure is found in the Code
of Federal Regulations, Title 49, Part 195, published by the U.S. Depart-
ment of Transportation (DOT). You will also find reference to this equa-
tion in ASME standard B31.4 for design and transportation of liquid
pipelines.

TABLE 1.7 Pipe Design Joint Factors

Pipe specification Pipe category Joint factor E

ASTM A53 Seamless 1.00
Electric resistance welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

ASTM A106 Seamless 1.00
ASTM A134 Electric fusion arc welded 0.80
ASTM A135 Electric Resistance Welded 1.00
ASTM A139 Electric fusion welded 0.80
ASTM A211 Spiral welded pipe 0.80
ASTM A333 Seamless 1.00
ASTM A333 Welded 1.00
ASTM A381 Double submerged arc welded 1.00
ASTM A671 Electric fusion welded 1.00
ASTM A672 Electric fusion welded 1.00
ASTM A691 Electric fusion welded 1.00
API 5L Seamless 1.00

Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

API 5LX Seamless 1.00
Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00

API 5LS Electric resistance welded 1.00
Submerged arc welded 1.00
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In SI units, the internal design pressure equation is the same as
shown in Eq. (1.77), except the pipe diameter and wall thickness are
in millimeters and the SMYS of pipe material and the internal design
pressures are both expressed in kilopascals.

For a particular application the minimum wall thickness required for
a water pipeline can be calculated using Eq. (1.77). However, this wall
thickness may have to be increased to account for corrosion effects, if
any, and for preventing pipe collapse under external loading conditions.
For example, if corrosive water is being transported through a pipeline
and it is estimated that the annual corrosion allowance of 0.01 in must
be added, for a pipeline life of 20 years we must add 0.01 ×20 = 0.20 in
to the minimum calculated wall thickness based on internal pressure. If
such a pipeline were to be designed to handle 1000 psi internal pressure
and the pipeline is constructed of NPS 16, SAW steel pipe with 52,000
psi SMYS, then based on Eq. (1.77) the minimum wall thickness for
1000 psi internal pressure is

T = 1000 × 16
2 × 52,000 × 1.0 × 0.72

= 0.2137 in

Adding 0.01 × 20 = 0.2 in for corrosion allowance for 20-year life, the
revised wall thickness is

T = 0.2137 + 0.20 = 0.4137 in

Therefore, we would use the nearest standard wall thickness of
0.500 in.

Example 1.27 What is the internal design pressure for an NPS 20 water
pipeline (0.375-in wall thickness) if it is constructed of SAW steel with a
yield strength of 42,000 psi? Assume a design factor of 0.66. What would be
the required hydrotest pressure range for this pipe?

Solution Using Eq. (1.77),

P = 2 × 0.375 × 42,000 × 1.0 × 0.66
20

= 1039.5

Hydrotest pressure = 1.25 × 1039.5 = 1299.38 psi

The internal pressure that will cause the hoop stress to reach the yield stress
of 42,000 psi will correspond to 1039.5/0.66 = 1575 psi. Therefore, the hy-
drotest pressure range is 1300 to 1575 psi.

1.17 Pipeline Economics

In pipeline economics we are concerned with the objective of determin-
ing the optimum pipe size and material to be used for transporting
a given volume of water from a source to a destination. The criterion
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would be to minimize the capital investment as well as annual operating
and maintenance cost. In addition to selecting the pipe itself to handle
the flow rate we must also evaluate the optimum size of pumping equip-
ment required. By installing a smaller-diameter pipe we may reduce the
pipe material cost and installation cost. However, the smaller pipe size
would result in a larger pressure drop due to friction and hence higher
horsepower, which would require larger more costly pumping equip-
ment. On the other hand, selecting a larger pipe size would increase
the capital cost of the pipeline itself but would reduce the capital cost
of pumping equipment. Larger pumps and motors will also result in
increased annual operating and maintenance cost. Therefore, we need
to determine the optimum pipe size and pumping power required based
on some approach that will minimize both capital investment as well as
annual operating costs. The least present value approach, which con-
siders the total capital investment, the annual operating costs over the
life of the pipeline, time value of money, borrowing cost, and income tax
rate, seems to be an appropriate method in this regard.

In determining the optimum pipe size for a given pipeline project, we
would compare three or four different pipe diameters based on the cap-
ital cost of pipeline and pump stations, annual operating costs (pump
station costs, electricity costs, demand charges, etc.), and so forth. Tak-
ing into consideration the project life, depreciation of capital assets,
and tax rate, along with the interest rate on borrowed money, we would
be able to annualize all costs. If the annualized cost is plotted against
the different pipe diameters, we will get a set of curves as shown in
Fig. 1.26. The pipe diameter that results in the least annual cost would
be considered the optimum size for this pipeline.
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Figure 1.26 Pipeline costs versus pipe diameter.
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Example 1.28 A 25-mi-long water pipeline is used to transport 15 Mgal/day
of water from a pumping station at Parker to a storage tank at Danby. De-
termine the optimum pipe size for this application based on the minimum
initial cost. Consider three different pipe sizes: NPS 20, NPS 24, and NPS
30. Use the Hazen-Williams equation with C = 120 for all pipes. Assume the
pipeline is on fairly flat terrain. Use 85 percent pump efficiency. Use $700
per ton for pipe material cost and $1500 per HP for pump station installation
cost. Labor costs for installing the three pipe sizes are $100, $120, and $130
per ft, respectively. The pipeline will be designed for an operating pressure
of 1400 psi. Assume the following wall thickness for the pipes:

NPS 20 pipe: 0.312 in

NPS 24 pipe: 0.375 in

NPS 30 pipe: 0.500 in

Solution First we determine the flow in gal/min:

15 Mgal/day = 15 × 106

(24 × 60)
= 10, 416.7 gal/min

For the NPS 20 pipe we will first calculate the pressure and pumping HP
required. The pressure drop per mile from the Hazen-Williams equation
(1.33) is

Pm = 23,909

(
10,416.7

120

)1.852 1
19.3764.87

= 50.09 psi/mi

Total pressure drop in 25 mi = 25 × 50.09 = 1252.25 psi

Assuming a 50-psi delivery pressure at Danby and a 50-psi pump suction
pressure, we obtain

Pump head required at Parker = 1252.25 × 2.31 = 2893 ft

Pump flow rate = 10,416.7 gal/min

Pump HP required at Parker = 2893 × 10,416.7 × 1
3960 × 0.85

= 8953 HP

Therefore, a 9000-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

20 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.312 (20 − 0.312) = 65.60 lb/ft

Total pipe tonnage for 25 mi = 25 × 65.6 × 5280
2000

= 4330 tons
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Increasing this by 5 percent for contingency and considering $700 per ton
material cost, we get

Total pipe material cost = 700 × 4330 × 1.05 = $3.18 million

Labor cost for installing
NPS 20 pipeline = 100 × 25 × 5280 = $13.2 million

Pump station cost = 1500 × 9000 = $13.5 million

Therefore, the total capital cost of NPS 20 pipeline = $3.18+$13.2+$13.5 =
$29.88 million.

Next we calculate the pressure and HP required for the NPS 24 pipeline.
The pressure drop per mile from the Hazen-Williams equation is

Pm = 23,909

(
10,416.7

120

)1.852 1
23.254.87

= 20.62 psi/mi

Total pressure drop in 25 mi = 25 × 20.62 = 515.5 psi

Assuming a 50-psi delivery pressure at Danby and a 50-psi pump suction
pressure, we obtain

Pump head required at Parker = 515.5 × 2.31 = 1191 ft

Pump flow rate = 10,416.7 gal/min

Pump HP required at Parker = 1191 × 10,416.7 × 1
3960 × 0.85

= 3686 HP

Therefore a 4000-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

24 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.375 (24 − 0.375) = 94.62 lb/ft

Total pipe tonnage for 25 mi = 25 × 94.62 × 5280
2000

= 6245 tons

Increasing this by 5 percent for contingency and considering $700 per ton
material cost, we obtain

Total pipe material cost = 700 × 6245 × 1.05 = $4.59 million

Labor cost for installing
NPS 24 pipeline = 120 × 25 × 5280 = $15.84 million

Pump station cost = 1500 × 4000 = $6.0 million

Therefore, the total capital cost of NPS 24 pipeline = $4.59 + $15.84 +
$6.0 = $26.43 million.
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Next we calculate the pressure and HP required for the NPS 30 pipeline.
The pressure drop per mile from the Hazen-Williams equation is

Pm = 23,909

(
10,416.7

120

)1.852 1
29.04.87

= 7.03 psi/mi

Total pressure drop in 25 mi = 25 × 7.03 = 175.75 psi

Assuming a 50-psi delivery pressure at Danby and a 50-psi pump suction
pressure, we obtain

Pump head required at Parker = 175.75 × 2.31 = 406 ft

Pump flow rate = 10,416.7 gal/min

Pump HP required at Parker = 406 × 10, 416.7 × 1
3960 × 0.85

= 1257 HP

Therefore a 1500-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

30 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.500 (30 − 0.500) = 157.53 lb/ft

Total pipe tonnage for 25 mi = 25 × 157.53 × 5280
2000

= 10,397 tons

Increasing this by 5 percent for contingency and considering $700 per ton
material cost, we obtain

Total pipe material cost = 700 × 10,397 × 1.05 = $7.64 million

Labor cost for installing
NPS 30 pipeline = 130 × 25 × 5280 = $17.16 million

Pump station cost = 1500 × 1500 = $2.25 million

Therefore, the total capital cost of NPS 30 pipeline = $7.64 + $17.16 +
$2.25 = $27.05 million.

In summary, the total capital cost of the NPS 20, NPS 24, and NPS 30
pipelines are

NPS 20 capital cost = $29.88 million

NPS 24 capital cost = $26.43 million

NPS 30 capital cost = $27.05 million

Based on initial cost alone, it appears that NPS 24 is the preferred pipe size.

Example 1.29 A 70-mi-long water pipeline is constructed of 30-in (0.375-in
wall thickness) pipe for transporting 15 Mgal/day from Hampton pump
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station to a delivery tank at Derry. The delivery pressure required at Derry is
20 psi. The elevation at Hampton is 150 ft and at Derry it is 250 ft. Calculate
the pumping horsepower required at 85 percent pump efficiency.

This pipeline system needs to be expanded to handle increased capacity
from 15 Mgal/day to 25 Mgal/day. The maximum pipeline pressure is 800 psi.
One option would be to install a parallel 30-in-diameter pipeline (0.375 wall
thickness) and provide upgraded pumps at Hampton. Another option would
require expanding the capacity of the existing pipeline by installing an inter-
mediate booster pump station. Determine the more economical alternative
for the expansion. Use the Hazen-Williams equation for pressure drop with
C = 120.

Solution At 15 Mgal/day flow rate,

Q = 15 × 106

24 × 60
= 10, 416.7 gal/min

Using the Hazen-Williams equation,

Pm = 23,909

(
10,416.7

120

)1.852 1
29.254.87

= 6.74 psi/mi

The total pressure required at Hampton is

Pt = Pf + Pelev + Pdef from Eq. (1.29)

= (6.74 × 70) + 250 − 150
2.31

+ 20 = 535.1 psi

Therefore the Hampton pump head required is (535.1−50) ×2.31 = 1121 ft,
assuming a 50-psi suction pressure at Hampton.

The pump HP required at Hampton [using Eq. (1.64)] is

HP = 1121 × 10,416.7
1

3960 × 0.85
= 3470 HP, say 4000 HP installed

For expansion to 25 Mgal/day, the pressure drop will be calculated using
proportions:

25 Mgal/day = 25 × 106

24 × 60
= 17,361.11 gal/min

Pm = 6.74 ×
(

25
15

)1.852

= 17.36 psi/mi

The total pressure required is

Pt = (17.36 × 70) + 250 − 150
2.31

+ 20 = 1279 psi

Since the maximum pipeline pressure is 800 psi, the number of pump stations
required

= 1279/800 = 1.6, or 2 pump stations
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With two pump stations, the discharge pressure at each pump station =
1279/2 = 640 psi. Therefore, the pump head required at each pump station =
(640 − 50) × 2.31 = 1363 ft, assuming a 50-psi suction pressure at each
pump station.

The pump HP required [using Eq. (1.64)] is

HP = 1363 × 17,361.11
1

3960 × 0.85
= 7030 HP, say 8000 HP installed

Increase in HP for expansion = 2 × 8000 − 4000 = 12,000 HP

Incremental pump station
cost based on $1500 per HP = 1500 × 12,000 = $18 million

This cost will be compared to looping a section of the pipeline with a 30-in
pipe. If a certain length of the 70-mi pipeline is looped with 30-in pipe, we
could reduce the total pressure required for the expansion from 1279 psi to
the maximum pipeline pressure of 800 psi. The equivalent diameter of two
30-in pipes is

De = 29.25

(
2
1

)0.3803

= 38.07 in

The pressure drop in the 30-in pipe at 25 Mgal/day was calculated earlier as
17.36 psi/mi. Hence,

Pm for the 38.07-in pipe = 17.36 × (29.25/38.07)4.87 = 4.81 psi/mi

If we loop x miles of pipe, we will have x miles of pipe at Pm = 4.81 psi/mi
and (70 − x) mi of pipe at 17.36 psi/mi. Therefore, since the total pressure
cannot exceed 800 psi, we can write

4.81x + 17.36 (70 − x) + 43.3 + 20 ≤ 800

Solving for x we get,

x ≥ 38.13

Therefore we must loop about 39 mi of pipe to be within the 800-psi pressure
limit.

If we loop loop 39 mi of pipe, the pressure required at the 25 Mgal/day flow
rate is

(39 × 4.81) + (31 × 17.36) + 43.3 + 20 = 789.1 psi
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The cost of this pipe loop will be calculated based on a pipe material cost of
$700 per ton and an installation cost of $120 per ft.

Pipe weight per foot = 10.68 × 0.375 × (30 − 0.375)

= 118.65 lb/ft

Material cost of 39 mi of 30-in loop = $700 × 118.65 × 5280 × 39

= $17.1 million

Pipe labor cost for installing
39 mi of 30-in loop = $120 × 5280 × 39 = $24.7 million

Total cost of pipe loop = $17.1 + $24.7 = $41.8 million

compared to

Incremental pump station cost based
on adding a booster pump station = $18 million

Therefore, based on the minimum initial cost alone, looping is not the eco-
nomical option.

In conclusion, at the expanded flow rate of 25 Mgal/day, it is more cost
effective to add HP at Hampton and build the second pump station to limit
pipe pressure to 800 psi.



Chapter

2
Fire Protection Piping

Systems

Introduction

Fire protection piping is used to transport fire extinguishing substances
such as water from the supply point to locations where it is used to fight
fire and to provide fire protection. Generally, water is used as the fire
extinguishing substance. In addition to water, other substances used
for fire protection are foam, carbon dioxide, dry chemical, and other
inert gases. Piping hydraulics in a fire protection system that trans-
ports water are handled similar to that in ordinary water pipelines,
although the pressures encountered with fire protection water piping
systems are lower.

2.1 Fire Protection Codes and Standards

In the United States most fire protection piping are governed by the
National Fire Protection Association (NFPA) and insurance companies.
The NFPA publishes almost 300 codes, standards, and recommended
practices that are applicable for design and construction of fire pro-
tection systems. The standards are regularly revised and issued on a
yearly basis. These codes include guidelines, mandatory requirements,
and recommended practices for design, construction, and installation.
Local, state, and city regulations may require additional stringent re-
quirements for the design and operation of fire protection piping sys-
tems. A list of NFPA standards used for the protection of residential
and commercial buildings is given in Table 2.1. In addition the follow-
ing publications must be consulted for design and construction of fire
protection systems.

81
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TABLE 2.1 National Fire Protection Association (NFPA) Standards

Title Description

NFPA 13 Standard for the Installation of Sprinkler Systems
NFPA 13D Standard on the Installation of Sprinkler Systems in One and Two

Family Dwellings and Manufactured Homes

NFPA 13R Standard on the Installation of Sprinkler Systems in Residential
Occupancies up to and Including Four Stories in Height

NFPA 14 Standard for the Installation of Standpipe and Hose Systems
NFPA 15 Standard for Water Spray Fixed Systems for Fire Protection
NFPA 20 Standard for the Installation of Centrifugal Fire Pumps
NFPA 22 Standard for the Installation of Water Tanks for Private Fire Protection
NFPA 24 Standard for Private Service Mains and Their Appurtenances

NFPA 61A Standard for the Prevention of Fire and Dust Explosion in Facilities
Manufacturing and Handling Starch

NFPA 61B Standard for the Prevention of Fires and Explosions in Grain Elevators
and Facilities Handling Bulk Raw Agriculture Commodities

NFPA 61C Standard for the Prevention of Fire and Dust Explosions in Feed Mills

NFPA 61D Standard for the Prevention of Fire and Dust Explosions in the Milling
of Agricultural Commodities for Human Consumption

NFPA 68 Guide for Venting of Deflagrations
NFPA 69 Standard on Explosions Prevention Systems
NFPA 70 National Electrical Code
NFPA 72 National Fire Alarm Code
NFPA 77 Recommended Practice on Static Electricity
NFPA 170 Standard on Fire Safety Symbols
NFPA 214 Standard on Water Cooling Towers
NFPA 231 Standard on General Storage
NFPA 231C Standard on Rack Storage of Materials
NFPA 231D Standard for Storage of Rubber Tires
NFPA 231F Standard for Storage of Rolled Paper
NFPA 321 Standard on Basic Classification of Flammable and Combustible Liquids
NFPA 325M Fire Hazard Properties of Flammable Liquids, Gases and Volatile Solids
NFPA 495 Explosive Materials Code
NFPA 750 Standard for the Installation of Water Mist Fire Protection Systems

1. NFPA Handbook of Fire Protection
2. Factory Mutual Handbook of Industrial Loss Prevention
3. NFPA Standards: National Fire Codes. This is in 10 volumes covering

a. Flammable liquids
b. Gases
c. Combustible solids, dust, and explosives
d. Building, construction, and facilities
e. Electrical
f. Sprinklers
g. Fire pumps
h. Water tanks
i. Alarms
j. Special extinguisher system
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2.2 Types of Fire Protection Piping

Fire protection piping may be classified as underground or aboveground.
The underground piping system generally feeds the aboveground piping
system. The underground piping system consists of water pipes from
the city water supply to a hydrant and piping system connected to a stor-
age tank that may be pressurized by compressed air. An aboveground
piping system includes piping from a gravity tank that provides water
by gravity flow. Sprinkler systems are also classified as aboveground
piping systems.

2.2.1 Belowground piping

Underground or belowground piping systems are designed according
to NFPA 24, Standard for Private Service Mains and Their Appurte-
nances. The following methods are used to supply water to a fire pro-
tection system:

1. City water supply

2. Gravity tank

3. Pressurized tank

4. Fire protection water pump

Generally, underground piping that brings in water from one of these
sources will be installed and tested before being connected to an above-
ground piping system that would serve a sprinkler system for a resi-
dential or commercial building.

The design and construction of underground fire protection piping
must be checked to ensure the following criteria are met:

1. Depth of cover. The vertical distance from the top of the pipe to the
ground surface must be sufficient to prevent freezing of the pipe. This
minimum depth varies geographically. The designer must consult
publications such as NFPA 24, which shows a chart indicating the
recommended depth of cover in various parts of the United States.
This publication shows contour lines that indicate the recommended
depth of cover such as 2.5 to 3.0 ft in California and 6.5 to 8.0 ft in
parts of Minnesota.

2. Conflict with other utility piping. Underground fire protection piping
must be installed at locations where there will be no interference
with existing utility pipelines such as gas lines or oil lines. Certain
minimum clearances must exist between pipelines.

3. Avoiding physical damage to piping. To prevent damage from settling
of buildings, underground piping must be routed away from building
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slabs, footings, etc. Underground piping that is located under roads
and railroads needs additional depth of cover and must be installed
in casing or sleeve pipes for extra protection.

Underground piping materials used for fire water systems include
ductile iron, class 50 and class 52 PVC piping, class 150 plastic pipe,
cement-lined piping, and cast iron piping. The pipe fittings used include
mechanical joint, push-on joint, and PVC plastic fittings.

Thrust blocks and piping restraint are required when installing el-
bows and bends, tees, etc., to counteract forces due to changes in the di-
rection of flow through underground pipelines. As an example, a
12-inch (in) pipe elbow requires 18 square feet (ft2) of bearing area
for the thrust block. NFPA 24 lists the bearing area for concrete blocks
for different pipe sizes and bend configurations. The size of the block
depends on the nature of the soil, such as whether it is clay, sand, or
gravel. The bearing area is proportionately increased depending upon
the softness of the soil.

2.2.2 Aboveground piping

An aboveground fire protection piping system consists of all piping re-
lated to fire protection that is not buried. Piping from a city water sys-
tem, private mains, and fire water pumps, that goes along the sides of a
building or into a building and is connected to an automated sprinkler
system is classified as aboveground piping.

NFPA 13, Standard for the Installation of Sprinkler Systems, is used
for the design and construction of automatic sprinkler systems. Such
sprinkler systems are installed in residential and commercial buildings.
There are two types of sprinkler systems in use today, wet pipe systems
and dry pipe systems. In wet pipe systems the heat responsive elements
in the sprinklers activate the flow of water. When activated, the water
in the pipe is immediately discharged through the sprinklers. Dry pipe
systems are installed in areas where the temperature is low and water
in the pipe could freeze. Therefore, the pipes in this system are pres-
surized with air, and when the sprinkler activates, water is discharged
with a certain amount of delay since the pressurized air must escape
first before the water can be discharged through the sprinkler heads.

The NFPA 13 standard limits the time delay to 60 seconds (s). This
means that from the point of sprinkler actuation, water must reach the
farthest sprinkler within 60 s. Because of the delay factor in dry pipe
systems, the number of sprinklers required for a dry pipe system will be
more than that for a wet pipe system with the same area to be protected.

Steel piping and copper tubing used in a sprinkler piping system
are based on American Society for Testing and Materials (ASTM) and
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American National Standards Institute (ANSI) specifications. Most
sprinkler systems are designed for 175 pounds per square inch gauge
(psig) maximum pressure consisting of schedule 5, schedule 10, and
schedule 40 pipe. If pressures above 175 psi are required, schedule 80
pipe is used. Fittings used along with piping are cast iron and malleable
iron. Cast iron fittings are brittle and hence are prone to cracks if acci-
dentally hit, whereas malleable iron fittings can withstand considerable
impact loading.

2.2.3 Hydrants and sprinklers

Hydrants are installed near buildings to provide the jet stream of fire
protection water to fight fires in the buildings. The designs of hydrants
are generally dictated by NFPA, American Water Works Association
(AWWA), and other fire-testing laboratories. Generally hydrants are
spaced 200 to 250 ft apart. In certain cases in hazardous locations this
spacing may be reduced to 100 to 150 ft.

Sprinkler systems are installed inside buildings to provide fire-
fighting water to protect the contents of the building from fire. Stan-
dards must be followed in the installation of the sprinkler system.

In this section we will discuss the configuration and design of auto-
matic sprinkler systems. There are three main configurations used for
sprinkler systems: tree system, grid system, and loop system. These are
shown in Figs 2.1 through 2.3.

A tree system consists of a central pipe called the crossmain, which
that is the main feed line that supplies water to the individual branch
lines containing the sprinklers in a tree fashion as shown in Fig. 2.1.
The crossmain is positioned so that it is located at the same distance
from the ends of the branch lines. Tree systems may be center fed or
end fed as shown in Fig. 2.1.

In the grid system the branch lines connect to a crossmain at each
end in the form of a grid as shown in Fig. 2.2. A grid system is used
only with wet pipe systems since the air cannot be pushed out quickly
through the grid system with a dry pipe system.

Crossmain
Alarm valve

Branch lines

Sprinklers

Figure 2.1 Tree sprinkler system.
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Crossmain Crossmain

Branch lines
Alarm valve

Sprinklers

Figure 2.2 Grid sprinkler system.

A loop system may be a dry pipe or a wet pipe system. It is so config-
ured that the crossmains are connected at two or more locations forming
a loop. Compared to the tree system, the sprinklers are provided water
from more than one location.

Occupancy and hazard class. In order to determine the spacing of the
sprinklers we must first determine the hazard class of the occupancy.
Occupancy depends on the expected level of severity of fire in a partic-
ular situation. It depends on the nature of the building use and its con-
tents. The fire load density depends on the type of substances contained

Crossmain

Loop main

Loop main

Crossmain Alarm valve

Sprinklers

Figure 2.3 Loop sprinkler system.
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within the building, how combustible these items are, and how they are
arranged within the building. Occupancy is classified as follows:

1. Low

2. Moderate

3. Moderate to high

4. Very high

Low occupancy is considered a light hazard. It includes churches,
clubs, educational institutions, hospitals, prisons, libraries, museums,
nursing homes, offices, residences, restaurant seating areas, and the-
aters.

Moderate occupancy is referred to as ordinary hazard—Group I. It
includes parking garages, car dealers, bakeries, dairies, laundries, and
restaurant service areas.

Moderate to high occupancy is considered ordinary hazard—Group
II. It includes cereal mills, chemical plants, confectionaries, distilleries,
and machine shops.

Very high occupancy is referred to as extra hazard. It includes areas
with flammable liquids, flammable metals, printing ink, solvent clean-
ing, varnish, and paint.

Once we determine the occupancy and the hazard classification, we
must calculate the area protected by each sprinkler. NFPA 13 imposes
a limitation of 52,000 ft2 of area for the light hazard and ordinary haz-
ard group of occupancy. For extra hazard occupancy the limitation is
40,000 ft2. The sprinkler spacing is calculated from the following for-
mula:

A = Ds × Db (2.1)

where A = sprinkler coverage area, ft2

Ds = distance from sprinkler to sprinkler on branch line, ft
Db = branch line spacing, ft

NFPA 13 also limits the sprinkler coverage area according to the fol-
lowing:

1. Light hazard—200 to 225 ft2

2. Light hazard—Buildings of combustible construction—168 ft2

3. Ordinary hazard—130 ft2

4. Extra hazard—100 ft2

In addition NFPA 13 also limits the maximum distance between
sprinklers (Ds) to 15 ft for light or ordinary hazard and 12 ft for
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extra hazard. Similar limits are also imposed on the spacing between
branch lines (Db).

Next we determine the number of branch lines required by dividing
the width of the bay by the maximum branch line spacing (Db). There-
fore, the formula for the number of branch lines is

Number of branch lines = bay width
branch line spacing

= W
Db

(2.2)

where W is the bay width and Db is the branch line spacing, both in
feet. The calculated value is rounded up to the next whole number.

Once we determine the number of branch lines, we can calculate the
actual spacing between the branch lines in the bay as follows:

Db = bay width
number of branch lines

(2.3)

After determining the number of branch lines and their spacing, we
calculate the spacing required between sprinklers on each branch line.
This is calculated considering the NFPA limitation for the square foot-
age coverage per sprinkler and the maximum allowable distance be-
tween sprinklers.

Example 2.1 For an ordinary hazard system, sprinklers have to be installed
in a bay width of 32 ft. Determine the number of branch lines and the spacing
between the branch lines.

Solution Since NFPA 13 limits the branch line spacing to 15 ft,

Number of branch lines required = 32
15

= 2.1

or three branch lines, rounding up to the next higher number.
Therefore,

Actual spacing between branch lines = 32
3

= 10.67 ft

Example 2.2 Determine the sprinkler spacing for Example 2.1 considering
the 130-ft2 coverage limitation per sprinkler for an ordinary hazard system.

Solution Since NFPA 13 allows 15-ft sprinkler spacing, from Eq. (2.1),

Sprinkler spacing = 130
10.67

= 12.18

This is less than the 15 ft allowed; therefore, 12.18-ft spacing is adequate.

Next we can determine the number of sprinklers on each branch line
by considering the length of the area covered by the sprinkler and the
sprinkler spacing calculated earlier. The number of sprinklers on the
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branch line is

Ns = length of bay
Ds

(2.4)

where Ns is the number of sprinklers and Ds is the distance in feet
between sprinklers on the branch line.

From the preceding, we would round up to the next higher whole
number to determine the number of sprinklers required on each branch
line. For example, if the area to be protected had a bay length of 275 ft
and a bay width of 32 ft, the number of sprinklers required for 12-ft
spacing will be 275/12 = 22.91, or 23 sprinklers. Once we determine
the number of sprinklers, the actual distance between sprinklers can
be recalculated by dividing the bay length by the number of sprinklers.
In the current example the actual distance between the sprinklers will
be 275/23 = 11.95 ft.

After calculating the number of branch lines, branch spacing, number
of sprinklers, and the sprinkler spacing, we can calculate and verify the
sprinkler coverage area. In Example 2.2, the sprinkler coverage area is

A = Ds × Db

= 11.95 × 10.67 = 127.51 ft2 (2.5)

where all symbols are as defined earlier.

2.3 Design of Piping System

In this section we will discuss the properties of water and its advantages
and how the pressure required and the flow rates are calculated for a
fire protection water piping system.

Water is the most common fluid used in fire protection because of its
easy availability (compared to other fire suppression products) and its
properties that help in extinguishing fire. Water is available in most
instances because all commercial and residential buildings require a
water supply and hence connections are already available from which
the needed quantity can be taken for fire protection purposes. The prop-
erties of water include the following:

Freezing point: 32◦F (0◦C)

Boiling point: 212◦F (100◦C)

Density : 62.4 lb/ft3 (1000 kg/m3)

Absorbs heat from fire at a rate of 9330 Btu/lb.
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2.3.1 Pressure

Pressure, also called the intensity of pressure, within a body of water
is defined as the force per unit area. It is measured in psi in U.S. Cus-
tomary System (USCS) units and kilopascals (kPa) in SI units.

Consider a storage tank 30 ft high containing water up to a level of
20 ft. If the tank has a rectangular cross section of 30 by 40 ft, the total
weight of the water in the tank is

Weight = 30 × 40 × 20 × 62.4 = 1,497,600 lb

Since this weight acts on the tank bottom area of 30 × 40 ft, we can
state that the intensity of pressure on the tank bottom is

P = 1,497,600
30 × 40

= 1248 lb/ft2 = 1248
144

= 8.67 lb/in2 (psi)

This pressure of 8.67 psi acts on every square inch of the tank bottom.
However, within the body of the water, say halfway into the tank (10 ft),
the pressure will be less. In fact we can calculate the pressure within the
water at a depth of 10 ft by considering the weight of half the quantity of
water we calculated earlier. This means the pressure within the water
at the halfway point is

P = 1,497,600/2
30 × 40

= 624 lb/ft2 = 4.33 psi

The preceding demonstrates that the pressure within a liquid is pro-
portional to the height of the column of liquid above it. In fact the
pressure at a depth h below the free surface of water is calculated as

P = h × 62.4
144

= 0.433 × h psi (2.6)

where P is the pressure (psi) and h is the depth of water (ft).
Equation (2.6) is an important relationship for calculating the pres-

sure in psi from a water column height h ft. The water column height
h that equates to the pressure P according to Eq. (2.6) is referred to
as the head of water. The term pressure head is also used sometimes.
To summarize, a head of 10 ft of water is equivalent to a pressure of
4.33 psi as calculated using Eq. (2.6).

Equation (2.6) is valid only for water. For other liquids such as gaso-
line or diesel, the pressure must be multiplied by the specific gravity of
the liquid.

P = 0.433 × h × Sg (2.7)
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where P = pressure, psi
h = head, ft

Sg = specific gravity of liquid (for water, Sg = 1.00)

In SI units the pressure versus head equation becomes

P = h
Sg

0.102
(2.8)

where P = pressure, kPa
h = head, m

Sg = specific gravity of liquid (for water, Sg = 1.00)

Generally, pressure in a body of water or a water pipeline is referred
to in psi above that of the atmospheric pressure. This is also known
as the gauge pressure as measured by a pressure gauge. The absolute
pressure is the sum of the gauge pressure and the atmospheric pressure
at the specified location. Mathematically,

Pabs = Pgauge + Patm (2.9)

To distinguish between the two pressures, psig is used for gauge pres-
sure and psia is used for the absolute pressure. In most calculations
involving fire protection water pipelines the gauge pressure is used.
Unless otherwise specified, psi means the gauge pressure.

Water pressure may also be referred to as head pressure, in which
case it is expressed in feet (or meters in SI units) of head of water.
Therefore, a pressure of 100 psi in a liquid such as water is said to be
equivalent to a pressure head of

h = 100
0.4333

= 231 ft

Example 2.3 Calculate the pressure in psi at a water depth of 100 ft assum-
ing the specific weight of water is 62.4 lb/ft3. What is the equivalent pressure
in kilopascals? If the atmospheric pressure is 14.7 psi, calculate the absolute
pressure at that location.

Solution Using Eq. (2.6), we calculate the pressure:

P = 0.433 × 100 × 1.0 = 43.33 psig

Absolute pressure = 43.33 + 14.7 = 58.03 psia

In SI units we can calculate the pressure as follows:

Pressure = (100/3.281) × 1.0
0.102

= 298.8 kPa
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Alternatively,

Pressure in kPa = pressure in psi
0.145

= 43.33
0.145

= 298.83 kPa

Example 2.4 A new sprinkler system is being installed for a 120-ft-high
building. A 4-in sprinkler riser pipe is used to feed the top floor of the building.
Assuming no pump pressure, calculate the pressure at the bottom of the riser.

Solution Pressure at the bottom of the 120-ft riser pipe is, per Eq. (2.6),

P = 120 × 0.433 = 51.96 psi

Example 2.5 A fire pump used in conjunction with a fire protection system
has a pressure rating of 150 ft. Calculate the pressure developed by the
pump.

Solution

Pressure developed by pump = 150 ft

= 150 × 0.433 = 64.95 psi

2.3.2 Velocity

As water flows through fire protection piping at a constant flow rate,
the velocity of flow can be calculated by the following equation:

Flow rate = area × velocity

Therefore,

Q = A× V (2.10)

where Q = flow rate
A = pipe cross-sectional area
V = velocity of flow

Since flow rate is generally expressed in gal/min and pipe diameter is
in inches, to obtain the velocity in ft/s we must use correct conversion
factors.

A = 0.7854
(

D
12

)2

where A is the pipe cross-sectional area (ft2) and D is the pipe inside
diameter (in).
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Therefore, the velocity is

V = Q
A

= Q
60 × 7.48 × 0.7854 × (D/12)2

Simplifying,

V = 0.4085 × Q
D2 (2.11)

where V = velocity of flow, ft/s
Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the velocity equation is as follows:

V = 353.6777
Q
D2 (2.12)

where V = velocity, m/s
Q = flow rate, m3/h
D = inside diameter, mm

Example 2.6 Water flows through an 8-in inside diameter fire protection
water piping system at the rate of 1000 gal/min. Calculate the velocity of
flow.

Solution From Eq. (2.11), the average flow velocity is

V = 0.4085
1000

82
= 6.38 ft/s

Therefore, velocity is 6.38 ft/s

The velocity of flow through a pipe depends upon the flow rate and
the inside diameter of the pipe as shown by Eq. (2.11). On examining
this equation we see that the velocity decreases as the pipe diameter
increases, and vice versa. If at some point in the piping system the pipe
diameter changes, the velocity will change in accordance with Eq. (2.11).
We can calculate the velocity of flow through different sections of pipe
with different diameters using the continuity equation. The continuity
equation simply states that under steady flow the quantity of water Q
passing through every cross section of pipe is the same. Using Eq. (2.10)
we can write the following:

Q = A1V1 = A2V2 (2.13)
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where Q = flow rate
A1, A2 = pipe cross-sectional area at points 1 and 2, respectively,

along pipeline
V1, V2 = velocities at points 1 and 2, respectively

Therefore, if we know the flow rate Q and the diameter of the pipe at
points 1 and 2, we can calculate the velocity at points 1 and 2.

Example 2.7 Water flows through a fire protection water piping system at
the rate of 450 gal/min. The diameter of the pipe starts at NPS 8, 0.250-in wall
thickness and reduces to NPS 4, schedule 40, at a section 200 ft downstream.
Calculate the velocity of water in both pipe sizes.

Solution

Inside diameter for NPS 8, 0.250-in wall thickness = 8.625 − (2 × 0.250)

= 8.125 in

Inside diameter for NPS 4, schedule 40 = 4.026in

Velocity of water in NPS 8 pipe = 0.4085 × 450
8.1252

= 2.78 ft/s

Velocity of water in NPS 4 pipe = 0.4085 × 450
4.0262

= 11.34 ft/s

2.4 Pressure Drop Due to Friction

As water flows through fire protection water piping there is a certain
amount of friction between the water and the pipe wall. This causes
the pressure to decrease in the direction of flow. If P1 represents the
pressure in the piping at some point A, and P2 represents the pressure
at some downstream point B, due to friction P2 is less than P1. The
difference between P1 and P2 is the pressure drop due to friction, also
known as head loss. The greater the distance between A and B, the
greater will be the pressure drop P1 − P2.

If the pipe is horizontal with no elevation difference between points
A and B, the pressure drop P1 − P2 will depend only on the following:

1. Flow rate

2. Pipe inside diameter

3. Internal condition of pipe, such as rough or smooth
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If there is an elevation difference between points A and B, we must
add a fourth item to the list:

4. Elevation difference between A and B

Most piping designs are such that the friction loss in the piping is min-
imized so as to provide the maximum flow rate with existing equipment
and pipe size. Before we discuss the various formulas to calculate the
pressure drop in fire protection water piping systems, we must intro-
duce some general concepts of pipe flow, including the Reynolds number
of flow.

2.4.1 Reynolds number

The Reynolds number is a dimensionless parameter of flow. It depends
on the pipe size, flow rate, liquid viscosity (for water, viscosity = 1.0 cSt),
and density. It is calculated from the following equation:

R = VDρ

µ
(2.14)

or

R = VD
ν

(2.15)

where R = Reynolds number, dimensionless
V = average flow velocity, ft/s
D = pipe inside diameter, ft
ρ = mass density of liquid, slug/ft3

µ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s

Since R must be dimensionless, a consistent set of units must be used
for all items in Eq. (2.14) to ensure that all units cancel out and R has no
dimensions. A more convenient version of the Reynolds number using
USCS units in fire protection piping is as follows:

R = 3162.5
Q
Dν

(2.16)

where R = Reynolds number, dimensionless
Q = flow rate, gal/min
D = pipe inside diameter, in
ν = kinematic viscosity, cSt (for water, ν = 1.0)
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In SI units, the Reynolds number is expressed as follows

R = 353,678
Q

νD
(2.17)

where R = Reynolds number, dimensionless
Q = flow rate, m3/h
D = pipe inside diameter, mm
ν = kinematic viscosity, cSt (for water, ν = 1.0)

2.4.2 Types of flow

Flow through a pipe can be classified as laminar flow, turbulent flow, or
critical flow depending on the Reynolds number. If the flow is such that
the Reynolds number is less than 2000 to 2100, the flow is said to be
laminar. When the Reynolds number is greater than 4000, the flow is
said to be turbulent. Critical flow occurs when the Reynolds number is
in the range of 2100 to 4000. Laminar flow is characterized by smooth
flow in which there are no eddies or turbulence. The flow is said to occur
in laminations. If dye was injected into a transparent pipe, laminar
flow would be manifested in the form of smooth streamlines of dye.
Turbulent flow occurs at higher velocities and is accompanied by eddies
and other disturbances in the water. Mathematically, if Rrepresents the
Reynolds number of flow, the flow types are defined as follows:

Laminar flow: R ≤ 2100

Critical flow: 2100 < R ≤ 4000

Turbulent flow: R > 4000

In the critical flow regime, where the Reynolds number is between 2100
and 4000, the flow is undefined as far as pressure drop calculations are
concerned.

Example 2.8 Fire water flows through an NPS 8 pipeline, schedule 30 at
500 gal/min. Calculate the average velocity and the Reynolds number of flow.
Assume water has a viscosity of 1.0 cSt.

Solution Using Eq. (2.11), the average velocity is calculated as follows:

V = 0.4085
500

8.0712
= 3.14 ft/s

From Eq. (2.16), the Reynolds number is

R = 3162.5
500

8.071 × 1.0
= 195, 917

Since R > 4000, the flow is turbulent.
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Example 2.9 Water flows through a DN 200 (6-mm wall thickness) pipe
at 150 m3/h. Calculate the average velocity and Reynolds number of flow.
Assume water has a viscosity of 1.0 cSt.

Solution From Eq. (2.12) the average velocity is

V = 353.6777
150
1882

= 1.50 m/s

From Eq. (2.17) the Reynolds number is

R = 353,678
150

188 × 1.0
= 282,190

Since R > 4000, the flow is turbulent.

2.4.3 Darcy-Weisbach equation

Several formulas have been put forth to calculate the pressure drop
in fire protection water piping. Among them, the Darcy-Weisbach and
Hazen-Williams equations are the most popular.

We will first introduce the Darcy-Weisbach equation, also known sim-
ply as the Darcy equation, for calculating the friction loss in fire pro-
tection piping. The following form of the Darcy equation is the simplest
used by engineers for a long time. In this version the head loss in feet (as
opposed to pressure drop in psi) is given in terms of the pipe diameter,
pipe length, and flow velocity.

h = f
L
D

V 2

2g
(2.18)

where h = frictional head loss, ft
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = pipe inside diameter, ft
V = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

In USCS units, g = 32.2 ft/s2, and in SI units, g = 9.81 m/s2. The
friction factor f is a dimensionless value that depends upon the internal
roughness of the pipe and the Reynolds number.

Note that the Darcy equation (2.18) gives the frictional pressure loss
in feet of head of water. It can be converted to pressure loss in psi using
Eq. (2.6). The term V 2/2g in the Darcy equation is called the velocity
head, and it represents the kinetic energy of the water. The term velocity
head will be used in subsequent sections of this chapter when discussing
frictional head loss through pipe fittings and valves.
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Another form of the Darcy equation with frictional pressure drop
expressed in psi/ft and using a flow rate instead of velocity is as follows:

Pf = 0.0135
f Q2

D5 (2.19)

where Pf = frictional pressure loss, psi/ft
f = Darcy friction factor, dimensionless

Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the Darcy equation may be written as

h = 50.94
f LV 2

D
(2.20)

where h = frictional head loss, m
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
V = average flow velocity, m/s

Another version of the Darcy equation in SI units is as follows:

Pm = (6.2475 × 107)
f Q2

D5 (2.21)

where Pm = pressure drop due to friction, kPa/m
Q = flow rate, m3/h
f = Darcy friction factor, dimensionless
D = pipe inside diameter, mm

In order to calculate the friction loss in a fire protection water pipeline
using the Darcy equation, we must know the friction factor f. The fric-
tion factor f in the Darcy equation is the only unknown on the right-
hand side of Eq. (2.18). This friction factor is a dimensionless number
between 0.0 and 0.1 (usually around 0.02 for turbulent flow) that de-
pends on the internal roughness of the pipe, pipe diameter, and the
Reynolds number and therefore the type of flow (laminar or turbulent).

For laminar flow, the friction factor f depends only on the Reynolds
number and is calculated as follows:

f = 64
R

(2.22)

where f is the friction factor for laminar flow and R is the Reynolds
number for laminar flow (R < 2100) (dimensionless).
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Therefore, if the Reynolds number for a particular flow is 1200, the
flow is laminar and the friction factor according to Eq. (2.22) is

f = 64
1200

= 0.0533

If this pipeline has a 200-mm inside diameter and water flows through
it at 100 m3/h, the pressure loss per meter would be, from Eq. (2.21),

Pm = 6.2475 × 107 × 0.0533
1002

2005 = 0.1041 kPa/m

If the flow is turbulent (R > 4000), calculation of the friction factor is
not as straightforward as that for laminar flow. We will discuss this
next.

In turbulent flow the calculation of friction factor f is more complex.
The friction factor depends on the pipe inside diameter, pipe roughness,
and the Reynolds number. Based on work by Moody, Colebrook-White,
and others, the following empirical equation, known as the Colebrook-
White equation, has been proposed for calculating the friction factor in
turbulent flow:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

R
√

f

)
(2.23)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in
R = Reynolds number, dimensionless

The absolute pipe roughness e depends on the internal condition of
the pipe. Generally a value of 0.002 in or 0.05 mm is used in most
calculations, unless better data are available. Table 2.2 lists the pipe
roughness for various types of pipe. The ratio e/D is known as the
relative pipe roughness and is dimensionless since both pipe absolute

TABLE 2.2 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0
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roughness e and pipe inside diameter D are expressed in the same units
(inches in USCS units and millimeters in SI units). Therefore, Eq. (2.23)
remains the same for SI units, except that, as stated, the absolute pipe
roughness e and the pipe diameter D are both expressed in mm. All
other terms in the equation are dimensionless.

It can be seen from Eq. (2.23) that the calculation of the friction factor
f is not straightforward since it appears on both sides of the equation.
Successive iteration or a trial-and-error approach is used to solve for
the friction factor.

Suppose R = 300,000 and e/D = 0.002/8 = 0.0003. To solve for
the friction factor f from Eq. (2.23), we first assume a value of f and
substitute that value on the right-hand side of the equation. This will
give us a new value of f. Using the new value of f on the right-hand side
of the equation again, we recalculate f . This process is continued until
successive values of f are within a small tolerance, such as 0.001.

Continuing with the example, try f = 0.02 initially. Therefore,

1√
f

= −2 log10

(
0.0003

3.7
+ 2.51

300,000
√

0.02

)

Solving, f = 0.0168.
Using this value again in the preceding equation, we get the next

approximation to f as

f = 0.017

And repeating the process, we finally get f = 0.017.

2.4.4 Moody diagram

The Moody diagram is a graphical plot of the friction factor f for all flow
regimes (laminar, critical, and turbulent) against the Reynolds num-
ber at various values of the relative roughness of pipe. The graphical
method of determining the friction factor for turbulent flow using the
Moody diagram (see Fig. 2.4) is discussed next.

For a given Reynolds number on the horizontal axis, a vertical line
is drawn up to the curve representing the relative roughness e/D. The
friction factor is then read by going horizontally to the vertical axis
on the left. It can be seen from the Moody diagram that the turbulent
region is further divided into two regions: the “transition zone” and
the “complete turbulence in rough pipes” zone. The lower boundary is
designated as “smooth pipes,” and the transition zone extends up to the
dashed line. Beyond the dashed line is the complete turbulence in rough
pipes zone. In this zone, the friction factor depends very little on the
Reynolds number and more on the relative roughness. This is evident
from the Colebrook-White equation, where at large Reynolds numbers,
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the second term within the parentheses approaches zero. The friction
factor thus depends only on the first term, which is proportional to the
relative roughness e/D. In contrast, in the transition zone both R and
e/D influence the value of friction factor f.

Example 2.10 Water flows through an NPS 6 schedule 40 pipeline at 500
gal/min. Assuming a pipe roughness of 0.002 in, calculate the friction factor
and head loss due to friction in 100 ft of pipe length, using the Colebrook-
White equation.

Solution NPS 6, schedule 40 pipe has an inside diameter of 6.065 in. Using
Eq. (2.11), we calculate the velocity as

V = 0.4085
500

6.0652
= 5.55 ft/s

Using Eq. (2.16) we calculate the Reynolds number as follows:

R = 3162.5
500

6.065 × 1.0
= 260,717

Thus the flow is turbulent and we can use the Colebrook-White equation
(2.23), to calculate the friction factor.

1√
f

= −2 log10

(
0.002

3.7 × 6.065
+ 2.51

260,717
√

f

)

Solving for f by trial and error, we get f = 0.0152. Thus the friction factor
is 0.0152.

The head loss due to friction can now be calculated using the Darcy equa-
tion (2.18):

h = 0.0152
100 × 12

6.065
(5.55)2

64.4
= 1.44 ft of head of water

Converting to psi, using Eq. (2.6), we get

Pressure drop due to friction = 1.44 × 0.433 = 0.624 psi

Example 2.11 A steel pipe DN 250 (8-mm wall thickness) is used to transport
water from a fire pump to a fire protection water distribution piping system.
Calculate the friction factor and pressure loss in kPa/m due to friction at a
flow rate of 250 m3/h. Assume a pipe roughness of 0.05 mm. Use the Moody
diagram to calculate the pressure drop and determine the pumping pressure
required if the pipe length is 198 m. If the delivery point is located at a height
of 50 m, calculate the pump pressure.

Solution The DN 250 (8-mm wall thickness) pipe has an inside diameter,

D = 250 − 2 × 8 = 234 mm
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The average flow velocity is calculated using Eq. (2.12):

V = 353.6777
250
2342

= 1.61 m/s

Next using Eq. (2.17), we get the Reynolds number as follows:

R = 353,678
250

1.0 × 234
= 377,860

Therefore, the flow is turbulent. We can use the Colebrook-White equation
or the Moody diagram to determine the friction factor.

Relative roughness
e
D

= 0.05
234

= 0.0002

Using the preceding values for relative roughness and the Reynolds number,
from the Moody diagram we get friction factor f = 0.0162.

The pressure drop due to friction can now be calculated using the Darcy
equation (2.18) for the entire 198-m length of pipe as

h = 0.0162
198

0.234
1.612

2 × 9.81
= 1.81 m of head of water

Using Eq. (2.8) we calculate the pressure drop in kPa as follows:

Total pressure drop in 198 m = 1.81
1.0

0.102
= 17.75 kPa

Therefore,

Pressure drop in kPa/m = 17.75
198

= 0.0897 kPa/m

If the delivery point is at a height of 50 m,

Pump pressure required = 50 + 1.81 = 51.81 m

or

51.81
0.102

= 508 kPa

2.4.5 Hazen-Williams equation

For water pipelines, generally the Hazen-Williams equation is found
to give fairly accurate results compared to field data. Therefore, this
method is used in fire protection piping as well. However, as will be seen
shortly there are uncertainties associated with the C factor used in the
Hazen-Williams formula and there is a tendency to fall back on classical
equations such as the Darcy formula discussed earlier, especially for
high-pressure and high-flow piping system.
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TABLE 2.3 Hazen-Williams C Factor

Pipe material C factor

Smooth pipes (all metals) 130–140
Cast iron (old) 100
Cast iron (unlined new) 120
Iron (worn/pitted) 60–80
Polyvinyl chloride (PVC) 150
Brick 100
Smooth wood 120
Smooth masonry 120
Vitrified clay 110
Plastic 150

The Hazen-Williams equation for calculating the pressure drop due
to friction for a given pipe diameter and flow rate is as follows

�P = 4.524
(

Q
C

)1.85 1
D4.87 (2.24)

where �P = pressure loss due to friction, psi per ft of pipe length
Q = flow rate, gal/min
D = pipe inside diameter, in
C = Hazen-Williams roughness coefficient factor,

dimensionless
Equation (2.24) has been specially modified for water (specific gravity =
1.00). The Hazen-Williams C factor depends on the type of pipe material
and the internal condition of the pipe. Table 2.3 gives a list of C values
used in practice.

In general an average value of C = 100 is used for most applications.
A low value such as C = 75 may be used for pipe that is 10 to 15 years
old. Steel pipe used in sprinkler systems is designed for C = 100, if the
pipe size is 2 in or smaller or C = 120 for larger pipe.

In SI units the Hazen-Williams equation is as follows:

�P = 1.1101 × 1010
(

Q
C

)1.85 1
D4.87 (2.25)

where �P = frictional pressure drop, kPa/m
Q = flow rate, m3/h
D = pipe inside diameter, mm
C = Hazen-Williams C factor, dimensionless (see Table 2.3)

Example 2.12 A 4-in pipe is used to transport 300 gal/min of water in a
fire protection piping system. Using a C value of 100 in the Hazen-Williams
equation, calculate the friction loss in 650 ft of pipe.

Next Page
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Solution Assuming the given pipe size to be the inside diameter and using
the Hazen-Williams equation, the pressure drop is

�P = 4.524

(
300
100

)1.85 1
44.87

= 0.0404 psi/ft

Total pressure drop for 650 ft of pipe = 650 × 0.0404 = 26.25 psi

2.4.6 Friction loss tables

Using the Hazen-Williams equation, friction loss tables have been con-
structed that provide the pressure drop in various pipe sizes and flow
rates considering different C factors. Table 2.4 shows a typical friction
loss table in abbreviated form. For a complete list of friction loss tables
the reader is advised to refer to a handbook such as Fire Protection Sys-
tems by Robert M. Gagnon, Delmar Publishers, 1997. We will illustrate
the use of the friction loss table to calculate the pressure drop in a fire
protection piping system.

Consider, for example, a 4-in schedule 40 steel pipe (4.026-in inside
diameter) with a water flow of 200 gal/min. The pressure drop with a
C factor of 100 is found to be 0.0185 psi/ft from the friction loss table.
Therefore, if the piping is 500 ft long, the total pressure drop due to
friction will be 500 × 0.0185 = 9.25 psi.

We will now verify the preceding using the Hazen-Williams equation
(2.24) as follows:

�P = 4.524
(

200
100

)1.85 1
4.0264.87 = 0.0185 psi/ft

which is exactly what we found using the friction loss table. These fric-
tion loss tables are quite handy when we need to quickly check the
pressure drop in various size piping used in fire protection systems.

2.4.7 Losses in valves and fittings

So far, we have calculated the pressure drop per unit length in straight
pipe. Minor losses in a fire protection pipeline are classified as those
pressure drops that are associated with piping components such as
valves and fittings. Fittings include elbows and tees. In addition there
are pressure losses associated with pipe diameter enlargement and re-
duction. A pipe nozzle exiting from a storage tank will have entrance
and exit losses. All these pressure drops are called minor losses, as they
are relatively small compared to friction loss in a straight length of pipe.

Generally, minor losses are included in calculations by using the
equivalent length of the valve or fitting (found from a table such as

Previous Page



TABLE 2.4 Friction Loss Table
Schedule 40 Steel Pipe Schedule 30 Steel Pipe

1-in 1.5-in 2-in 2.5-in 3-in 4-in 6-in 8-in
(ID = 1.049 in) (ID = 1.61 in) (ID = 2.067 in) (ID = 2.469 in) (ID = 3.068 in) (ID = 4.026 in) (ID = 6.065 in) (ID = 8.071 in)

Q, �P, V, Q, �P, V, Q, �P, V, Q, �P, V, Q, �P, V, Q, �P, V, Q, �P, V, Q, �P, V,
gal/min psi/ft ft/s gal/min psi/ft ft/s gal/min psi/ft ft/s gal/min psi/ft ft/s gal/min psi/ft ft/s gal/min psi/ft ft/s gal/min psi/ft ft/s gal/min psi/ft ft/s

7 0.0261 2.6 15 0.0133 2.4 30 0.0142 2.9 40 0.0102 2.7 50 0.0053 2.2 100 0.0051 2.5 400 0.009 4.4 500 0.0034 3.1
10 0.0506 3.7 20 0.0226 3.2 40 0.0242 3.8 55 0.0183 3.7 70 0.0099 3.0 140 0.0095 3.5 500 0.0137 5.6 700 0.0063 4.4
15 0.1071 5.6 25 0.0342 3.9 50 0.0365 4.8 70 0.0286 4.7 90 0.0158 3.9 180 0.0152 4.5 600 0.0192 6.7 900 0.0101 5.6
20 0.1823 7.4 30 0.0479 4.7 60 0.0512 5.7 85 0.0410 5.7 110 0.0229 4.8 220 0.022 5.5 700 0.0255 7.8 1300 0.0199 8.2
25 0.2755 9.3 35 0.0637 5.5 70 0.0681 6.7 100 0.0554 6.7 130 0.0313 5.6 250 0.0279 6.3 800 0.0326 8.9 1700 0.0327 10.7
30 0.3860 11.1 40 0.0816 6.3 80 0.0871 7.7 115 0.0718 7.7 150 0.0407 6.5 280 0.0344 7.1 900 0.0406 10.0 1930 0.0414 12.1
35 0.5134 13.0 45 0.1015 7.1 90 0.1083 8.6 130 0.0900 8.7 170 0.0513 7.4 310 0.0415 7.8 1000 0.0493 11.1 2130 0.0496 13.4
40 0.6573 14.9 50 0.1233 7.9 100 0.1317 9.6 145 0.1102 9.7 190 0.0631 8.3 340 0.0493 8.6 1100 0.0588 12.2 2530 0.0683 15.9
45 0.8173 16.7 55 0.1471 8.7 110 0.1570 10.5 160 0.1322 10.7 210 0.0759 9.1 370 0.0576 9.3 1200 0.0691 13.3 2730 0.0786 17.1
50 0.9932 18.6 60 0.1728 9.5 120 0.1845 11.5 175 0.1560 11.7 233 0.0920 10.1 400 0.0666 10.1 1300 0.0801 14.4 2930 0.0896 18.4
55 1.1848 20.4 65 0.2003 10.2 130 0.2139 12.4 190 0.1817 12.7 253 0.1071 11.0 430 0.0761 10.8 1400 0.0919 15.6 3330 0.1135 20.9
60 1.3917 22.3 70 0.2298 11.0 140 0.2453 13.4 205 0.2091 13.7 273 0.1233 11.9 460 0.0862 11.6 1500 0.1044 16.7 3530 0.1264 22.1
65 1.6138 24.1 75 0.2611 11.8 150 0.2787 14.3 220 0.2383 14.8 293 0.1406 12.7 490 0.0969 12.4 1600 0.1176 17.8 3730 0.1400 23.4
70 1.8509 26.0 80 0.2942 12.6 160 0.3141 15.3 235 0.2692 15.8 313 0.1588 13.6 520 0.1081 13.1 1700 0.1315 18.9 4130 0.1690 25.9
75 2.1029 27.9 85 0.3291 13.4 170 0.3514 16.3 250 0.3018 16.8 333 0.1781 14.5 550 0.1200 13.9 1800 0.1462 20.0 4530 0.2005 28.4
80 2.3696 29.7 90 0.3658 14.2 180 0.3906 17.2 265 0.3362 17.8 353 0.1984 15.3 580 0.1324 14.6 1950 0.1696 21.7 4730 0.2172 29.7
85 2.6509 31.6 95 0.4043 15.0 190 0.4316 18.2 280 0.3722 18.8 373 0.2197 16.2 610 0.1453 15.4 2100 0.1945 23.3 4930 0.2345 30.9
89 2.8862 33.1 100 0.4445 15.8 200 0.4746 19.1 295 0.4100 19.8 393 0.2420 17.1 640 0.1588 16.1 2220 0.2155 24.7 5100 0.2497 32.7

106 0.4951 16.7 210 0.5194 20.1 310 0.4493 20.8 416 0.2688 18.1 670 0.1728 16.9 2370 0.2432 26.3
121 0.6325 19.1 220 0.5661 21.0 325 0.4904 21.8 446 0.3058 19.4 700 0.1874 17.7 2460 0.2606 27.3
126 0.6817 19.9 230 0.6146 22.0 340 0.5331 22.8 476 0.3449 20.7 730 0.2026 18.4 2520 0.2725 28.0
131 0.7326 20.7 240 0.665 23.0 355 0.5774 23.8 506 0.3862 22.0 760 0.2182 19.2 2640 0.297 29.3
136 0.7851 21.4 250 0.7172 23.9 370 0.6234 24.8 536 0.4296 23.3 790 0.2344 19.9 2700 0.3096 30.0
146 0.8953 23.0 260 0.7711 24.9 390 0.6871 26.1 566 0.4752 24.6 830 0.2569 20.9 2880 0.3488 32.0
151 0.9528 23.8 270 0.8269 25.8 410 0.7537 27.5 596 0.5228 25.9 875 0.2832 22.1
161 1.0728 25.4 280 0.8844 26.8 430 0.8231 28.8 626 0.5726 27.2 920 0.3107 23.2
171 1.1993 27.0 305 1.0361 29.2 450 0.8954 30.2 656 0.6243 28.5 1010 0.3693 25.5
201 1.6174 31.7 335 1.2324 32.0 477 0.9973 32.0 686 0.6782 29.8 1055 0.4003 26.6

716 0.7341 31.1 1100 0.4325 27.7
736 0.7725 32.0 1160 0.4771 29.3

1205 0.5120 30.4
1250 0.5479 31.5
1310 0.5975 33.0

NOTE: Based on C = 100.
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TABLE 2.5 Equivalent Lengths of Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 50
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

Table 2.5) or using a resistance factor K multiplied by the velocity head
V 2/2g. The term minor losses can be applied only where the pipeline
lengths and hence the friction losses are relatively large compared to
the pressure drops in the fittings and valves. In fire protection piping,
depending upon the pipe length, pressure drop in the straight length
of pipe may be of the same order of magnitude as that due to valves
and fittings. In such cases the term minor losses is really a misnomer.
In any case, the pressure losses through valves, fittings, etc., can be
accounted for approximately using the equivalent length or K times the
velocity head method. A table listing the equivalent lengths of valves
and fittings along with the K factors is shown in Table 2.6.

As an example, if the total length of straight pipe were 250 ft and
all valves, fittings, etc., amounted to an equivalent length of 40 ft, we
would calculate the total pressure loss in this piping system as follows,
considering a total equivalent length of 290 ft of pipe:

Total friction loss in pipe and fittings
= 290 × pressure drop per ft of pipe

Table 2.5 shows the equivalent length of commonly used valves and
fittings in fire protection water pipelines. It can be seen from this table
that a gate valve has an L/D ratio of 8 compared to straight pipe. There-
fore a 6-in-diameter gate valve may be replaced with 6×8 = 48-in-long



TABLE 2.6 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72
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piece of pipe that will match the frictional pressure drop through the
valve.

Example 2.13 A fire protection piping system is 500 ft of NPS 8 pipe, sched-
ule 30 that has two 8-in gate valves and four NPS 8, 90◦ standard elbows. Us-
ing the equivalent length concept, calculate the total pipe length that will in-
clude all straight pipe and valves and fittings. What is the pressure drop due
to friction at 900 gal/min? Use the Hazen-Williams equation with C = 120.

Solution Using Table 2.5, we can convert all valves and fittings in terms of
8-in pipe as follows:

Two NPS 8 gate valves = 2 × 8 × 8 = 132 in of NPS 8 pipe

Four NPS 8 90◦ elbows = 4 × 8 × 30 = 960 in of NPS 8 pipe

Total for all valves and fittings = 132 + 960 = 1092 in = 91 ft of NPS 8 pipe

Adding the 500 ft of straight pipe,

Total equivalent length of straight pipe and all fittings
= 500 + 91 = 591 ft of NPS 8 pipe

The pressure drop due to friction in the preceding piping system can now
be calculated based on 591 ft of pipe. Using Hazen-Williams equation (2.24),
we get

�P = 4.524

(
900
120

)1.85 1
8.0714.87

= 0.0072 psi/ft

where NPS 8, schedule 30 pipe is taken to have an 8.07-in inside diameter.

Total pressure drop = 591 × 0.0072 = 4.26 psi

Another approach to accounting for minor losses is using the resis-
tance coefficient or K factor. The K factor and the velocity head approach
to calculating pressure drop through valves and fittings can be analyzed
as follows using the Darcy equation. From the Darcy equation (2.18),
the pressure drop in a straight length of pipe is given by

h = f
L
D

V 2

2g

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and the preceding equation then
becomes

h = K
V 2

2g
(2.26)

where K = f (L/D).
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In Eq. (2.26), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head V 2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(V 2/2g) where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 2.6. It can be seen that the K factor depends on the
nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.

From Table 2.6 it can be seen that a 6-in gate valve has a K factor
value of 0.12, while a 10-in gate valve has a K factor of 0.11. However,
both sizes of gate valves have the same equivalent length–to–diameter
ratio of 8. The head loss through the 6-in valve can be estimated to be
0.12(V 2/2g) and that in the 10-in valve is 0.11(V 2/2g). The velocities
in both cases will be different due to the difference in diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

V6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 10-in valve will be ap-
proximately

V6 = 0.4085
1000

10.252 = 3.89 ft/s

Therefore,

Head loss in 6-in gate valve = 0.12(10.89)2

64.4
= 0.22 ft

head loss in 10-in gate valve = 0.11(3.89)2

64.4
= 0.026 ft

It can be seen that the head loss in the 10-in valve is only about one-
tenth of that in the 6-in valve. Both head losses are still very small
compared to the head loss in straight 6-in pipe, about 0.05 psi/ft. One
hundred feet of 6-in pipe will have a pressure drop of 5 psi compared to
the very small losses in the 6-in and 10-in valves.

Pipe enlargement and reduction. Pipe enlargements and reductions con-
tribute to head loss that can be included in minor losses. For sudden
enlargement of pipes, the following head loss equation may be used:

hf = (v1 − v2)2

2g
(2.27)

where v1 and v2 are the velocities of the liquid in the two pipe sizes D1
and D2, respectively. Writing Eq. (2.27) in terms of pipe cross-sectional
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D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 2.5 Sudden pipe enlargement and pipe reduction.

areas A1 and A2 (as illustrated in Fig. 2.5), we obtain

hf =
(

1 − A1

A2

)2 v1
2

2g
(2.28)

for sudden enlargement.
For sudden contraction or reduction in pipe size as shown in Fig. 2.5,

the head loss is calculated from

hf =
(

1
Cc

− 1
)

v2
2

2g
(2.29)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 2.5.

Gradual enlargement and reduction of pipe size, as shown in Fig. 2.6,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc(v1 − v2)2

2g
(2.30)

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 2.7.
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D1

D1
D2

D2

Figure 2.6 Gradual pipe enlargement and pipe reduction.

Pipe entrance and exit losses. The K factors for computing the head loss
associated with pipe entrance and exit are as follows:

K =




0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

2.4.8 Complex piping systems

So far we have discussed straight length of pipe with valves and fittings.
Complex piping systems include pipes of different diameters in series
and parallel configuration. Fire protection piping is designed as a looped
system or grid system. A loop system provides water supply from more
than one location to any point. Sprinkler systems piping has simple
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Figure 2.7 Gradual pipe expansion head loss coefficient.
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L1

D1 D2 D3

L2 L3

Figure 2.8 Series piping.

loops or complex loops depending on the piping arrangement. We will
discuss both series and parallel piping next.

Series piping. Series piping in its simplest form consists of two or more
different pipe sizes connected end to end as illustrated in Fig. 2.8. Pres-
sure drop calculations in series piping may be handled in one of two
ways. The first approach would be to calculate the pressure drop in
each pipe size and add them together to obtain the total pressure drop.
Another approach is to consider one of the pipe diameters as the base
size and convert other pipe sizes into equivalent lengths of the base
pipe size. The resultant equivalent lengths are added together to form
one long piece of pipe of constant diameter equal to the base diame-
ter selected. The pressure drop can now be calculated for this single-
diameter pipeline. Of course, all valves and fittings will also be con-
verted to their respective equivalent pipe lengths using the L/D ratios
from Table 2.5.

Consider three sections of pipe joined together in series. Using sub-
scripts 1, 2, and 3 and denoting the pipe length as L, inside diameter
as D, and flow rate as Q, we can calculate the equivalent length of each
pipe section in terms of a base diameter. This base diameter will be
selected as the diameter of the first pipe section D1. Since equivalent
length is based on the same pressure drop in the equivalent pipe as the
original pipe diameter, we will calculate the equivalent length of section
2 by finding that length of diameter D1 that will match the pressure
drop in a length L2 of pipe diameter D2. Using the Hazen-Williams
equation (2.24) we can write the total pressure drop for a pipe with flow
Q, diameter D, and length L as

�P = 4.524
(

Q
C

)1.85 1
D4.87 L

For simplicity, assuming the same C factor for all pipes, since Q and C
are the same for all series pipes,

Le

D1
4.87 = L2

D2
4.87 (2.31)
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Therefore, the equivalent length of section 2 based on diameter D1 is

Le = L2

(
D1

D2

)4.87

(2.32)

Similarly, the equivalent length of section 3 based on diameter D1 is

Le = L3

(
D1

D3

)4.87

(2.33)

The total equivalent length of all three pipe sections based on diameter
D1 is therefore

Lt = L1 + L2

(
D1

D2

)4.87

+ L3

(
D1

D3

)4.87

(2.34)

The total pressure drop in the three sections of pipe can now be calcu-
lated based on a single pipe of diameter D1 and length Lt.

Example 2.14 Three pipes of NPS 4, NPS 6, and NPS 8 (all standard wall
thickness) are connected in series with pipe reducers, fittings, and valves as
follows:

NPS 4 pipe, 0.237-in wall thickness, 200 ft long

Two 4-in 90◦ elbows and one 4-in gate valve

NPS 6 pipe, 0.280-in wall thickness, 300 ft long

Four 6-in 90◦ elbows and one 6-in gate valve

NPS 8 pipe, 0.277-in wall thickness, 500 ft long

Two 8-in 90◦ elbows and one 8-in gate valve

(a) Use Hazen-Williams equation with a C factor of 120 to calculate the
total pressure drop in the series water piping system at a flow rate of 500
gal/min. Flow starts in the 4-in piping and ends in the 8-in piping.

(b) If the flow rate is increased to 600 gal/min, estimate the new total pres-
sure drop in the piping system, keeping everything else the same.

Solution

(a) Since we are going to use the Hazen-Williams equation, the pipes in
series analysis will be based on the pressure loss being inversely proportional
to D4.87 where D is the inside diameter of pipe, per Eq. (2.24).

We will first calculate the total equivalent lengths of all NPS 4 pipe, fit-
tings, and valves in terms of the NPS 4 pipe. Using the equivalent length of
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values and fittings (Table 2.5),

Straight pipe: NPS 4, 200 ft = 200 ft of NPS 4 pipe

Two 4-in 90◦ elbows = 2 × 30 × 4
12

= 20 ft of NPS 4 pipe

One 4-in gate valve = 1 × 8 × 4
12

= 2.67 ft of NPS 4 pipe

Therefore, the total equivalent length of NPS 4 pipe, fittings, and valve =
222.67 ft of NPS 4 pipe.

Similarly we get the total equivalent length of NPS 6 pipe, fittings, and
valve as follows:

Straight pipe: NPS 6, 300 ft = 300 ft of NPS 6 pipe

Four 6-in 90◦ elbows = 4 × 30 × 6
12

= 60 ft of NPS 6 pipe

One 6-in gate valve = 1 × 8 × 6
12

= 4 ft of NPS 6 pipe

Therefore, the total equivalent length of NPS 6 pipe, fittings, and valve = 364
ft of NPS 6 pipe.

Finally, we get the total equivalent length of NPS 8 pipe, fittings, and valve
as follows:

Straight pipe: NPS 8, 500 ft = 500 ft of NPS 8 pipe

Two 8-in 90◦ elbows = 2 × 30 × 8
12

= 40 ft of NPS 8 pipe

One 8-in gate valve = 1 × 8 × 8
12

= 5.33 ft of NPS 8 pipe

Therefore, the total equivalent length of NPS 8 pipe, fittings, and valve =
545.33 ft of NPS 8 pipe.

Next we convert all the preceding pipe lengths to the equivalent NPS 4
pipe based on the fact that the pressure loss is inversely proportional to D4.87

where D is the inside diameter of pipe, and all series pipes have the same
flow rate.

222.67 ft of NPS 4 pipe = 222.67 ft of NPS 4 pipe

364.00 ft of NPS 6 pipe = 364

(
4.026
6.065

)4.87

= 49.48 ft of NPS 4 pipe

545.33 ft of NPS 8 pipe = 545.33

(
4.026
8.071

)4.87

= 18.44 ft of NPS 4 pipe

Therefore adding all the preceding lengths we get:

Total equivalent length in terms of NPS 4 pipe = 290.59 ft of NPS 4 pipe
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The head losses in the reducers are insignificant and hence can be neglected
in comparison with the head loss in straight length of pipe. Therefore the
total head loss in the entire piping system will be based on a total equivalent
length 290.59 ft of NPS 4 pipe.

Using the Hazen-Williams equation (2.24) the pressure drop at 500 gal/min
is

�P = 4.524

(
500
120

)1.85 1
4.0264.87

= 0.0718

Therefore for the 290.59 ft of equivalent NPS 4-in pipe,

Total pressure drop = 290.59 × 0.0718 = 20.88 psi

(b) When the flow rate is increased to 600 gal/min, we can use proportions
to estimate the new total pressure drop in the piping as follows:

�P =
(

600
500

)1.85

× 20.88 = 29.26 psi

Example 2.15 DN 200 pipe and a DN 300 pipe are connected in series as
follows:

DN 200 pipe, 6-mm wall thickness, 60 m long

DN 300 pipe, 8-mm wall thickness, 50 m long

Use the Hazen-Williams equation with a C factor of 100 to calculate the total
pressure drop in the series fire protection water piping system at a flow rate
of 30 L/s. What will the pressure drop be if the flow rate were increased to
45 L/s?

Solution The total equivalent length will be based on DN 200 pipe:

60 m of straight pipe = 60 m of DN 200 pipe

The total equivalent length of DN 300 pipe in terms of DN 200 pipe is

50 m of straight pipe = 50 ×
(

188
284

)4.87

= 6.71 m

Total equivalent length of both pipes = 60 + 6.71 = 66.71 m

Q = 30 × 10−3 × 3600 = 108 m3/h

The pressure drop from the Hazen-Williams equation (2.25) is

�P = 1.1101 × 1010
(

108
100

)1.85 1
1884.87

= 0.1077 kPa/m

Total pressure drop in 66.71-m length of pipe = 66.71 × 0.1077 = 7.18 kPa
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When the flow rate is increased to 45 L/s, we can calculate the pressure
drop using proportions as follows:

Revised head loss at 45 L/s =
(

45
30

)1.85

× 0.1077 = 0.228 kPa/m

Therefore,

Total pressure drop in 66.71-m length of pipe = 66.71 × 0.288 = 15.21 kPa

Parallel piping. Fire protection water pipes in parallel are so configured
that multiple pipes are connected so that water flow splits into the mul-
tiple pipes at the beginning and the separate flow streams subsequently
rejoin downstream into another single pipe as depicted in Fig. 2.9. This
is also called a looped piping system.

Figure 2.9 shows a parallel piping system in the horizontal plane
with no change in pipe elevations. Water flows through a single pipe
AB, and at the junction B the flow splits into two pipe branches BCE
and BDE. At the downstream end at junction E, the flows rejoin to the
initial flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, shown in Fig. 2.9, two main principles of parallel
piping must be followed. These are flow conservation at any junction
point and common pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE.

Thus,

Q = QBCE + QBDE (2.35)

where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = incoming flow at junction B

The other requirement in parallel pipes concerns the pressure drop
in each branch piping. Based on this the pressure drop due to friction
in branch BCE must exactly equal that in branch BDE. This is because

A B E F

C

D

Figure 2.9 Parallel piping.
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both branches have a common starting point (B) and a common ending
point (E). Since the pressure at each of these two points is a unique
value, we can conclude that the pressure drop in branch pipe BCE and
that in branch pipe BDE are both equal to PB − PE, where PB and PE
represent the pressure at the junction points B and E, respectively.

The pressure drop in branch BCE is calculated using the Hazen-
Williams equation as

�P1 = 4.524
(

Q1

C

)1.85 1
D1

4.87 L1 (2.36)

where �P1 = pressure loss due to friction in branch BCE
Q1 = flow rate in branch BCE
D1 = pipe inside diameter of branch BCE
L1 = pipe length of branch BCE

Similarly the pressure drop in branch BDE is calculated using the
Hazen-Williams equation as

�P2 = 4.524
(

Q2

C

)1.85 1
D2

4.87 L2 (2.37)

where �P2 = pressure loss due to friction in branch BDE
Q2 = flow rate in branch BDE
D2 = pipe inside diameter of branch BDE
L2 = pipe length of branch BDE

We have assumed a common C factor for the pressure drop calculations
for both branches BCE and BDE.

Simplifying, since the two pressure drops just determined have to be
equal for a looped system, we get

�P1 = �P2

Therefore,

Q1

Q2
=
(

D1

D2

)2.63(L2

L1

)0.54

(2.38)

Also the total flow rate Qt is the sum of the two flow rates Q1 and Q2.
Therefore,

Q1 + Q2 = Qt (2.39)
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Solving for Q1 and Q2 in terms of Qt, we get

Q1 = Qt

1 + (L1/L2)0.54 (2.40)

and

Q2 = Qt

[
(L1/L2)0.54

1 + (L1/L2)0.54

]
(2.41)

We have thus calculated the flow split between the two branches BCE
and BDE. The pressure drop �P1 or �P2 can be calculated using
Eq. (2.36) or Eq. (2.37).

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 2.9, if pipe AB were NPS 8 pipe and branches BCE and BDE were
NPS 4 and NPS 6, respectively, we can find some equivalent diameter
pipe of the same length as one of the branches that will have the same
pressure drop between points B and C as the two branches. An approx-
imate equivalent diameter can be calculated using the Hazen-Williams
equation as follows.

The pressure drop in branch BCE is calculated using the Hazen-
Williams equation as

�P1 = 4.524
(

Q1

C

)1.85 1
D1

4.87 L1 (2.42)

Similarly the pressure drop in branch BDE is calculated using the
Hazen-Williams equation as

�P2 = 4.524
(

Q2

C

)1.85 1
D2

4.87 L2 (2.43)

where the subscript 1 is used for branch BCE and subscript 2 for branch
BDE. For simplicity we have assumed the same C factors for both
branches.

Similarly, the equivalent diameter pipe De with length Le that will
replace both branches BCE and BDE will have a pressure drop equal
to

�Pe = 4.524
(

Qe

C

)1.85 1
De

4.87 Le (2.44)

where Qe is really the same as Q1 + Q2 or the total flow Qt, and Le
may be chosen as equal to the length of one of the branches. Therefore,
replacing Le with L1 and setting �P1 equal to �Pe, the common pressure



120 Chapter Two

drop between B and E is

Q1

Qt
=
(

D1

De

)2.63( Le

L1

)0.54

(2.45)

Similarly,

Q2

Qt
=
(

D2

De

)2.63( Le

L2

)0.54

(2.46)

Combining Eqs. (2.45) and (2.46) with the equation for conservation of
flow, Q1 + Q2 = Qt, we get

Qt

(
D1

De

)2.63( Le

L1

)0.54

+ Qt

(
D2

De

)2.63( Le

L2

)0.54

= Qt (2.47)

Simplifying by eliminating Qt and setting Le = L1, we get for the equiv-
alent diameter

De =
[

D1
2.63 + D2

2.63
(

L1

L2

)0.54
]1/2.63

(2.48)

This is the equivalent diameter of a pipe of length L1 that will com-
pletely replace both pipe loops for the same head loss.

As an example, if D1 = D2 = 6 and L1 = L2 = 200, the equivalent
diameter of two 6-in loops, from Eq. (2.48), is

De = (2 × 62.63)0.38 = 7.8 in

Thus two 6-in pipe loops, 200 ft long, can be replaced with one 200-ft
long pipe that has an equivalent (inside) diameter of 7.8 in.

Example 2.16 A fire protection water pipeline consists of a 200-ft section of
NPS 10 (0.250-in wall thickness) pipe starting at point A and terminating
at point B. At point B, two pieces of pipe (each 400 ft long and NPS 6 pipe
with 0.250-in wall thickness) are connected in parallel and rejoin at a point
C. From point C 150 ft of NPS 10 pipe (0.250-in wall thickness) extends to
point D. Using the equivalent diameter method calculate the pressures and
flow rate throughout the system when transporting fire protection water at
5000 gal/min. Compare the results by calculating the pressures and flow
rates in each branch. Use the Hazen-Williams equation with C = 120.

Solution Since the pipe loops between B and C are each NPS 10 and 400 ft
long, the flow will be equally split between the two branches. Each branch
pipe will carry 2500 gal/min.
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The equivalent diameter for section BC is found from Eq. (2.48):

De =
[

10.252.63 + 10.252.63
(

400
400

)0.54
]1/2.63

= 13.34 in

Therefore we can replace the two 400-ft NPS 10 pipes between B and C with
a single pipe that is 400 ft long and has a 13.34-in inside diameter.

The pressure drop in section BC, using Hazen-Williams equation (2.24), is

�Pe = 4.524

(
5000
120

)1.85 1
13.344.87

× 400 = 5.95 psi

Therefore, the total pressure drop in section BC is 5.95 psi.
For section AB we have,

D = 10.25 in Q = 5000

The pressure drop in section AB, using Hazen-Williams equation, is

�P = 4.524

(
5000
120

)1.85 1
10.254.87

× 200 = 10.73 psi

Therefore, the total pressure drop in section AB is 10.73 psi.
Finally, for section CD, the pressure drop, using the Hazen-Williams equa-

tion, is

�P = 4.524

(
5000
120

)1.85 1
10.254.87

× 150 = 8.05 psi

Therefore, the total pressure drop in section CD is 8.05 psi.
Therefore,

Total pressure drop in entire piping system = 5.95 + 10.73 + 8.05

= 24.73 psi

Next for comparison we will analyze the branch pressure drops assuming
each branch separately carries 2500 gal/min.

�P = 4.524

(
2500
120

)1.85 1
10.254.87

× 400 = 5.96 psi

This compares with the pressure drop of 5.95 psi/mi we calculated using an
equivalent diameter of 13.34. It can be seen that both results are essentially
the same.

2.5 Pipe Materials

Generally, fire protection piping systems are constructed of cast iron
or steel. To prevent corrosion of underground steel piping due to soil,
buried pipes are externally coated and wrapped. The maximum work-
ing pressure allowed in piping is determined by the pressure class or
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rating of the pipe. Class 150 pipe is suitable for pressures not exceeding
150 psi. Similarly class 200 pipe is for pressures not exceeding 200 psi.
Cast iron and fittings used in fire protection systems use ANSI, AWWA,
and federal specifications. To prevent internal corrosion when using cor-
rosive water, cast iron pipes may be internally lined. Asbestos-cement
(AC) pipe used in water pipelines is manufactured per AWWA standard
and is constructed of asbestos fiber and portland cement. AC pipes are
found to be more corrosion resistant than cast iron pipe.

Steel pipe used for fire protection water piping is manufactured to
conform to ANSI and ASTM standards. Schedule standard weight pipe
is used for pressures below 300 psi. Higher pressures require schedule
80 pipe.

2.6 Pumps

Pumps used in fire protection water piping are generally centrifugal
pumps. Motors may be 1750 or 3600 r/min. Standard fire pumps range
in capacity from 500 to 2500 gal/min. If suction lifts of more than 15 ft
are required, a submerged multistage turbine-type centrifugal pump is
used.

A typical fire pump installation showing water supply, pump bypass,
and connection piping to a sprinkler system is shown in Fig. 2.10. NFPA
20, Standard for the Installation of Centrifugal Fire Pumps, must be
consulted for application of a particular fire pump in fire protection
service.

Referring to Fig. 2.10, the fire protection water pump receives water
from the city water supply. A test header is installed on the discharge
side of the pump. This is used to test the fire pump and verify that the
pump can generate the specified pressure at the required flow rate.

Also on the discharge of the pump a relief valve is installed to prevent
overpressure of the piping connected to the sprinklers. A bypass piping
is also installed to route the city water directly to the sprinkler piping

Pump bypass

To sprinkler systems

Fire department connectionPump test header

From city water supply

Fire pump

Figure 2.10 Typical fire protection water pump installation.
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system, bypassing the fire pump, in the event the fire pump is shut
down for maintenance.

2.6.1 Centrifugal pumps

Centrifugal pumps consist of one or more rotating impellers contained
in a casing. The centrifugal force of rotation generates the pressure in
the water as it goes from the suction side to the discharge side of the
pump. Centrifugal pumps have a wide range of operating flow rates with
fairly good efficiency. The performance curves of a centrifugal pump
consist of head versus capacity, efficiency versus capacity, and brake
horsepower (BHP) versus capacity. The term capacity is used synony-
mously with flow rate in connection with centrifugal pumps. Also the
term head is used in preference to pressure when dealing with cen-
trifugal pumps. Figure 2.11 shows a typical performance curve for a
centrifugal pump.

Generally, the head-capacity curve of a centrifugal pump is a droop-
ing curve. The highest head is generated at a zero flow rate (shutoff
head), and the head decreases with an increase in flow rate as shown
in Fig. 2.11. The efficiency increases with flow rate up to the best effi-
ciency point (BEP) after which the efficiency drops off. The BHP also
generally increases with flow rate but may taper off or start decreasing
at some point depending on the head-capacity curve.

The head generated by a centrifugal pump depends on the diameter
of the pump impeller and the speed at which the impeller runs. A larger

Head

Head
H

Efficiency %

Efficiency %

BHP

BHP

BEP

Q

Flow rate (capacity)

Figure 2.11 Performance curve for centrifugal pump.
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impeller may be installed to increase the pump pressure, or a smaller
impeller may be used where less pressure is needed.

2.6.2 Net positive suction head

An important parameter related to the operation of centrifugal pumps
is the concept of net positive suction head (NPSH). This represents
the absolute minimum pressure at the suction of the pump impeller at
the specified flow rate to prevent pump cavitation. If the pressure falls
below this value, the pump impeller may be damaged and render the
pump useless.

The calculation of NPSH available for a particular pump and piping
configuration requires knowledge of the pipe size on the suction side of
the pump, the elevation of the water source, and the elevation of the
pump impeller along with the atmospheric pressure and vapor pressure
of water at the pumping temperature. The pump vendor may specify
that a particular model of pump requires a certain amount of NPSH
(known as NPSH required or NPSHR) at a particular flow rate. Based
on the actual piping configuration, elevations, etc., the calculated NPSH
(known as NPSH available or NPSHA) must exceed the required NPSH
at the specified flow rate. Therefore,

NPSHA > NPSHR

If the NPSHR is 25 ft at a 2000 gal/min pump flow rate, then NPSHA
must be 35 ft or more, giving a 10-ft cushion. Also, typically, as the
flow rate increases, NPSHR increases fairly rapidly as can be seen from
the typical centrifugal pump curve in Fig. 2.11. Therefore, it is im-
portant that the engineer perform calculations at the expected range
of flow rates to ensure that the NPSH available is always more than
the required NPSH, per the vendor’s pump performance data. As indi-
cated earlier, insufficient NPSH available tends to cavitate or starve the
pump and eventually causes damage to the pump impeller. The dam-
aged impeller will not be able to provide the necessary head pressure
as indicated on the pump performance curve.

2.6.3 System head curve

A system head curve, or a system head characteristic curve, for a fire
water pipeline is a graphic representation of how the pressure needed to
pump water through the pipeline varies with the flow rate. If the pres-
sures required at 200, 400, up to 1000 gal/min are plotted on the vertical
axis, with the flow rates on the horizontal axis, we get the system head
curve as shown in Fig. 2.12.

It can be seen that the system curve is not linear. This is because
the pressure drop due to friction varies approximately as the square of
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Head
H

Flow rate Q

Figure 2.12 System head curve.

the flow rate (actually Q1.85 according to the Hazen-Williams equation),
and hence the additional pressure required when the flow is increased
from 400 to 500 gal/min is more than that required when the flow rate
increases from 200 to 300 gal/min.

Consider a fire protection water pipeline used to transport water from
point A to point B. The pipe inside diameter is D and the length is L.
By knowing the elevation along the pipeline we can calculate the to-
tal pressure required at any flow rate using the techniques discussed
earlier. At each flow rate we would calculate the pressure drop due to
friction using the Hazen-Williams equation and multiply by the pipe
length to get the total pressure drop. Next we will add the equivalent
of the static head difference between A and B converted to psi. Finally,
the delivery pressure required at B would be added to come up with
the total pressure required. The process would be repeated for multiple
flow rates so that a system head curve can be constructed as shown in
Fig. 2.12. If we plotted the feet of head instead of pressure on the ver-
tical axis, we could use the system curve in conjunction with the pump
curve for the pump at A. By plotting both the pump H-Q curve and the
system head curve on the same graph, we can determine the point of
operation for this pipeline with the specified pump curve. This is shown
in Fig. 2.13.

When there is no elevation difference between points A and B, the
system head curve will start at the point where the flow rate and head
are both zero. If the elevation difference were 100 ft, Bbeing higher than
A, the system head curve will start at H = 100 ft and flow Q = 0. This
simply means that even at zero flow rate, a minimum pressure must
be present at A to overcome the static elevation difference between A
and B.
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Head

Flow rate

QA

HA A

Pump head

System head

Figure 2.13 Pump head curve and system head
curve.

2.6.4 Pump curve versus system
head curve

The system head curve for a pipeline is a graphic representation of the
head required to pump water through the pipeline at various flow rates
and is an increasing curve, indicating that more pressure is required
for a higher flow rate. On the other hand, the pump performance (head
versus capacity) curve shows the head the pump generates at various
flow rates, generally a drooping curve. When the required head per the
system head curve equals the available pump head, we have a match of
the required head versus the available head. This point of intersection
of the system head curve and the pump head curve is the operating
point for this particular pump and pipeline system. This is illustrated
in Fig. 2.13.

2.7 Sprinkler System Design

The flow through a sprinkler head depends on its orifice design and
pressure available. The flow rate Q and the pressure P are related by
the equation

Q = K
√

P (2.49)

where K is a coefficient called the K factor. It varies from 5.3 to 5.8 for
half-inch sprinklers. The NFPA requires that the minimum pressure at
any sprinkler shall be 7.0 psi. The minimum flow at the most demanding
sprinkler may be specified as 20 gal/min. For this flow rate the pressure
required at the sprinkler is calculated by Eq. (2.49):

20 = 5.6
√

P
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4 3 2 1

Sprinklers

B

A

Figure 2.14 Sprinkler system.

using K = 5.6. Solving for pressure we get

P = 12.76 psi

This is more than the NFPA 13 requirement of 7 psi.
Consider the sprinkler system shown in Fig. 2.14. If the remotest

sprinkler (sprinkler 1) is to operate at 20 gal/min, then it will have a
pressure of 12.76 psi, as calculated in the preceding. The next sprinkler
closest to B (sprinkler 2) will have a pressure P2 such that

P2 = P1 + head loss between sprinklers 1 and 2 (2.50)

The head loss between sprinklers 1 and 2 can be calculated since we
know the flow in the pipe segment from sprinkler 2 to sprinkler 1 is
equal to the discharge volume of sprinkler 1. Therefore, from Eq. (2.50)
we can calculate the pressure at sprinkler 2. Then we can continue this
process until we get to the sprinkler closest to B.

The pressure at the top of the riser at B can then be calculated. Next
from the length of the riser pipe AB we can calculate the pressure drop
in it, and considering the elevation difference between A and B we can
calculate the pressure at the pump at A as follows:

Pump pressure = (HB − HA) × 0.433 + pressure at B (2.51)

Example 2.17 A sprinkler system for a small warehouse has three branch
pipes with four sprinkler heads, each spaced 12 ft apart as shown in Fig. 2.15.
The branch lines are spaced 15 ft apart and connect to a riser pipe 20 ft high
from the fire pump. The riser pipe AB is 2-in schedule 40 pipe. The branch
lines are 1-in schedule 40 pipe except for the section from the top of the riser
to the first sprinkler on each branch line, which is 1.5-in schedule 40 pipe.
The most remote sprinkler requires 20 gal/min. All sprinklers have a 0.5-in
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Sprinklers
12 ft apart

15 ft
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Sprinklers

Sprinklers

B

Elevation

Plan

Figure 2.15 Sprinkler system—example problem.

orifice with K = 5.6. Use a Hazen-Williams C factor = 100. Calculate the
flow through each branch line and the total pump flow rate and pressure
required.

Solution There are three branch pipes, each with four sprinklers spaced 12 ft
apart. Point B represents the top of the riser pipe, and the pipe diameters
between sprinklers 1–2, 2–3, and 3–4 are 1-in schedule 40.

Using Eq. (2.49), the pressure at sprinkler 4 is

20 = 5.6(P4)1/2

P4 = 12.76 psi

The pressure at sprinkler 3 is found by adding the pressure drop in pipe
section 3–4 to P4. Using the friction loss table (Table 2.4) at a flow rate of 20
gal/min for 1-in schedule 40 pipe, the pressure drop in the 12-ft-long section
of pipe is

P3 = 0.1823 × 12 + 12.76 = 14.95 psi

The flow rate through sprinkler 3, using Eq. (2.49), is

Q3 = 5.6 (14.95)1/2 = 21.65 gal/min
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The pressure at sprinkler 2 is found by adding the pressure drop in pipe
section 2–3 to P3. Using Table 2.4 at a flow rate of 41.65 gal/min for 1-in
schedule 40 pipe, the pressure drop in the 12-ft-long section of pipe is

P2 = 0.7194 × 12 + 14.95 = 23.58 psi

The flow rate through sprinkler 2 is

Q2 = 5.6 (23.58)1/2 = 27.19 gal/min

The pressure at sprinkler 1 is found by adding the pressure drop in pipe
section 1–2 to P2. Using Table 2.4 at a flow rate of 68.84 gal/min for 1-in
schedule 40 pipe, the pressure drop in the 12-ft-long section of pipe is

P1 = 1.802 × 12 + 23.58 = 45.20 psi

The flow rate through sprinkler 1 is

Q1 = 5.6 (45.20)1/2 = 37.65 gal/min

The total flow from the top of the riser to branch line 1 is 37.65 + 68.84 =
106.5 gal/min. This flow rate is through a 1.5-in schedule 40 pipe. Using
Table 2.4 at a flow rate of 106.5 gal/min for 1.5-in schedule 40 pipe, 12 ft long,

Pressure at top of riser (point B) = 45.2 + 12 × 0.5 = 51.2 psi

This is the pressure at the common junction of the three branch lines.

Total flow in riser pipe AB = 3 × 106.5 = 319.5 gal/min

Considering 2-in schedule 40 riser pipe at this flow rate, head loss = 1.165
psi/ft.

Total pressure drop in riser pipe = 1.165 × 20 = 23.3 psi

Therefore,

Total pressure required at pump = 23.3 + 20 × 0.433 + 51.2

= 83.16 psi

For simplicity in this example we have used 1-in pipe between sprinklers 1
and 4 on each branch line. In reality the pipe size from sprinkler 1 to sprinkler
4 will reduce to compensate for the reduction in flow in each segment.
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3
Wastewater and

Stormwater Piping

Introduction

Wastewater piping systems carry residential, commercial, and indus-
trial wastes and waste products, using water as the transport medium,
to sewage plants for subsequent treatment and disposal. Stormwater
piping systems, on the other hand, carry stormwater and rainwater cap-
tured in basins and ponds to discharge points. These are also known
as storm sewer systems. In some installations a single piping system
is used to convey both wastewater and stormwater to treatment and
disposal areas.

In this chapter, we will discuss the various wastewater and storm-
water piping designs, show how to calculate flow rates and pipe sizes,
and review pumping systems. Before we discuss sewer piping design
and stormwater piping systems, we will briefly cover the basics of water
pipelines, how pressure drop due to friction is calculated, and how series
and parallel piping systems are analyzed for pressure drops and flow
rates.

3.1 Properties of Wastewater
and Stormwater

Pure water is an incompressible fluid with a specific gravity of 1.00
and a viscosity of 1.00 centipoise (cP) at normal temperature and pres-
sure. Groundwater or stormwater, however, may consist of dissolved
minerals, gases, and other impurities. Wastewater also contains miner-
als and gases in addition to dissolved solids. Commercial and industrial
wastewater may contain more solids and therefore may have drastically

131
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TABLE 3.1 Properties of Water at Atmospheric Pressure

Temperature Density Specific weight Dynamic viscosity Vapor pressure
◦F slug/ft3 lb/ft3 (lb · s)/ft3 psia

USCS units

32 1.94 62.4 3.75 × 10−5 0.08
40 1.94 62.4 3.24 × 10−5 0.12
50 1.94 62.4 2.74 × 10−5 0.17
60 1.94 62.4 2.36 × 10−5 0.26
70 1.94 62.3 2.04 × 10−5 0.36
80 1.93 62.2 1.80 × 10−5 0.51
90 1.93 62.1 1.59 × 10−5 0.70

100 1.93 62.0 1.42 × 10−5 0.96

Temperature Density Specific weight Dynamic viscosity Vapor pressure
◦C kg/m3 kN/m3 (N · s)/m2 kPa

SI units

0 1000 9.81 1.75 × 10−3 0.611
10 1000 9.81 1.30 × 10−3 1.230
20 998 9.79 1.02 × 10−3 2.340
30 996 9.77 8.00 × 10−4 4.240
40 992 9.73 6.51 × 10−4 7.380
50 988 9.69 5.41 × 10−4 12.300
60 984 9.65 4.60 × 10−4 19.900
70 978 9.59 4.02 × 10−4 31.200
80 971 9.53 3.50 × 10−4 47.400
90 965 9.47 3.11 × 10−4 70.100

100 958 9.40 2.82 ×10−4 101.300

different physical properties such as specific gravity and viscosity. Be-
cause these differences can affect the hydraulic properties, laboratory
testing may be needed to ascertain the gravity and viscosity of indus-
trial wastewater. See Table 3.1 for typical properties of water at various
temperatures.

3.1.1 Mass and weight

Mass is defined as the quantity of matter. It is measured in slugs (slug)
in U.S. Customary System (USCS) units and kilograms (kg) in Système
International (SI) units. A given mass of water will occupy a certain
volume at a particular temperature and pressure. For example, a cer-
tain mass of water may be contained in a volume of 500 cubic feet (ft3)
at a temperature of 60◦F and a pressure of 14.7 pounds per square
inch (lb/in2 or psi). Water, like most liquids, is considered incompress-
ible. Therefore, pressure and temperature have a negligible effect on
its volume. However, if the properties of water are known at standard



Wastewater and Stormwater Piping 133

conditions such as 60◦F and 14.7 psi pressure, these properties will be
slightly different at other temperatures and pressures. By the principle
of conservation of mass, the mass of a given quantity of water will re-
main the same at all temperatures and pressures.

Weight is defined as the gravitational force exerted on a given mass
at a particular location. Hence the weight varies slightly with the geo-
graphic location. By Newton’s second law the weight is simply the
product of the mass and the acceleration due to gravity at that location.
Thus

W = mg (3.1)

where W = weight, lb
m= mass, slug
g = acceleration due to gravity, ft/s2

In USCS units g is approximately 32.2 ft/s2, and in SI units it is 9.81 m/s2.
In SI units weight is measured in newtons (N) and mass is measured in
kilograms. Sometimes mass is referred to as pound-mass (lbm) and
force as pound-force (lbf) in USCS units. Numerically we say that 1 lbm
has a weight of 1 lbf.

3.1.2 Density and specific weight

Density is defined as mass per unit volume. It is expressed as slug/ft3

in USCS units. Thus, if 100 ft3 of water has a mass of 200 slug, the
density is 200/100 or 2 slug/ft3. In SI units, density is expressed in
kg/m3. Therefore water is said to have an approximate density of 1000
kg/m3at room temperature.

Specific weight, also referred to as weight density, is defined as the
weight per unit volume. By the relationship between weight and mass
discussed earlier, we can state that the specific weight is related to
density as follows:

γ = ρg (3.2)

where γ = specific weight, lb/ft3

ρ = density, slug/ft3

g = acceleration due to gravity, ft/s2

3.1.3 Volume

The volume of water is usually measured in gallons (gal) or cubic ft (ft3)
in USCS units. In SI units, cubic meters (m3) and liters (L) are used.
Flow rate, also called discharge, is the rate at which volume is conveyed
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through a pipeline. The flow rate in water pipelines is measured in
gallons per minute (gal/min), million gallons per day (Mgal/day), and
cubic feet per second (ft3/s) in USCS units. In SI units, flow rate is
measured in cubic meters per hour (m3/h) or liters per second (L/s).
One ft3 equals 7.4805 gal. One m3equals 1000 L, and one U.S. gallon
equals 3.785 L. A table of conversion factors for various units is provided
in App. A.

Example 3.1 Water at 60◦F fills a tank of volume 1000 ft3 at atmospheric
pressure. If the weight of water in the tank is 31.2 tons, calculate its density
and specific weight.

Solution

Specific weight = weight
volume

= 31.2 × 2000
1000

= 62.40 lb/ft3

From Eq. (3.2) the density is

Density = specific weight
g

= 62.4
32.2

= 1.9379 slug/ft3

Example 3.2 A tank has a volume of 5 m3 and contains water at 20◦C.
Assuming a density of 990 kg/m3, calculate the weight of the water in the
tank. What is the specific weight in N/m3 using a value of 9.81 m/s2 for
gravitational acceleration?

Solution

Mass of water = volume × density = 5 × 990 = 4950 kg

Weight of water = mass × g = 4950 × 9.81 = 48,559.5 N = 48.56 kN

Specific weight = weight
volume

= 48.56
5

= 9.712 N/m3

3.1.4 Specific gravity

Specific gravity is a measure of how heavy a liquid is compared to water.
It is a ratio of the density of a liquid to the density of water at the
same temperature. Since we are dealing with water only in this chap-
ter, the specific gravity of pure water by definition is always equal to
1.00. However, wastewater contains dissolved solids and therefore the
specific gravity of wastewater may be sometimes in the range of 1.00 to
1.20 or more depending on the solids content.

3.1.5 Viscosity

Viscosity is a measure of a liquid’s resistance to flow. Each layer of water
flowing through a pipe exerts a certain amount of frictional resistance to
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Figure 3.1 Shear stress versus
velocity gradient curve.

the adjacent layer. This is illustrated in the shear stress versus velocity
gradient curve shown in Fig. 3.1. Newton proposed an equation that
relates the frictional shear stress between adjacent layers of flowing
liquid with the velocity variation across a section of the pipe as shown
in the following:

Shear stress = µ × velocity gradient

or

τ = µ
dV
dy

(3.3)

where τ = shear stress
µ = absolute viscosity, (lb · s)/ft2 or slug/(ft · s)

dV
dy = velocity gradient

The proportionality constant µ in Eq. (3.3) is referred to as the absolute
viscosity or dynamic viscosity. In SI units, µ is expressed in poise or
centipoise (cP).

The viscosity of water, like that of most liquids, decreases with an
increase in temperature, and vice versa. Under room temperature con-
ditions water has an absolute viscosity of 1.00 cP.

Kinematic viscosity is defined as the absolute viscosity divided by the
density. Thus

ν = µ

ρ
(3.4)

where ν = kinematic viscosity, ft2/s
µ = absolute viscosity, slug/(ft · s)
ρ = density, slug/ft3

In SI units, kinematic viscosity is expressed as stokes (St) or centi-
stokes (cSt). Under room temperature conditions water has a kinematic
viscosity of 1.00 cSt. Some useful conversions for viscosity in SI units
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are as follows:

1 poise = 1 (dyne ·s)/cm2 = 1 g/(cm ·s) = 10−1 (N ·s)/m2

1 centipoise = 10−2 poise = 10−3 (N ·s)/m2

Example 3.3 Water has a dynamic viscosity of 1.00 cP at 20◦C and a density
of 1000 kg/m3. Calculate the kinematic viscosity in SI units.

Solution

Kinematic viscosity = absolute viscosity µ

density ρ
= 1.0 × 10−3 (N · s)/m2

1.0 × 1000 kg/m3

= 10−6 m2/s

since 1.0 N = 1.0 (kg · m)/s2.

3.2 Pressure

Pressure is defined as the force per unit area. The pressure at a location
in a body of water is by Pascal’s law constant in all directions. In USCS
units pressure is measured in lb/in2 (psi), and in SI units it is expressed
as N/m2 or pascals (Pa). Other units for pressure include lb/ft2, kPa,
mega pascals (MPa), kg/cm2, and bar. Conversion factors are listed in
App. A.

At a depth of 100 ft below the free surface of a water tank (of height
150 ft) the intensity of pressure, or simply the pressure, is the force per
unit area. Mathematically, the column of water of height 100 ft exerts
a force equal to the weight of the water column over an area of 1 in2.
We can calculate the pressure as follows:

Pressure = weight of 100-ft column of area 1.0 in2

1.0 in2

= 100 × (1/144) × 62.4
1.0

In this equation, we have assumed the specific weight of water to be
62.4 lb/ft3. Therefore, simplifying the equation, we obtain

Pressure at a depth of 100 ft = 43.33 psi

Therefore, at a depth of 1 ft, the pressure will be 0.433 psi.
A general equation for the pressure in a liquid at a depth h is as

follows:

P = γ h (3.5)
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where P = pressure, psi
γ = specific weight of liquid
h = liquid depth

Variable γ may also be replaced with ρg where ρ is the density and g
is gravitational acceleration.

Generally, pressure in a body of water or a water pipeline is referred
to in psi above that of the atmospheric pressure. This is also known as
the gauge pressure as measured by a pressure gauge. The absolute pres-
sure Pabs is the sum of the gauge pressure Pgauge and the atmospheric
pressure Patm at the specified location. Mathematically,

Pabs = Pgauge + Patm (3.6)

To distinguish between the two pressures, psig is used for gauge pres-
sure and psia is used for the absolute pressure. In most calculations
involving water pipelines the gauge pressure is used. Unless otherwise
specified, psi means the gauge pressure.

Liquid pressure may also be referred to as head pressure, in which
case it is expressed in feet of liquid head (or meters in SI units). There-
fore, a pressure of 1000 psi in a liquid such as water is said to be equiv-
alent to a pressure head of

h = 1000 × 144
62.4

= 2308 ft

In a more general form, the pressure P in psi and liquid head h in
feet for a specific gravity of Sg are related by

P = h × Sg
2.31

(3.7)

where P = pressure, psi
h = liquid head, ft

Sg = specific gravity of water

In SI units, pressure P in kilopascals and head h in meters are related
by the following equation:

P = h × Sg
0.102

(3.8)

Example 3.4 Calculate the pressure in psi at a water depth of 100 ft assum-
ing the specific weight of water is 62.4 lb/ft3. What is the equivalent pressure
in kilopascals? If the atmospheric pressure is 14.7 psi, calculate the absolute
pressure at that location.
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Solution Using Eq. (3.5), we calculate the pressure:

P = γ h = 62.4 lb/ft3 × 100 ft = 6240 lb/ft2

= 6240
144

lb/in2 = 43.33 psig

Absolute pressure = 43.33 + 14.7 = 58.03 psia

In SI units we can calculate the pressures as follows:

Pressure = 62.4
1

2.2025
(3.281)3 kg/m3 ×

(
100

3.281
m

)
(9.81 m/s2)

= 2.992 × 105 (kg · m)/(s2 · m2)

= 2.992 × 105 N/m2 = 299.2 kPa

Alternatively,

Pressure in kPa = Pressure in psi
0.145

= 43.33
0.145

= 298.83 kPa

The 0.1 percent discrepancy between the values is due to conversion factor
round-off.

3.3 Velocity

The velocity of flow in a water pipeline depends on the pipe size and flow
rate. If the flow rate is uniform throughout the pipeline (steady flow),
the velocity at every cross section along the pipe will be a constant value.
However, there is a variation in velocity along the pipe cross section.
The velocity at the pipe wall will be zero, increasing to a maximum at
the centerline of the pipe. This is illustrated in Fig. 3.2.

We can define a bulk velocity or an average velocity of flow as follows:

Velocity = flow rate
area of flow

Maximum
velocity

Vy

Laminar flow

Maximum
velocity

Turbulent flow

Figure 3.2 Velocity variation in pipe flow.
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Considering a circular pipe with an inside diameter D and a flow rate
of Q, we can calculate the average velocity as

V = Q
π D2/4

(3.9)

Employing consistent units of flow rate Q in ft3/s and pipe diameter in
inches, the velocity in ft/s is as follows:

V = 144Q
π D2/4

or

V = 183.3461
Q
D2 (3.10)

where V = velocity, ft/s
Q = flow rate, ft3/s
D = inside diameter, in

Additional formulas for velocity in different units are as follows:

V = 0.4085
Q
D2 (3.11)

where V = velocity, ft/s
Q = flow rate, gal/min
D = inside diameter, in

In SI units, the velocity equation is as follows:

V = 353.6777
Q
D2 (3.12)

where V = velocity, m/s
Q = flow rate, m3/h
D = inside diameter, mm

Example 3.5 Water flows through an NPS 16 (0.250-in wall thickness)
pipeline at the rate of 3000 gal/min. Calculate the average velocity for steady
flow. (Note: The designation NPS 16 means nominal pipe size of 16 in.)

Solution From Eq. (3.11), the average flow velocity is

V = 0.4085
3000
15.52

= 5.10 ft/s

Example 3.6 Water flows through a DN 200 (10-mm wall thickness) pipeline
at the rate of 75 L/s. Calculate the average velocity for steady flow.

Solution The designation DN 200 means metric pipe size of 200-mm outside
diameter. It corresponds to NPS 8 in USCS units. From Eq. (3.12) the average
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flow velocity is

V = 353.6777
75 × 60 × 60 × 10−3

1802
= 2.95 m/s

The variation of flow velocity in a pipe depends on the type of flow. In laminar
flow, the velocity variation is parabolic. As the flow rate becomes turbulent
the velocity profile approximates a trapezoidal shape as depicted in Fig. 3.2.
Laminar and turbulent flows are discussed in Sec. 3.5 after we introduce the
concept of the Reynolds number.

3.4 Reynolds Number

The Reynolds number is a dimensionless parameter of flow. It depends
on the pipe size, flow rate, liquid viscosity, and density. It is calculated
from the following equation:

Re = VDρ

µ
(3.13)

or

Re = VD
ν

(3.14)

where Re = Reynolds number, dimensionless
V = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = mass density of liquid, slug/ft3

µ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s

Since R must be dimensionless, a consistent set of units must be used
for all items in Eq. (3.13) to ensure that all units cancel out and R has
no dimensions.

Other variations of the Reynolds number for different units are as
follows:

Re = 3162.5
Q
Dν

(3.15)

where Re = Reynolds number, dimensionless
Q = flow rate, gal/min
D = inside diameter of pipe, in
ν = kinematic viscosity, cSt
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In SI units, the Reynolds number is expressed as follows:

Re = 353,678
Q

νD
(3.16)

where Re = Reynolds number, dimensionless
Q = flow rate, m3/h
D = inside diameter of pipe, mm
ν = kinematic viscosity, cSt

Example 3.7 Water flows through a 20-in (0.375-in wall thickness) pipeline
at 6000 gal/min. Calculate the average velocity and the Reynolds number of
flow. Assume water has a viscosity of 1.0 cSt.

Solution Using Eq. (3.11), the average velocity is calculated as follows:

V = 0.4085
6000

19.252
= 6.61 ft/s

From Eq. (3.15), the Reynolds number is

Re = 3162.5
6000

19.25 × 1.0
= 985,714

Example 3.8 Water flows through a 400-mm pipeline (10-mm wall thick-
ness) at 640 m3/h. Calculate the average velocity and the Reynolds number
of flow. Assume water has a viscosity of 1.0 cSt.

Solution From Eq. (3.12) the average velocity is

V = 353.6777
640
3802

= 1.57 m/s

From Eq. (3.16) the Reynolds number is

Re = 353,678
640

380 × 1.0
= 595,668

3.5 Types of Flow

Flow through pipe can be classified as laminar flow, turbulent flow, or
critical flow depending on the Reynolds number of flow. If the flow is
such that the Reynolds number is less than 2100, the flow is said to
be laminar. When the Reynolds number is greater than 4000, the flow
is said to be turbulent. Critical flow occurs when the Reynolds number
is in the range of 2100 to 4000. Laminar flow, also called viscous flow, is
characterized by smooth flow in which no eddies or turbulence are vis-
ible. The flow is said to occur in laminations. If dye was injected into
a transparent pipeline, laminar flow would be manifested in the form
of smooth streamlines of dye. Turbulent flow occurs at higher veloci-
ties and is accompanied by eddies and other disturbances in the liquid.
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Mathematically, if R represents the Reynolds number of flow, the flow
types are defined as follows:

Laminar flow: Re ≤ 2100

Critical flow: 2100 < Re ≤ 4000

Turbulent flow: Re > 4000

In the critical flow regime, where the Reynolds number is between 2100
and 4000, the flow is undefined as far as pressure drop calculations are
concerned.

3.6 Pressure Drop Due to Friction

As water flows through a pipe there is friction between the adjacent
layers of water and between the water molecules and the pipe wall.
This friction causes energy to be lost, being converted from pressure
energy and kinetic energy to heat. The pressure continuously decreases
as water flows through the pipe from the upstream end to the down-
stream end. The amount of pressure loss due to friction, also known as
head loss due to friction, depends on the flow rate, properties of water
(specific gravity and viscosity), pipe diameter, pipe length, and internal
roughness of the pipe. We will discuss several commonly used equations
for calculating the head loss due to friction.

3.6.1 Manning equation

The Manning equation was originally developed for use in open-channel
flow of water. It is also sometimes used in pipe flow. The Manning equa-
tion uses the Manning index, or roughness coefficient, n, which depends
on the type and internal condition of the pipe. The values used for the
Manning index for common pipe materials are listed in Table 3.2.

TABLE 3.2 Manning Index

Resistance
Pipe material factor

PVC 0.009
Very smooth cement 0.010
Cement-lined ductile iron 0.012
New cast iron, welded steel 0.014
Old cast iron, brick 0.020
Badly corroded cast iron 0.035
Wood, concrete 0.016
Clay, new riveted steel 0.017
Canals cut through rock 0.040
Earth canals average condition 0.023
Rivers in good conditions 0.030
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The following is a form of the Manning equation for frictional pressure
drop in water piping systems:

Q = 1.486
n

AR2/3
(

h
L

)1/2

(3.17)

where Q = flow rate, ft3/s
A = cross-sectional area of pipe, ft2

R = hydraulic radius = D/4 for circular pipes flowing full
n = Manning roughness coefficient, dimensionless
D = inside diameter of pipe, ft
h = friction loss, ft of water
L = pipe length, ft

In SI units, the Manning equation is expressed as follows:

Q = 1
n

AR2/3
(

h
L

)1/2

(3.18)

where Q = flow rate, m3/s
A = cross-sectional area of pipe, m2

R = hydraulic radius = D/4 for circular pipes flowing full
n = Manning roughness coefficient, dimensionless
D = inside diameter of pipe, m
h = friction loss, m of water
L = pipe length, m

The Manning equation will be discussed in more detail in sewer piping
design in Sec. 3.9.

3.6.2 Darcy equation

The Darcy equation, also called the Darcy-Weisbach equation, is one of
the oldest formulas used in classical fluid mechanics. It can be used to
calculate the pressure drop in pipes transporting any type of fluid, such
as a liquid or gas.

As water flows through a pipe from point A to point B the pressure
decreases due to friction between the water and the pipe wall. The Darcy
equation may be used to calculate the pressure drop in water pipes as
follows:

h = f
L
D

V 2

2g
(3.19)
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where h = frictional pressure loss, ft of head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = pipe inside diameter, ft
V = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

In USCS units, g = 32.2 ft/s2 and in SI units, g = 9.81 m/s2.
Note that the Darcy equation gives the frictional pressure loss in feet

of head of water. It can be converted to pressure loss in psi using Eq.
(3.7). The term V 2/2g in the Darcy equation is called the velocity head,
and it represents the kinetic energy of the water. The term velocity head
will be used in subsequent sections of this chapter when discussing
frictional head loss through pipe fittings and valves.

Another form of the Darcy equation with frictional pressure drop
expressed in psi/mi and using a flow rate instead of velocity is as follows:

Pm = 71.16
f Q2

D5 (3.20)

where Pm = frictional pressure loss, psi/mi
f = Darcy friction factor, dimensionless

Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the Darcy equation may be written as

h = 50.94
f LV 2

D
(3.21)

where h = frictional pressure loss, m of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
V = average flow velocity, m/s

Another version of the Darcy equation in SI units is as follows:

Pkm = (6.2475 × 1010)
f Q2

D5 (3.22)

where Pkm = pressure drop due to friction, kPa/km
Q = liquid flow rate, m3/h
f = Darcy friction factor, dimensionless
D = pipe inside diameter, mm
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In order to calculate the friction loss in a water pipeline using the
Darcy equation, we must know the friction factor f . The friction fac-
tor f in the Darcy equation is the only unknown on the right-hand
side of Eqs. (3.19) through (3.22). This friction factor is a nondimen-
sional number between 0.0 and 0.1 (usually around 0.02 for turbulent
flow) that depends on the internal roughness of the pipe, pipe diameter,
and the Reynolds number, and therefore the type of flow (laminar or
turbulent).

For laminar flow, the friction factor f depends only on the Reynolds
number and is calculated from the following equation:

f = 64
Re

(3.23)

where f is the friction factor for laminar flow and Re is the Reynolds
number for laminar flow (R < 2100) (dimensionless).

Therefore, if the Reynolds number for a particular flow is 1200, the
friction factor for this laminar flow is 64/1200 = 0.0533. If this pipeline
has a 400-mm inside diameter and water flows through it at 500 m3/h,
the pressure loss per kilometer would be, from Eq. (3.22),

Pkm = 6.2475 × 1010 × 0.0533 × (500)2

(400)5 = 81.3 kPa/km

If the flow is turbulent (Re > 4000), calculation of the friction factor
is not as straightforward as that for laminar flow. We will discuss this
next.

3.6.3 Colebrook-White equation

In turbulent flow the calculation of friction factor f is more complex. The
friction factor depends on the pipe inside diameter, the pipe roughness,
and the Reynolds number. Based on work by Moody, Colebrook-White,
and others, the following empirical equation, known as the Colebrook-
White equation, or simply the Colebrook equation, has been proposed
for calculating the friction factor in turbulent flow:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

(Re
√

f )

)
(3.24)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in

Re = Reynolds number, dimensionless
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TABLE 3.3 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0

The absolute pipe roughness depends on the internal condition of
the pipe. Generally a value of 0.002 in or 0.05 mm is used in most
calculations, unless better data are available. Table 3.3 lists the pipe
roughness for various types of pipe. The ratio e/D is known as the rel-
ative pipe roughness and is dimensionless since both pipe absolute
roughness e and pipe inside diameter D are expressed in the same
units (inches in USCS units and millimeters in SI units). Therefore,
Eq. (3.24) remains the same for SI units, except that, as stated, the
absolute pipe roughness e and the pipe diameter D are both expressed
in millimeters. All other terms in the equation are dimensionless.

It can be seen from Eq. (3.24) that the calculation of the friction factor
f is not straightforward since it appears on both sides of the equation.
A solution for f by successive iteration or a trial-and-error approach is
used to solve for the friction factor.

3.6.4 Moody diagram

The Moody diagram is a graphical plot of the friction factor f for all flow
regimes (laminar, critical, and turbulent) against the Reynolds number
at various values of the relative roughness of pipe. The friction factor
for turbulent flow can be found using the Moody diagram (Fig. 3.3)
after first calculating the Reynolds number and the relative roughness
e/D. For example, using the Moody diagram, we see that at Reynolds
number Re = 1,000,000 and a relative roughness e/D = 0.0002, the
Darcy friction factor is f = 0.0147.

Example 3.9 Water flows through a 16-in (0.375-in wall thickness) pipeline
at 3000 gal/min. Assuming a pipe roughness of 0.002 in, calculate the friction
factor and head loss due to friction in 1000 ft of pipe length.

Solution Using Eq. (3.11) we calculate the average flow velocity:

V = 0.4085 × 3000
(15.25)2

= 5.27 ft/s
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Using Eq. (3.15) we calculate the Reynolds number as follows:

Re = 3162.5
3000

15.25 × 1.0
= 622,131

Thus the flow is turbulent, and we can use the Colebrook-White equation to
calculate the friction factor.

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

f

)

This equation must be solved for f by trial and error. First assume that f =
0.02. Substituting in the preceding equation, we get a better approximation
for f as follows:

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.02

)
= 0.0142

Recalculating using this value

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.0142

)
= 0.0145

and finally

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.0145

)
= 0.0144

Thus the friction factor is 0.0144. (We could also have used the Moody dia-
gram to find the friction factor graphically, for Reynolds number R = 622,131
and e/D = 0.002/15.25 = 0.0001. From the graph, we get f = 0.0145, which
is close enough.)

The head loss due to friction can now be calculated using the Darcy equa-
tion (3.18).

h = 0.0144
1000 × 12

15.25
5.272

64.4
= 4.89 ft of head of water

Converting to psi using Eq. (3.7), we get

Pressure drop due to friction = 4.89 × 1.0
2.31

= 2.12 psi

Example 3.10 A concrete (2-m inside diameter) pipe is used to transport
water from a pumping facility to a storage tank 5 km away. Neglecting any
difference in elevations, calculate the friction factor and pressure loss in
kPa/km due to friction at a flow rate of 34,000 m3/h. Assume a pipe roughness
of 0.05 mm. If a delivery pressure of 4 kPa must be maintained at the delivery
point and the storage tank is at an elevation of 200 m above that of the
pumping facility, calculate the pressure required at the pumping facility at
the given flow rate, using the Moody diagram.

Solution The average flow velocity is calculated using Eq. (3.12).

V = 353.6777
34,000
(2000)2

= 3.01 m/s
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Next using Eq. (3.16), we get the Reynolds number as follows:

Re = 353,678 × 34,000
1.0 × 2000

= 6,012,526

Therefore, the flow is turbulent. We can use the Colebrook-White equation or
the Moody diagram to determine the friction factor. The relative roughness
is

e
D

= 0.05
2000

= 0.00003

Using the obtained values for relative roughness and the Reynolds number,
from the Moody diagram we get friction factor f = 0.01.

The pressure drop due to friction can now be calculated using the Darcy
equation (3.19) for the entire 5-km length of pipe as

h = 0.01
5000
2.0

3.012

2 × 9.81
= 11.54 m of head of water

Using Eq. (3.8), we calculate the pressure drop in kPa as

Total pressure drop in 5 km = 11.54 × 1.0
0.102

= 113.14 kPa

Therefore,

Pressure drop in kPa/km = 113.14
5

= 22.63 kPa/km

The pressure required at the pumping facility is calculated by adding the
following three items:

1. Pressure drop due to friction for 5-km length.

2. The static elevation difference between the pumping facility and storage
tank.

3. The delivery pressure required at the storage tank.

We can state the calculation mathematically,

Pt = Pf + Pelev + Pdel (3.25)

where Pt = total pressure required at pump
Pf = frictional pressure head

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage tank

All pressures must be in the same units: either meters of head or kilopascals.

Pt = 113.14 kPa + 200 m + 4 kPa

Changing all units to kilopascals we get

Pt = 113.14 + 200 × 1.0
0.102

+ 4 = 2077.92 kPa

Therefore, the pressure required at the pumping facility is 2078 kPa.
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3.6.5 Hazen-Williams equation

A more popular approach to the calculation of head loss in water piping
systems is the use of the Hazen-Williams equation. In this method a
coefficient C known as the Hazen-Williams C factor is used to account
for the internal pipe roughness or efficiency. Unlike the Moody diagram
or the Colebrook-White equation, the Hazen-Williams equation does not
require use of the Reynolds number or viscosity of water to calculate
the head loss due to friction.

The Hazen-Williams equation for head loss is expressed as follows:

h = 4.73 L(Q/C)1.852

D4.87 (3.26)

where h = frictional head loss, ft
L = length of pipe, ft
D = inside diameter of pipe, ft
Q = flow rate, ft3/s
C = Hazen-Williams roughness coefficient, dimensionless

Commonly used values of the Hazen-Williams C factor for various ap-
plications are listed in Table 3.4.

On examining the Hazen-Williams equation, we see that the head
loss due to friction is calculated in feet of head, similar to the Darcy
equation. The value of h can be converted to psi using the head-to-
psi conversion equation (3.7). Although the Hazen-Williams equation
appears to be simpler than using the Colebrook-White and Darcy equa-
tions to calculate the pressure drop, the unknown term C can cause
uncertainties in the pressure drop calculation.

Usually, the C factor, or Hazen-Williams roughness coefficient, is
based on experience with the water pipeline system, such as the pipe
material or internal condition of the pipeline system. When designing a
new pipeline, proper judgment must be exercised in choosing a C factor
since considerable variation in pressure drop can occur by selecting a
particular value of C compared to another.

TABLE 3.4 Hazen-Williams C Factor

Pipe material C factor

Smooth pipes (all metals) 130–140
Cast iron (old) 100
Iron (worn/pitted) 60–80
Polyvinyl chloride (PVC) 150
Brick 100
Smooth wood 120
Smooth masonry 120
Vitrified clay 110
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Other forms of the Hazen-Williams equation are shown next. In the
following, the presented equations calculate the flow rate from a given
head loss, or vice versa.

In USCS units, the following forms of the Hazen-Williams equation
are used.

Q = 6.755 × 10−3CD2.63h0.54 (3.27)

h = 10,460
(

Q
C

)1.852 1
D4.87 (3.28)

Pm = 23,909
(

Q
C

)1.852 1
D4.87 (3.29)

where Q = flow rate, gal/min
h = friction loss, ft of water per 1000 ft of pipe

Pm = friction loss, psi per mile of pipe
D = inside diameter of pipe, in
C = Hazen-Williams factor, dimensionless.

In SI Units, the Hazen-Williams equation is expressed as follows:

Q = 9.0379 × 10−8CD2.63
(

Pkm

Sg

)0.54

(3.30)

Pkm = (1.1101 × 1013)(Q
C

)1.852 Sg
D4.87 (3.31)

where Q = flow rate, m3/h
D = pipe inside diameter, mm

Pkm = frictional pressure drop, kPa/km
Sg = liquid specific gravity (water = 1.00)
C = Hazen-Williams factor, dimensionless

Example 3.11 Water flows through a 16-in (0.375-in wall thickness) pipeline
at 3000 gal/min. Using the Hazen-Williams equation with a C factor of 120,
calculate the pressure loss due to friction in 1000 ft of pipe length.

Solution First we calculate the flow rate using Eq. (3.27):

Q = 6.755 × 10−3 × 120 × (15.25)2.63h0.54

where h is in feet of head per 1000 ft of pipe.
Rearranging the preceding equation, using Q = 3000 and solving for h, we

get

h0.54 = 3000
6.755 × 10−3 × 120 × (15.25)2.63
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Therefore,

h = 7.0 ft per 1000 ft of pipe

Pressure drop = 7.0 × 1.0
2.31

= 3.03 psi

Compare this with the same problem described in Example 3.9. Using the
Colebrook-White and Darcy equations we calculated the pressure drop to be
4.89 ft per 1000 ft of pipe. Therefore, we can conclude that the C value used
in the Hazen-Williams equation in this example is too low and hence gives
us a comparatively higher pressure drop. If we recalculate, using a C factor
of 146 will get 5.26 ft per 1000 ft of pipe, which is closer to the 4.89 ft per
1000 ft we got using the Colebrook-White equation.

Example 3.12 A concrete pipe with a 2-m inside diameter is used to trans-
port water from a pumping facility to a storage tank 5 km away. Neglecting
differences in elevation, calculate the pressure loss in kPa/km due to friction
at a flow rate of 34,000 m3/h. Use the Hazen-Williams equation with a C
factor of 140. If a delivery pressure of 400 kPa must be maintained at the
delivery point and the storage tank is at an elevation of 200 m above that of
the pumping facility, calculate the pressure required at the pumping facility
at the given flow rate.

Solution The flow rate Q in m3/h is calculated using the Hazen-Williams
equation (3.31) as follows:

Pkm = (1.1101 × 1013)

(
34,000

140

)1.852

× 1
(2000)4.87

= 24.38 kPa/km

The pressure required at the pumping facility is calculated by adding the
pressure drop due to friction to the delivery pressure required and the static
elevation head between the pumping facility and storage tank using Eq.
(3.25).

Pt = Pf + Pelev + Pdel

= (24.38 × 5) kPa + 200 m + 400 kPa

Changing all units to kPa we get

Pt = 121.9 + 200 × 1.0
0.102

+ 400 = 2482.68 kPa

Thus the pressure required at the pumping facility is 2483 kPa.

3.7 Minor Losses

So far, we have calculated the pressure drop per unit length in straight
pipe. We also calculated the total pressure drop considering several
miles of pipe from a pump station to a storage tank. Minor losses in a

Next Page
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water pipeline are classified as those pressure drops that are associated
with piping components such as valves and fittings. Fittings include
elbows and tees. In addition there are pressure losses associated with
pipe diameter enlargement and reduction. A pipe nozzle exiting from
a storage tank will have entrance and exit losses. All these pressure
drops are called minor losses, as they are relatively small compared to
friction loss in a straight length of pipe.

Generally, minor losses are included in calculations by using the
equivalent length of the valve or fitting or using a resistance factor or
K factor multiplied by the velocity head V 2/2g. The term minor losses
can be applied only where the pipeline lengths and hence the friction
losses are relatively large compared to the pressure drops in the fittings
and valves. In a situation such as plant piping and tank farm piping
the pressure drop in the straight length of pipe may be of the same
order of magnitude as that due to valves and fittings. In such cases the
term minor losses is really a misnomer. In any case, the pressure losses
through valves, fittings, etc., can be accounted for approximately using
the equivalent length or K times the velocity head method. It must
be noted that this way of calculating the minor losses is valid only in
turbulent flow. No data are available for laminar flow.

3.7.1 Valves and fittings

Table 3.5 shows the equivalent length of commonly used valves and fit-
tings in a typical water pipeline. It can be seen from this table that a gate
valve has an L/D ratio of 8 compared to straight pipe. Therefore, a 20-in-
diameter gate valve may be replaced with a 20 × 8 = 160-in-long piece
of pipe that will match the frictional pressure drop through the valve.

Example 3.13 A piping system is 2000 ft of NPS 20 pipe that has two 20-in
gate valves, three 20-in ball valves, one swing check valve, and four 90◦
standard elbows. Using the equivalent length concept, calculate the total
pipe length that will include all straight pipe and valves and fittings.

Solution Using Table 3.5, we can convert all valves and fittings in terms of
20-in pipe as follows:

Two 20-in gate valves = 2 × 20 × 8 = 320 in of 20-in pipe
Three 20-in ball valves = 3 × 20 × 3 = 180 in of 20-in pipe
One 20-in swing check valve = 1 × 20 × 50 = 1000 in of 20-in pipe
Four 90◦ elbows = 4 × 20 × 30 = 2400 in of 20-in pipe
Total for all valves = 4220 in of = 351.67 ft of 20-in pipe
and fittings 20-in pipe

Adding the 2000 ft of straight pipe, the total equivalent length of straight
pipe and all fittings is

Le = 2000 + 351.67 = 2351.67 ft

Previous Page
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TABLE 3.5 Equivalent Lengths
of Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

The pressure drop due to friction in the preceding piping system can
now be calculated based on 2351.67 ft of pipe. It can be seen in this
example that the valves and fittings represent roughly 15 percent of
the total pipeline length. In plant piping this percentage may be higher
than that in a long-distance water pipeline. Hence, the reason for the
term minor losses.

Another approach to accounting for minor losses is using the resis-
tance coefficient or K factor. The K factor and the velocity head ap-
proach to calculating pressure drop through valves and fittings can be
analyzed as follows using the Darcy equation. From the Darcy equation,
the pressure drop in a straight length of pipe is given by

h = f
L
D

V 2

2g
(3.32)

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and Eq. (3.32) then becomes

h = K
V 2

2g
(3.33)

In Eq. (3.33), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head V 2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
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be represented by K(V 2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 3.6. It can be seen that the K factor depends on the
nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.

From Table 3.6, it can be seen that a 6-in gate valve has a K factor
of 0.12, while a 20-in gate valve has a K factor of 0.10. However, both
sizes of gate valves have the same equivalent length–to–diameter ratio
of 8. The head loss through the 6-in valve can be estimated to be 0.12
(V 2/2g) and that in the 20-in valve is 0.10 (V 2/2g). The velocities in
both cases will be different due to the difference in diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

V6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 20-in valve will be ap-
proximately

V6 = 0.4085
1000
19.52 = 1.07 ft/s

Therefore,

Head loss in 6-in gate valve = 0.12(10.89)2

64.4
= 0.22 ft

Head loss in 20-in gate valve = 0.10(1.07)2

64.4
= 0.002 ft

These head losses appear small since we have used a relatively low
flow rate in the 20-in valve. In reality the flow rate in the 20-in valve
may be as high as 6000 gal/min and the corresponding head loss will
be 0.072 ft.

3.7.2 Pipe enlargement and reduction

Pipe enlargements and reductions contribute to head loss that can be
included in minor losses. For sudden enlargement of pipes, the following
head loss equation may be used:

hf = (V1 − V2)2

2g
(3.34)



TABLE 3.6 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72
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D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 3.4 Sudden pipe enlargement and pipe reduction.

where V1 and V2 are the velocities of the liquid in the two pipe sizes D1
and D2, respectively. Writing Eq. (3.34) in terms of pipe cross-sectional
areas A1 and A2,

hf =
(

1 − A1

A2

)2 V 2
1

2g
(3.35)

for sudden enlargement. This is illustrated in Fig. 3.4.
For sudden contraction or reduction in pipe size as shown in Fig. 3.4,

the head loss is calculated from

hf =
(

1
Cc

− 1
)

V 2
2

2g
(3.36)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 3.4.

Gradual enlargement and reduction of pipe size, as shown in Fig. 3.5,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc(V1 − V2)2

2g
(3.37)

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 3.6.
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D1

D1
D2

D2

Figure 3.5 Gradual pipe enlargement and pipe reduction.
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Figure 3.6 Gradual pipe expansion head loss coefficient.

3.7.3 Pipe entrance and exit losses

The K factors for computing the head loss associated with pipe entrance
and exit are as follows

K =



0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

3.8 Sewer Piping Systems

So far we have discussed wastewater pipelines considering pressurized
flow. Water is conveyed from point A to point B starting with a pres-
sure higher than atmospheric. Because of frictional loss in pipe, the
water pressure decreases until it reaches the destination at some mini-
mum pressure sufficient to enter a storage tank. Gravity pipelines and
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open-channel flow pipelines are nonpressurized lines. The head loss at
a certain flow rate occurs due to the elevation change between the up-
stream and downstream ends of the pipeline. Sewer piping systems are
generally nonpressurized gravity flow pipelines. They may run partially
full, as in open-channel flow, or sometimes they run full flow.

Sanitary sewer systems are composed of piping that is used to trans-
port wastewater consisting of residential, commercial, and industrial
waste. Some amount of stormwater, surface water, and groundwater
may also be present in sanitary sewer systems.

Storm sewer systems are composed of those piping systems that carry
only stormwater, surface water, and other waters that are drained into
the storm sewer system. They do not carry residential, commercial, or
industrial wastes.

A combined sewer system consists of a combination of a sanitary
sewer system and a storm sewer system. Thus a combined sewer system
carries both stormwater as well as wastewater.

Infiltration is defined as water that enters a sanitary sewer system
from the ground through pipes, pipe joints, manholes, etc. Inflow is
water that enters a sanitary sewer system from roof leaders, cellars, or
other drains. Additionally, this will include water discharged from cool-
ing systems, manhole covers, catch basins, storm sewers, and surface
runoff. Exfiltration occurs when the wastewater from the sewer system
flows out through pipe joints, cracks, etc., into the surrounding soil.

3.9 Sanitary Sewer System Design

In designing a sanitary sewer system we must first correctly estimate
the quantity of wastewater that will be flowing through the system.
The water consumed by residential and industrial facilities does not all
end up in the sewer system. Part of the water consumed is lost into the
ground when used for landscaping, car washing, etc. The average per
capita water consumption in residential units ranges between 40 and
120 gal/day. Table 3.7 lists typical wastewater flow rates from residen-
tial sources.

Commercial and industrial sewage flow rates depend upon the type of
activity and industry. Table 3.8 shows average commercial wastewater
flows.

Several local, state, and federal regulations exist for designing sani-
tary sewer systems. The American Society of Civil Engineers’ (ASCE)
Manual of Engineering Practice, #37, Design and Construction of San-
itary and Storm Sewers, must be consulted when designing sanitary
sewer systems.

Sewer systems are generally designed as gravity flow systems with
a free water surface. This means that the sewer pipe may run full
or partially full so that there is an air space above the water level.
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TABLE 3.7 Typical Wastewater Flow Rates from Residential Units

Flow rate

Range, Typical
Source Unit gal/day gal/day

Apartment
High-rise Person 35–75 50
Low-rise Person 50–80 65

Hotel Guest 30–55 45
Individual residence

Typical home Person 45–90 70
Better home Person 60–100 80
Luxury home Person 75–150 95
Older home Person 30–60 45
Summer cottage Person 25–50 40

Motel
With kitchen Unit 90–180 100
Without kitchen Unit 75–150 95

Trailer park Person 30–50 40

This is known as open-channel flow. The advantage of open-channel
flow includes ventilation of the sewer and maintenance of good veloci-
ties at low flow rates for cleaning the sewers. Pumps are also used to
provide the lift necessary from deep sewer locations to force the sewage
to a higher elevation from which point gravity flow can continue. When
a sanitary sewer system is flowing full, minimum velocities range from
2 to 2.5 ft/s (0.6 to 0.75 m/s). Storm sewers generally have a minimum
velocity range of 3 to 3.5 ft/s (1.0 to 1.2 m/s). The minimum velocity is
required to prevent deposition of solids on the pipe wall. The velocity
of flow ensures the solids will remain in suspension and move with the
water. There is also a maximum velocity that must not be exceeded to
prevent erosion of the sewer pipe. The maximum velocity is in the range
of 9 to 10 ft/s (3 to 3.5 m/s) for both sanitary sewers and storm sewers.

Since sewer flow is open-channel flow, we can use the Manning equa-
tion for calculating the flows and pressure loss in sewer piping. The term

TABLE 3.8 Average Commercial Wastewater Flow

Average flow,
Type of establishment gal/day per capita

Stores, offices, and small businesses 12–25
Hotels 50–150
Motels 50–125
Drive-in theaters (3 persons per car) 8–10
Schools, no showers, 8 h 8–35
Schools with showers, 8 h 17–25
Tourists and trailer camps 80–120
Recreational and summer camps 20–25
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slope is used to describe the hydraulic energy gradient in the sewer pip-
ing. The slope is a dimensionless parameter that can be referred to as
ft/ft, m/m, or as a percentage. For example, the slope may be referred
to as 0.003 ft/ft or 0.3 percent. It is also equal to the geometrical slope
or gradient of the sewer pipe.

The Manning equation uses the Manning index n, or roughness coeffi-
cient, which depends on the type and internal condition of the pipe. The
value of n ranges from 0.01 for smooth surfaces to 0.10 for rough sur-
faces. For sewer design, generally the Manning roughness coefficient of
0.013 is used. For older sewer pipes, a value of 0.015 may be used.

The general form of the Manning equation for open-channel flow is
as follows:

V = 1.486
n

R2/3S1/2 (3.38)

where V = average velocity of flow, ft/s
n = roughness coefficient, dimensionless
R = hydraulic radius = (wetted cross-sectional area /

wetted perimeter), ft [for a circular pipe flowing full,
R = (π D2/4)/(π D) = D/4]

S= slope of hydraulic energy gradient, ft/ft

In SI units, the Manning equation is

V = 1
n

R2/3S1/2 (3.39)

where V = average velocity of flow, m/s
n = roughness coefficient, dimensionless
R = hydraulic radius = (wetted cross-sectional area/

wetted perimeter), m [for a circular pipe flowing full,
R = (π D2/4)/(π D) = D/4]

S= slope of hydraulic energy gradient, m/m

Since, in general, we are dealing with sewer flow rates in ft3/s and
not velocities, Eqs. (3.38) and (3.39) are converted to the equivalent in
flow rates for circular pipe as follows:

Q = 0.463
n

D8/3S1/2 (3.40)

where Q = flow rate, ft3/s
n = roughness coefficient, dimensionless
D = inside diameter of pipe, ft
S= slope of hydraulic energy gradient, ft/ft
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In SI units, the Manning equation is expressed as follows:

Q = 0.312
n

D8/3S1/2 (3.41)

where Q = flow rate, m3/s
n = roughness coefficient, dimensionless
D = inside diameter of pipe, m
S= slope of hydraulic energy gradient, m/m

Another form of the Manning equation for calculating the slope S for
full flow of circular pipes is as follows:

S = 0.466
D16/3 n2 Q2 (3.42)

and in SI units as follows

S = 10.27
D16/3 n2 Q2 (3.43)

All symbols are as defined previously.
It can be seen from the Manning equation that the slope of the sewer

S, which represents the energy grade line, is directly proportional to the
flow velocity or flow rate. Thus for a given pipe, flowing full, as the flow
rate increases, the slope increases. In other words, as the physical slope
of the sewer pipe is increased from, say, 1 in 500 to 1 in 200, the flow
velocity and hence the flow rate increases. When the pipe is not flowing
full, the hydraulic radius R has to be calculated based on the actual
wetted area and the wetted perimeter. Figure 3.7 shows a partially full
sewer pipe.

It can be seen from Fig. 3.7 that there is a relationship between
the water depth d, the pipe diameter D, and the included angle θ , as

q

d

D

Figure 3.7 Partially full sewer pipe.
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follows:

cos
(

θ

2

)
= D/2 − d

D/2
= 1 − 2d

D
(3.44)

The wetted area A is calculated from

A = π D2

4

(
θ

360

)
− 1

2

(
D2

4

)
sin θ = π D2

4

(
θ

360
− sin θ

2π

)
(3.45)

and the wetted perimeter P is

P = θ

360
π D (3.46)

Finally the hydraulic radius R for the partially full sewer flow is calcu-
lated from

R = A
P

= D
4

[
1 − 180

π

(
sin θ

θ

)]
(3.47)

Table 3.9 shows the values of the wetted area ratio, wetted perimeter
ratio, and the hydraulic radius ratio for circular pipes at various flow
depths to pipe diameter ratio d/D, calculated using Eqs. (3.44) through
(3.47). These ratios relate to the corresponding values for full pipe flow
as illustrated in the following sample calculation.

It can be seen from Table 3.9 that at a water depth of 70 percent
(d/D = 0.70), the hydraulic radius is 1.185 times that at full flow.

hydraulic radius at 70% depth = 1.185 × D
4

= 0.2963D

TABLE 3.9 Hydraulic Radius for Partially Full Circular Pipes

Wetted area Wetted perimeter Hydraulic radius
d/D Angle θ ratio ratio ratio

0.1 73.7398 0.0520 0.2048 0.2539
0.2 106.2602 0.1423 0.2952 0.4822
0.3 132.8437 0.2523 0.3690 0.6837
0.4 156.9261 0.3735 0.4359 0.8569
0.5* 180.0001 0.5000 0.5000 1.0000
0.6 203.0740 0.6265 0.5641 1.1106
0.7 227.1564 0.7477 0.6310 1.1850
0.8 253.7399 0.8577 0.7048 1.2168
0.9 286.2603 0.9480 0.7952 1.1922
1.0 360.0001 1.0000 1.0000 1.0000

*At d/D = 0.5, wetted area = 0.5 × 0.7854 × D × D; wetted perimeter = 0.5 ×
3.14159 × D; hydraulic radius = 0.25 ×D = 1.00 × D/4.
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Similarly, at 70 percent depth, from Table 3.9 the corresponding wetted
area of flow is calculated as follows:

Wetted area at 70% depth = 0.7477 × (0.7854D2) = 0.5872D2

In a particular sewer piping with a given slope S, when flowing full,
the Manning equation can be used to calculate the velocity of flow V
and the flow rate Q. When the same sewer pipe (with the same slope S)
is flowing partly full, the hydraulic radius is less and hence the flow
rate Qp is less. The partly full flow results in a velocity of flow of Vp.
However, under both conditions, we must ensure the velocity is suffi-
cient for the sewer to be self-cleansing. Thus the slope of the sewer must
be checked for both conditions to ensure that this cleansing velocity re-
quirement is met. The self-cleansing velocity is 2 ft/s to 2.5 ft/s (0.6 m/s to
0.75 m/s).

When pipes are flowing full, we can calculate the slope for a given
flow rate very easily using the Manning equations previously discussed.
Many times sewer pipes do not run full. The ratio of the depth of flow
d to the pipe inside diameter D is an important parameter that relates
to various other dimensionless parameters in partly full sewer pipes.
Figure 3.8 shows the variation of d/D with other critical parameters
such as velocity ratio and flow ratio.

Upon examining Fig. 3.8 it can be seen that, when the sewer depth
is 50 percent or d/D = 0.5, the ratio of the partially full flow rate to
the full pipe flow rate (Q/Q f ) is approximately 0.40. This is true, if
the Manning roughness coefficient n is considered to be variable with
depth. On the other hand, if n is assumed constant, the ratio Q/Q f
becomes 0.50.

Consider now the sewer to be 70 percent full, or d/D = 0.7. From
Fig. 3.8 we find that the flow rate ratios are

Q
Q f

=
{

0.70 approximately for variable n
0.85 approximately for constant n

Figure 3.8 is very useful for calculations of partially full sewer pipes.
We will illustrate this with several examples.

Example 3.14 A sewer pipe system is constructed of NPS 12 (0.3125-in
wall thickness) pipe. Assuming the pipe is flowing full at 700 gal/min, cal-
culate the slope of the energy gradient using the Manning equation with
n = 0.013.

(a) If this pipe were flowing half full, what is the discharge rate and
velocity?

(b) If the slope is changed to 0.005, what is the effect?
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Figure 3.8 Hydraulic ratios of circular sewer pipes. (Courtesy: McGraw-Hill, Water and
Wastewater Calculations Manual, Shun Dar Lin, 2001. Reproduced by permission.)

Solution

(a) We first calculate the pipe inside diameter:

D = 12.75 − 2 × 0.3125 = 12.125 in = 12.125
12

= 1.0104 ft

Discharge rate Q = 700 × 1
7.4805 × 60

= 1.5596 ft3/s

Using the Manning equation (3.40), we get

1.5596 = 0.463
0.013

× (1.0104)8/3 × S1/2

Solving for S, we get

S =
[

1.5596 × 0.013
0.463 × (1.0104)8/3

]2
= 0.0018 ft/ft

Therefore, the slope of the energy gradient is 0.0018 ft/ft or 0.18 percent.
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The average velocity is

V = 1.5596
0.7854(1.0104)2

= 1.95 ft/s

If the pipe were flowing half full, then d/D = 0.50. From Fig. 3.8 we get

Q
Q f

= 0.4 to 0.5

depending on whether n is constant or variable with depth.
Assuming a constant n value, from Fig. 3.8, we get

Q
Q f

= 0.4

and the velocity ratio is

V
Vf

= 0.8

Therefore, when the pipe is flowing half full, the discharge is

Q = 0.4 × 700 = 280 gal/min

and the average velocity is

V = 0.8 × 1.95 = 1.56 ft/s

Since this velocity is less than 2 ft/s, self-cleansing will not occur. Either the
flow rate or slope should be increased to ensure a velocity of at least 2 ft/s for
self-cleansing.

(b) If the slope is changed to 0.005 for the half-full condition, we first cal-
culate the full flow value of discharge at the higher slope. Since discharge is
proportional to the square root of the slope, from the Manning equation, the
new discharge is proportional to the square root of the slope. The new full
flow discharge at a slope of 0.005 is

Q f =
(

0.005
0.0018

)1/2

× 700 = 1166.7 gal/min = 2.60 ft3/s

For the half-full condition, we have d/D = 0.5. From Fig. 3.8, we get

Q
Q f

= 0.4

and the velocity ratio is

V
Vf

= 0.8

Then the full flow velocity is

Vf = 2.60
0.7854 × (1.0104)2

= 3.24 ft/s
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Therefore, the discharge for the half-full condition is

Q = 0.4 × 2.60 = 1.04 ft3/s = 467 gal/min

and the velocity is

V = 0.8 × 3.24 = 2.59 ft/s

Thus, at the higher slope of 0.005, at half depth, the velocity is high enough
for self-cleansing.

Example 3.15 A sewer pipe with a 750-mm outside diameter (20-mm wall
thickness) is flowing full at 2000 m3/h. Assume n = 0.013.

(a) What is the slope of the energy gradient?

(b) Calculate the depth of flow and flow velocity when discharging at
1200 m3/h.

(c) Calculate the flow velocities in both cases.

Solution

(a) The diameter is

D = 750 − 40 = 710 mm

The discharge rate is

Q = 2000 m3/h = 2000
3600

m3/s

Using the full pipe flow version of the Manning equation (3.41),

2000
3600

= 0.312
0.013

× (0.71)8/3 × S1/2

Solving for the slope S we get

S = 0.0033 m/m

Therefore, the slope of the energy gradient is 0.0033 m/m or 0.33 percent.

(b) When discharge drops to 1200 m3/h, the ratio

Q
Q f

= 1200
2000

= 0.6

Assuming n is a constant, from Fig. 3.8, we get d/D = 0.55. Hence,

Depth of flow = 0.55 × 710 = 391 mm

If n is considered variable with depth, we get d/D = 0.63, or

Depth of flow = 0.63 × 710 = 447 mm
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(c) Flow velocities are calculated for cases (a) and (b) as follows. For case
(a), full flow in the pipe at 2000 m3/h, the velocity is

V =
2000/

3600
0.7854 × (0.71)2

= 1.40 m/s

In case (b), discharging at 1200 m3/h, we calculated a depth ratio of d/D =
0.55 when n is a constant, and from Table 3.9 the wetted area ratio is 0.5633
by interpolation. Therefore the velocity in this partly full sewer pipe is

V =
1200/

3600
0.5633 × 0.7854 × (0.71)2

= 1.49 m/s

And, in case (b) where n is variable and d/D = 0.63, from Table 3.9 the wetted
area ratio is 0.663 by interpolation. Then

V =
1200/

3600
0.663 × 0.7854 × (0.71)2

= 1.27 m/s

Therefore, in summary,

(a) The slope of the energy gradient is 0.0033 m/m or 0.33 percent.

(b) The depth of flow when discharging at 1200 m3/h is 391 mm if the
roughness coefficient n is constant or 447 mm if the roughness coefficient n
is variable with depth.

(c) For case (a) the flow velocity at 2000 m3/h discharge is 1.4 m/s. For
case (b) the flow velocities are 1.49 and 1.27 m/s at 1200 m3/h discharge,
respectively for depths of 391 and 447 mm.

Example 3.16 A 24-in-diameter concrete pipe is used as a sewer and has
a slope of 2 in 1000. The depth of the liquid in the pipe is 11 in. What are
the discharge rate and the average velocity using the Manning equation?
Use n = 0.013. Will this system produce a sufficient flow velocity for self-
cleansing?

Solution The pipe diameter is

D = 24 in

The slope is

S = 2
1000

= 0.002 ft/ft

The depth of liquid to the pipe diameter ratio is

d
D

= 11
24

= 0.4583
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For this ratio from Table 3.9 we get by interpolation a hydraulic radius of

R = 0.9403 × 24
4

= 5.642 in

and a wetted area of flow,

A = 0.4472 ×
(

0.7854 × 242

144

)
= 1.405 ft2

Using the Manning equation (3.38), we get the average velocity of flow as

V = 1.486
0.013

×
(

5.642
12

)2/3

(0.002)1/2 = 3.09 ft/s

The discharge rate Q is given by

Q = average velocity × area of flow = 3.09 × 1.405 = 4.34 ft3/s

Since the velocity of 3.09 ft/s is greater than the minimum 2 ft/s required
for self-cleansing, we can state that this flow will cause self-cleansing of the
sewer pipe.

3.10 Self-Cleansing Velocity

Since sanitary sewers contain suspended solids that may deposit on
the pipe wall, some minimum velocity is desirable to keep the solid
particles suspended and in motion. This velocity that is necessary to
prevent deposition of solids is known as the self-cleansing velocity. For
a pipe flowing full, the ASCE formula for the self-cleansing velocity is
as follows:

V = 1.486R1/6

n
[B(Sg − 1)Dp]1/2 (3.48)

or

V =
[

8B
f

g(Sg − 1)Dp

]1/2

(3.49)

where V = average flow velocity, ft/s
R = hydraulic radius, ft
n = roughness coefficient, dimensionless
B = dimensionless constant (0.04 to 0.8)

Sg = specific gravity of particle
Dp = diameter of particle, ft

f = friction factor, dimensionless
g = acceleration due to gravity, ft/s2
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In SI units

V = R1/6

n
[B(Sg − 1)Dp]1/2 (3.50)

or

V =
[

8B
f

g (Sg − 1)Dp

]1/2

(3.51)

where V = average flow velocity, m/s
R = hydraulic radius, m
n = roughness coefficient, dimensionless
B = dimensionless constant (0.04 to 0.8)

Sg = specific gravity of particle
Dp = diameter of particle, m

f = friction factor, dimensionless
g = acceleration due to gravity, m/s2

Figure 3.9 shows a graph that can be used for determining the self-
cleansing velocity of partly full sewer pipes. Reviewing this figure, it
can be seen that if the d/D ratio is 0.5 corresponding to the flow ratio
of 0.4, the slope ratio for self-cleansing is

S
Sf

= 1.8 approximately

and the velocity ratio is

V
Vf

= 0.8 approximately

Therefore, if the full flow velocity is 3 ft/s and the slope is 0.0003, the
corresponding velocity and slope for an equal self-cleansing property at
50 percent depth are

V = 0.8 × 3 = 2.4 ft/s

and

S = 1.8 × 0.0003 = 0.0005

Example 3.17 A concrete sewer pipe is laid on a slope of 1 in 350 and carries
a flow rate of 0.25 m3/s. The flow is 70 percent full. What minimum diameter
is required? Calculate the flow velocity and compare it with the minimum
velocity required for self-cleansing. Use n = 0.013.
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Figure 3.9 Self-cleansing velocity of partly full sewers. (Courtesy: McGraw-Hill,
Water and Wastewater Calculations Manual, Shun Dar Lin, 2001. Reproduced
by permission.)

Solution

Slope = 1
350

= 0.0029 m/m

Flow rate Q = 0.25 m3/s

Since the depth is 70 percent, d/D = 0.7. From Table 3.9, the hydraulic
radius ratio is

R = 1.185 × D
4

= 0.2963D

where D is the pipe inside diameter.
The area of flow from Table 3.9 is

A = 0.7477 × π

4
× D2 = 0.5872D2

Using the Manning equation, we get

Q = 0.5872D2 × 1
n

× (0.2963D)2/3(0.0029)1/2
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or

0.25 = 1.0811 × D8/3

Solving for diameter,

D =
(

0.25
1.0811

)3/8

= 0.5775 m

Using 600-mm diameter pipe, we calculate the velocity of flow as

V = 0.25
0.5872D2

= 1.277 m/s

This is greater than the 0.6 to 0.75 m/s needed for self-cleansing.

Example 3.18 The sewer pipeline shown in Fig. 3.10 consists of four main
pipes: AB, BC, CD, and DE. Lateral pipes FB, GC, and HD bring the waste-
water in from three sources F, G, and H. The slopes of the pipes are as follows:

Pipe Slope

AB 0.003
BC 0.002
CD 0.002
FB 0.003
GC 0.003
HD 0.002

Assume n = 0.013 and there is full flow in pipes AB, FB, GC, and HD.

(a) Calculate the pipe size required for section BC.

(b) Calculate the flow rates and sewage depth in section CD.

(c) Determine the slope required for full flow in section DE.

Solution

(a) Using the Manning equation we will calculate the flow through each
pipe AB, FB, BC, GC, and CD.

F G H

6 in 8 in 10 in

A B C D E12 in 18 in 20 in

Figure 3.10 Sewer pipeline with branches.
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Pipe AB

Area A = 0.7854 ×
(

12
12

)2

= 0.7854 ft2

Discharge QAB = 0.7854 × 1.486
0.013

× (0.25)2/3 × (0.003)1/2 = 1.9513 ft3/s

Pipe FB

Area A = 0.7854 ×
(

6
12

)2

= 0.1964 ft2

Hydraulic radius R = D
4

= 6
4 × 12

= 0.125 ft

Discharge QFB = 0.1964 × 1.486
0.013

× (0.125)2/3 × (0.003)1/2

= 0.3074 ft3/s

Pipe BC

Flow QBC = QAB + QFB = 1.95 + 0.3074 = 2.26 ft3/s

Assuming full flow in pipe BC, we can calculate the diameter using the Man-
ning formula as

2.26 = 0.7854D2 × 1.486
0.013

(
D
4

)2/3

(0.002)1/2

Solving for diameter D we get

D8/3 = 1.4185 or D = 1.14 ft(13.68 in)

Therefore, use NPS 16 diameter pipe.

Pipe GC

Area A = 0.7854 ×
(

8
12

)2

= 0.3491 ft2

Hydraulic radius R = D
4

= 8
4 × 12

= 0.1667 ft

Discharge QGC = 0.3491 × 1.486
0.013

× (0.1667)2/3 × (0.003)1/2

= 0.662 ft3/s



174 Chapter Three

Pipe CD

Flow QCD = QGC + QBC = 0.662 + 2.26 = 2.922 ft3/s

Area A = 0.7854 ×
(

18
12

)2

= 1.7672 ft2

Hydraulic radius R = 18
4 × 12

= 0.375 ft

For full flow in pipe CD, using the Manning formula, we get

Q f = 1.7672 × 1.486
0.013

(
0.375
)2/3 (

0.002
)1/2 = 4.684 ft3/s

Therefore, the flow ratio is

Q
Q f

= 2.922
4.684

= 0.6238

From Fig. 3.8 for this flow ratio, we get the depth ratio d/D = 0.64.

Sewage depth in CD = 0.64 × 18 = 11.52 in

Pipe HD

Area A = 0.7854 ×
(

10
12

)2

= 0.5454 ft2

Hydraulic radius R = D
4

= 10
48

= 0.2083 ft

Discharge QHD = 0.5454 × 1.486
0.013

× (0.2083)2/3 × (0.002)1/2

= 0.98 ft3/s

Pipe DE

Flow QDE = QHD + QCD = 0.98 + 2.922 = 3.90 ft3/s

Area A = 0.7854 ×
(

20
12

)2

= 2.1817 ft2

Hydraulic radius R = 18
4 × 12

= 0.375 ft

The requirement for pipe DE is to maintain full flow. The slope required for
this is calculated from the Manning equation as follows:

3.9 = 2.1817 × 1.486
0.013

× (0.375)2/3 × (S)1/2

Solving for slope S, we get

S = 0.0009
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Therefore, in summary,

(a) The pipe size required for section BC is 13.68-in inside diameter. Use
NPS 16.

(b) The flow rate in section CD is 2.92 ft3/s, and the sewage depth in CD is
11.52 in (64 percent).

(c) The slope required for full flow in section DE is 0.0009 ft/ft or 0.09
percent.

3.11 Storm Sewer Design

Stormwater piping design is similar to sanitary sewer design as far as
determining the slope required for a given discharge volume using the
Manning equation. However, the determination of the design flow to be
used is different. Stormwater runoff and surface water resulting from
precipitation, such as from rainfall or snow, are collected and trans-
ported through storm drains and storm sewer systems.

3.11.1 Time of concentration

An important parameter related to storm sewer design is the time of
concentration. This is defined as the time taken for rainwater to flow
from the most remote area of a drainage site to the storm drain inlet.
The time taken from the storm drain inlet to the storm sewer through a
branch sewer is added to the time taken for the rainwater to flow from
the remote area to the inlet to obtain the total time of concentration. If
ti represents the inlet time from the remote location and ts is the time
of flow through the branch sewer, the total time is

t = ti + ts (3.52)

The inlet time ti, also known as the time of overland flow, depends upon
the distance of the remote location of the storm drain inlet, the slope
of the land, and the rainfall intensity in inches per hour. In addition, a
coefficient, which depends upon the surface condition, such as whether
it is a paved or nonpaved area, is used to account for the type of drainage
land. The inlet time is calculated from the following equation:

ti = C
(

L
S

i2
)1/3

(3.53)

where ti = inlet time, min
C = coefficient, ranges from 0.5 to 2.5
L = distance of flow from remote point to sewer inlet, ft
i = rainfall intensity, in/h
S= land slope, ft/ft
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TABLE 3.10 Runoff Coefficient

Flat slope Rolling slope Hilly slope
Surface type (<2%) (2%–10%) (>10%)

Pavements, roofs 0.90 0.90 0.90
City business surface 0.80 0.85 0.85
Dense residential areas 0.60 0.65 0.70
Suburban residential areas 0.45 0.50 0.55
Unpaved areas 0.60 0.65 0.70
Grassed areas 0.25 0.30 0.30
Cultivated land, clay 0.50 0.55 0.60
Cultivated land, loam 0.50 0.55 0.60
Cultivated land, sand 0.25 0.30 0.35
Meadows and pasture lands 0.25 0.30 0.35
Forest and wooded areas 0.10 0.15 0.20

The coefficient C is equal to 0.5 for paved areas, 1.0 for bare earth, and
2.5 for turf.

3.11.2 Runoff rate

The rate of runoff of stormwater designated as Q ft3/s is related to the
drainage area A and the intensity of rainfall i as follows:

Q = Ci A (3.54)

where Q = stormwater runoff rate, ft3/s
C = runoff coefficient, dimensionless
i = average rainfall intensity, in/h
A = drainage area, acres

In SI units, Eq. (3.54) is

Q = 10 Ci A (3.55)

where Q = stormwater runoff rate, m3/h
C = runoff coefficient, dimensionless
i = average rainfall intensity, mm/h
A = drainage area, hectares

The coefficient of runoff C for various surfaces is given in Table 3.10. It
ranges from 0.1 for forest and wooded areas to 0.9 for pavements and
roofs.

Example 3.19 Calculate the maximum stormwater runoff rate for a rolling
suburban residential area of 1200 acres if the rainfall intensity duration is
5 in/h for a 20-min duration storm of 25 years.

Solution From Table 3.10 we determine the runoff coefficient as

C = 0.50

Next Page



Wastewater and Stormwater Piping 177

The runoff rate Q is calculated using Eq. (3.54) as

Q = 0.5 × 5 × 1200 = 3000 ft3/s

The maximum runoff rate is 3000 ft3/s.

Example 3.20 Consider a drainage system with two pipe sections AB and
BC terminating at C, the inlet point to a storm sewer pipe. Section AB is
a 1200-ft-long piece of 12-in pipe with a slope of 0.002 ft/ft. Section BC is a
1000-ft-long, 20-in-diameter pipe with a slope of 0.003 ft/ft. The roughness
coefficient may be assumed to be 0.013. Assuming the pipes are running full,
calculate the velocity in each pipe and the time of concentration. The flow
from the most remote location in the drainage area can be considered to take
10 min to reach the entry to the sewer pipe at A.

Solution For pipe AB, the velocity of full flow in the pipe is calculated by
using Eq. (3.38) as follows:

V = 1.486
0.013

×
(

D
4

)2/3

(S)1/2

or

VAB = 1.486
0.013

×
(

12
12 × 4

)2/3

(0.002)1/2 = 2.03 ft/s

Similarly, the average flow velocity in section BC is

VBC = 1.486
0.013

×
(

20
12 × 4

)2/3

(0.003)1/2 = 3.49 ft/s

The time of flow for pipe section AB is

tAB = distance
velocity

= 1200
2.03 × 60

= 9.85 min

And the time of flow for section BC is

tBC = 1000
3.49 × 60

= 4.78 min

Therefore, the time of concentration for the runoff to flow from the most
remote area to point C is

10 + 9.85 + 4.78 = 24.63 min

3.12 Complex Piping Systems

In this section we continue with some additional piping configurations
that are mostly used in pressurized flow of wastewater pipelines. Some
of this discussion will also apply to pressurized sewer systems that have
multiple-size pipes connected together. Complex piping systems include
pipes of different diameters in series and parallel configuration.

Previous Page
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L1

D1 D2 D3

L2 L3

Figure 3.11 Series piping.

3.12.1 Series piping

Series piping in its simplest form consists of two or more different pipe
sizes connected end to end as illustrated in Fig. 3.11. Pressure drop
calculations in series piping may be handled in one of two ways. The
first approach would be to calculate the pressure drop in each pipe
size and add them together to obtain the total pressure drop. Another
approach is to consider one of the pipe diameters as the base size and
convert other pipe sizes into equivalent lengths of the base pipe size. The
resultant equivalent lengths are added together to form one long piece
of pipe of constant diameter equal to the base diameter selected. The
pressure drop can now be calculated for this single-diameter pipeline. Of
course, all valves and fittings will also be converted to their respective
equivalent pipe lengths using the L/D ratios from Table 3.5.

Consider three sections of pipe joined together in series. Using sub-
scripts 1, 2, and 3 and denoting the pipe length as L, inside diameter
as D, flow rate as Q, and velocity as V, we can calculate the equivalent
length of each pipe section in terms of a base diameter. This base diam-
eter will be selected as the diameter of the first pipe section D1. Since
equivalent length is based on the same pressure drop in the equiva-
lent pipe as the original pipe diameter, we will calculate the equivalent
length of section 2 by finding that length of diameter D1 that will match
the pressure drop in a length L2 of pipe diameter D2. Using the Darcy
equation and converting velocities in terms of flow rate from Eq. (3.11),
we can write

Head loss = f (L/D)(0.4085Q/D2)2

2g
(3.56)

For simplicity, assuming the same friction factor,
Le

D 5
1

= L2

D 5
2

(3.57)

Therefore, the equivalent length of section 2 based on diameter D1 is

Le = L2

(
D1

D2

)5

(3.58)

Similarly, the equivalent length of section 3 based on diameter D1 is

Le = L3

(
D1

D3

)5

(3.59)
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The total equivalent length of all three pipe sections based on diameter
D1 is therefore

Lt = L1 + L2

(
D1

D2

)5

+ L3

(
D1

D3

)5

(3.60)

The total pressure drop in the three sections of pipe can now be calcu-
lated based on a single pipe of diameter D1 and length Lt.

Example 3.21 Three pipes with 14-, 16-, and 18-in diameters, respectively,
are connected in series with pipe reducers, fittings, and valves as follows:

14-in pipeline, 0.250-in wall thickness, 2000 ft long

16-in pipeline, 0.375-in wall thickness, 3000 ft long

18-in pipeline, 0.375-in wall thickness, 5000 ft long

One 16 × 14 in reducer

One 18 × 16 in reducer

Two 14-in 90◦ elbows

Four 16-in 90◦ elbows

Six 18-in 90◦ elbows

One 14-in gate valve

One 16-in ball valve

One 18-in gate valve

(a) Use the Hazen-Williams equation with a C factor of 140 to calculate the
total pressure drop in the series water piping system at a flow rate of 3500
gal/min. Flow starts in the 14-in piping and ends in the 18-in piping.

(b) If the flow rate is increased to 6000 gal/min, estimate the new total
pressure drop in the piping system, keeping everything else the same.

Solution

(a) Since we are going to use the Hazen-Williams equation (3.26), the pipes
in series analysis will be based on the pressure loss being inversely propor-
tional to D4.87, where D is the inside diameter of pipe, per Eq. (3.26).

We will first calculate the total equivalent lengths of all 14-in pipe, fittings,
and valves in terms of the 14-in-diameter pipe. Equivalent lengths are from
Table 3.5.

Straight pipe: 14 in, 2000 ft = 2000 ft of 14-in pipe

Two 14-in 90◦ elbows = 2 × 30 × 14
12

= 70 ft of 14-in pipe

One 14-in gate valve = 1 × 8 × 14
12

= 9.33 ft of 14-in pipe

Therefore, the total equivalent length of 14-in pipe, fittings, and valves =
2079.33 ft of 14-in pipe.
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Similarly we get the total equivalent length of 16-in pipe, fittings, and
valve as follows:

Straight pipe: 16-in, 3000 ft = 3000 ft of 16-in pipe

Four 16-in 90◦ elbows = 4 × 30 × 16
12

= 160 ft of 16-in pipe

One 16-in ball valve = 1 × 3 × 16
12

= 4 ft of 16-in pipe

Therefore, the total equivalent length of 16-in pipe, fittings, and valve =
3164 ft of 16-in pipe.

Finally, we calculate the total equivalent length of 18-in pipe, fittings, and
valve as follows:

Straight pipe: 18-in, 5000 ft = 5000 ft of 18-in pipe

Six 18-in 90◦ elbows = 6 × 30 × 18
12

= 270 ft of 18-in pipe

One 18-in gate valve = 1 × 8 × 18
12

= 12 ft of 18-in pipe

Therefore, the total equivalent length of 18-in pipe, fittings, and valve =
5282 ft of 18-in pipe.

Next we convert all the preceding pipe lengths to the equivalent 14-in pipe
based on the fact that the pressure loss is inversely proportional to D4.87,
where D is the inside diameter of pipe.

2079.33 ft of 14-in pipe = 2079.33 ft of 14-in pipe

3164 ft of 16-in pipe = 3164 ×
(

13.5
15.25

)4.87

= 1748 ft of 14-in pipe

5282 ft of 18-in pipe = 5282 ×
(

13.5
17.25

)4.87

= 1601 ft of 14-in pipe

Therefore adding all the preceding lengths we get

Total equivalent length in terms of 14-in pipe = 5429 ft of 14-in pipe

We still have to account for the 16 × 14 in and 18 × 16 in reducers. The
reducers can be considered as sudden enlargements for the approximate cal-
culation of the head loss, using the K factor and velocity head method. For
sudden enlargements, the resistance coefficient K is found from

K =
[

1 −
(

d1

d2

)2
]2

(3.61)

where d1 is the smaller diameter and d2 is the larger diameter.
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For the 16 × 14 in reducer,

K =
[

1 −
(

13.5
15.25

)2
]2

= 0.0468

and for the 18 × 16 in reducer,

K =
[

1 −
(

15.25
17.25

)2
]2

= 0.0477

The head loss through the reducers will then be calculated based on
K(V 2/2g).

Flow velocities in the three different pipe sizes at 3500 gal/min will be
calculated using Eq. (3.11):

Velocity in 14-in pipe: V14 = 0.4085 × 3500
(13.5)2

= 7.85 ft/s

Velocity in 16-in pipe: V16 = 0.4085 × 3500
(15.25)2

= 6.15 ft/s

Velocity in 18-in pipe: V18 = 0.4085 × 3500
(17.25)2

= 4.81 ft/s

The head loss through the 16 × 14 in reducer is

h1 = 0.0468
7.852

64.4
= 0.0448 ft

and the head loss through the 18 × 16 in reducer is

h1 = 0.0477
6.152

64.4
= 0.028 ft

These head losses are insignificant and hence can be neglected in comparison
with the head loss in straight length of pipe. Therefore, the total head loss in
the entire piping system will be based on a total equivalent length of 5429 ft
of 14-in pipe.

Using the Hazen-Williams equation the pressure drop at 3500 gal/min is

h = 10,460

(
3500
140

)1.852

× 1.0
(13.5)4.87

= 12.70 ft per 1000 ft of pipe

Therefore, for the 5429 ft of equivalent 14-in pipe, the total pressure drop is

h = 12.7 × 5429
1000

= 68.95 ft = 68.95
2.31

= 29.85 psi

(b) When the flow rate is increased to 6000 gal/min, we can use proportions
to estimate the new total pressure drop in the piping as follows:

h =
(

6000
3500

)1.852

× 12.7 = 34.46 ft per 1000 ft of pipe
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Therefore, the total pressure drop in 5429 ft of 14-in pipe is

h = 34.46 × 5429
1000

= 187.09 ft = 187.09
2.31

= 81.0 psi

Example 3.22 Two pipes with 400- and 600-mm diameters, respectively, are
connected in series with pipe reducers, fittings, and valves as follows:

400-mm pipeline, 6-mm wall thickness, 600 m long

600-mm pipeline, 10-mm wall thickness, 1500 m long

One 600 × 400 mm reducer

Two 400-mm 90◦ elbows

Four 600-mm 90◦ elbows

One 400-mm gate valve

One 600-mm gate valve

Use the Hazen-Williams equation with a C factor of 120 to calculate the total
pressure drop in the series water piping system at a flow rate of 250 L/s.
What will the pressure drop be if the flow rate were increased to 350 L/s?

Solution The total equivalent length on 400-mm-diameter pipe is the sum of
the following:

Straight pipe length = 600 m

Two 90◦ elbows = 2 × 30 × 400
1000

= 24 m

One gate valve = 1 × 8 × 400
1000

= 3.2 m

Thus,

Total equivalent length on 400-mm-diameter pipe = 627.2 m

The total equivalent length on 600-mm-diameter pipe is the sum of the
following:

Straight pipe length = 1500 m

Four 90◦ elbows = 4 × 30 × 600
1000

= 72 m

One gate valve = 1 × 8 × 600
1000

= 4.8 m

Thus,

Total equivalent length on 600-mm-diameter pipe = 1576.8 m

Reducers will be neglected since they have insignificant head loss. Convert
all pipe to 400-mm equivalent diameter.

1576.8 m of 600-mm pipe = 1576.8

(
388
580

)4.87

= 222.6 m of 400-mm pipe
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Total equivalent length on 400-mm-diameter pipe = 627.2 + 222.6 = 849.8 m

Q = 250 × 10−3 × 3600 = 900 m3/h

The pressure drop from Eq. (3.31) is

Pm = 1.1101 × 1013
(

900
120

)1.852 1
(388)4.87

= 114.38 kPa/km

Total pressure drop = 114.38 × 849.8
1000

= 97.2 kPa

When the flow rate is increased to 350 L/s, we can calculate the pressure
drop using proportions as follows:

Revised head loss at 350 L/s =
(

350
250

)1.852

× 114.38 = 213.3 kPa/km

Therefore,

Total pressure drop = 213.3 × 0.8498 = 181.3 kPa

3.12.2 Parallel piping

Water pipes in parallel are set up such that the multiple pipes are con-
nected so that water flow splits into the multiple pipes at the beginning
and the separate flow streams subsequently rejoin downstream into
another single pipe as depicted in Fig. 3.12.

Figure 3.12 shows a parallel piping system in the horizontal plane
with no change in pipe elevations. Water flows through a single pipe
AB, and at the junction B the flow splits into two pipe branches BCE
and BDE. At the downstream end at junction E, the flows rejoin to the
initial flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, shown in Fig. 3.12, two main principles of paral-
lel piping must be followed. These are flow conservation at any junction
point and common pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE.

A B E F

C

D

Figure 3.12 Parallel piping.
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Thus,

Q = QBCE + QBDE (3.62)

where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = the incoming flow at junction B

The other requirement in parallel pipes concerns the pressure drop
in each branch piping. Based on this the pressure drop due to friction
in branch BCE must exactly equal that in branch BDE. This is because
both branches have a common starting point (B) and a common ending
point (E). Since the pressure at each of these two points is a unique
value, we can conclude that the pressure drop in branch pipe BCE and
that in branch pipe BDE are both equal to PB − PE, where PB and PE
represent the pressure at the junction points B and E, respectively.

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 3.12, if pipe AB has a diameter of 14 in and branches BCE and
BDE have diameters of 10 and 12 in, respectively, we can find some
equivalent diameter pipe of the same length as one of the branches
that will have the same pressure drop between points B and C as the
two branches. An approximate equivalent diameter can be calculated
using the Darcy equation.

The pressure loss in branch BCE (10-in diameter) can be calculated as

h1 = f (L1/D1)V 2
1

2g
(3.63)

where the subscript 1 is used for branch BCE and subscript 2 for branch
BDE.

Similarly, for branch BDE

h2 = f (L2/D2)V 2
2

2g
(3.64)

For simplicity we have assumed the same friction factors for both
branches. Since h1 and h2 are equal for parallel pipes, and representing
the velocities V1 and V2 in terms of the respective flow rates Q1 and Q2,
using Eq. (3.11) we have the following equations:

f (L1/D1)V 2
1

2g
= f (L2/D2)V 2

2

2g
(3.65)

V1 = 0.4085
Q1

D 2
1

(3.66)

V2 = 0.4085
Q2

D 2
2

(3.67)
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In these equations we are assuming flow rates in gal/min and diameters
in inches.

Simplifying Eqs. (3.65) to (3.67), we get

L1

D1

(
Q1

D 2
1

)2

= L2

D2

(
Q2

D 2
2

)2

or

Q1

Q2
=
(

L2

L1

)0.5(D1

D2

)2.5

(3.68)

Also by conservation of flow

Q1 + Q2 = Q (3.69)

Using Eqs. (3.68) and (3.69), we can calculate the flow through each
branch in terms of the inlet flow Q. The equivalent pipe will be desig-
nated as De in diameter and Le in length. Since the equivalent pipe will
have the same pressure drop as each of the two branches, we can write

Le

De

(
Qe

D 2
e

)2

= L1

D1

(
Q1

D 2
1

)2

(3.70)

where Qe is the same as the inlet flow Q since both branches have
been replaced with a single pipe. In Eq. 3.70 there are two unknowns
Le and De. Another equation is needed to solve for both variables. For
simplicity, we can set Le to be equal to one of the lengths L1 or L2.
With this assumption, we can solve for the equivalent diameter De as
follows.

De = D1

(
Q
Q1

)0.4

(3.71)

Example 3.23 A 10-in water pipeline consists of a 2000-ft section of NPS 12
pipe (0.250-in wall thickness) starting at point A and terminating at point
B. At point B, two pieces of pipe (4000 ft long each and NPS 10 pipe with
0.250-in wall thickness) are connected in parallel and rejoin at a point D.
From D, 3000 ft of NPS 14 pipe (0.250-in wall thickness) extends to point E.
Using the equivalent diameter method calculate the pressures and flow rate
throughout the system when transporting water at 2500 gal/min. Compare
the results by calculating the pressures and flow rates in each branch. Use
the Colebrook-White equation for the friction factor.

Solution Since the pipe loops between B and D are each NPS 10 and 4000 ft
long, the flow will be equally split between the two branches. Each branch
pipe will carry 1250 gal/min.
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The equivalent diameter for section BD is found from Eq. (3.71):

De = D1

(
Q
Q1

)0.4

= 10.25 × (2)0.4 = 13.525 in

Therefore we can replace the two 4000-ft NPS 10 pipes between B and D
with a single pipe that is 4000 ft long and has a 13.525-in inside diameter.

The Reynolds number for this pipe at 2500 gal/min is found from Eq. (3.15):

Re = 3162.5 × 2500
13.525 × 1.0

= 584,566

Considering that the pipe roughness is 0.002 in for all pipes:

Relative roughness
e
D

= 0.002
13.525

= 0.0001

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section BD is [using Eq. (3.20)]

Pm = 71.16
f Q2

D5

= 71.16
0.0147 × (2500)2 × 1

(13.525)5
= 14.45 psi/mi

Therefore,

Total pressure drop in BD = 14.45 × 4000
5280

= 10.95 psi

For section AB we have,

Re = 3162.5 × 2500
12.25 × 1.0

= 645,408

Relative roughness
e
D

= 0.002
12.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section AB is

Pm = 71.16
0.0147 × (2500)2 × 1

(12.25)5
= 22.66 psi/mi

Therefore,

Total pressure drop in AB = 22.66 × 2000
5280

= 8.58 psi

Finally, for section DE we have,

Re = 3162.5 × 2500
13.5 × 1.0

= 585,648

Relative roughness
e
D

= 0.002
13.5

= 0.0001
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From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section DE is

Pm = 71.16
0.0147 × (2500)2 × 1

(13.5)5
= 14.58 psi/mi

Therefore,

Total pressure drop in DE = 14.58 × 3000
5280

= 8.28 psi

Finally,

Total pressure drop in entire piping system = 8.58 + 10.95 + 8.28

= 27.81 psi

Next for comparison we will analyze the branch pressure drops considering
each branch separately flowing at 1250 gal/min.

Re = 3162.5 × 1250
10.25 × 1.0

= 385,671

Relative roughness
e
D

= 0.002
10.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0158. The pressure drop
in section BD is

Pm = 71.16
0.0158 × (1250)2 × 1

(10.25)5
= 15.53 psi/mi

This compares with the pressure drop of 14.45 psi/mi, we calculated using
an equivalent diameter of 13.525. It can be seen that the difference between
the two pressure drops is approximately 7.5 percent.

Example 3.24 A waterline 5000 m long is composed of three sections A, B,
and C. Section A has a 200-mm inside diameter and is 1500 m long. Section
C has a 400-mm inside diameter and is 2000 m long. The middle section B
consists of two parallel pipes each 3000 m long. One of the parallel pipes
has a 150-mm inside diameter and the other has a 200-mm inside diameter.
Assume no elevation change throughout. Calculate the pressures and flow
rates in this piping system at a flow rate of 500 m3/h, using the Hazen-
Williams formula with a C factor of 1.20.

Solution We will replace the two 3000-m pipe branches in section B with a
single equivalent diameter pipe to be determined. Since the pressure drop
according to the Hazen-Williams equation is inversely proportional to the
4.87 power of the pipe diameter, we calculate the equivalent diameter for
section B as follows:

Qe
1.852

De4.87
= Q1

1.852

D1
4.87

= Q2
1.852

D2
4.87
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Therefore,

De

D1
=
(

Qe

Q1

)0.3803

Also Qe = Q1 + Q2 and

Q1

Q2
=
(

D1

D2

)2.63

=
(

150
200

)2.63

= 0.4693

Solving for Q1 and Q2, with Qe = 500, we get

Q1 = 159.7 m3/h and Q2 = 340.3 m3/h

Therefore, the equivalent diameter is

De = D1

(
Qe

Q1

)0.3803

= 150 ×
(

500
159.7

)0.3803

= 231.52 mm

The pressure drop in section A, using the Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(200)4.87

= 970.95 kPa/km

�Pa = 970.95 × 1.5 = 1456.43 kPa

The pressure drop in section B, using the Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(231.52)4.87

= 476.07 kPa/km

�Pb = 476.07 × 3.0 = 1428.2 kPa

The pressure drop in section C, using the Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(400)4.87

= 33.20 kPa/km

�Pc = 33.2 × 2.0 = 66.41 kPa

Therefore,

Total pressure drop of sections A, B, and C = 1456.43 + 1428.20 + 66.41

= 2951.04 kPa

3.13 Total Pressure Required

So far we have examined the frictional pressure drop in water sys-
tems piping consisting of pipe, fittings, valves, etc. We also calculated
the total pressure required to pump water through a pipeline up to a
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delivery station at an elevated point. The total pressure required at
the beginning of a pipeline, for a specified flow rate, consists of three
distinct components:

1. Frictional pressure drop

2. Elevation head

3. Delivery pressure

Pt = Pf + Pelev + Pdel from Eq. (3.25)

The first item is simply the total frictional head loss in all straight pipe,
fittings, valves, etc. The second item accounts for the pipeline elevation
difference between the origin of the pipeline and the delivery termi-
nus. If the origin of the pipeline is at a lower elevation than that of the
pipeline terminus or delivery point, a certain amount of positive pres-
sure is required to compensate for the elevation difference. On the other
hand if the delivery point were at a lower elevation than the beginning
of the pipeline, gravity will assist the flow and the pressure required
at the beginning of the pipeline will be reduced by this elevation differ-
ence. The third component, delivery pressure at the terminus, simply
ensures that a certain minimum pressure is maintained at the delivery
point, such as a storage tank.

For example, if a water pipeline requires 800 psi to take care of fric-
tional losses and the minimum delivery pressure required is 25 psi, the
total pressure required at the beginning of the pipeline is calculated as
follows. If there were no elevation difference between the beginning of
the pipeline and the delivery point, the elevation head (component 2)
is zero. Therefore, the total pressure Pt required is

Pt = 800 + 0 + 25 = 825 psi

Next consider elevation changes. If the elevation at the beginning is
100 ft and the elevation at the delivery point is 500 ft, then

Pt = 800 + (500 − 100) × 1.0
2.31

+ 25 = 998.16 psi

The middle term in this equation represents the static elevation head
difference converted to psi. Finally, if the elevation at the beginning is
500 ft and the elevation at the delivery point is 100 ft, then

Pt = 800 + (100 − 500) × 1.0
2.31

+ 25 = 651.84 psi
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It can be seen from the preceding that the 400-ft advantage in ele-
vation in the final case reduces the total pressure required by approx-
imately 173 psi compared to the situation where there as no elevation
difference between the beginning of the pipeline and delivery point.

3.13.1 Effect of elevation

The preceding discussion illustrated a water pipeline that had a flat
elevation profile compared to an uphill pipeline and a downhill pipeline.
There are situations, where the ground elevation may have drastic
peaks and valleys that require careful consideration of the pipeline
topography. In some instances, the total pressure required to transport
a given volume of water through a long pipeline may depend more on
the ground elevation profile than the actual frictional pressure drop.
In the preceding we calculated the total pressure required for a flat
pipeline as 825 psi and an uphill pipeline to be 998 psi. In the uphill
case the static elevation difference contributed to 17 percent of the total
pressure required. Thus the frictional component was much higher than
the elevation component. In some cases where the elevation differences
in a long pipeline may dictate the total pressure required more than
the frictional head loss.

Example 3.25 A 20-in (0.375-in wall thickness) water pipeline 500 mi
long, has a ground elevation profile as shown in Fig. 3.13. The elevation
at Corona is 600 ft and at Red Mesa is 2350 ft. Calculate the total pres-
sure required at the Corona pump station to transport 11.5 Mgal/day of
water to Red Mesa storage tanks, assuming a minimum delivery pressure
of 50 psi at Red Mesa. Use the Hazen-Williams equation with a C factor of
140. If the pipeline operating pressure cannot exceed 1400 psi, how many

Hydraulic pressure gradient = 11.5 Mgal/day

Pipeline elevation profile

C

A BFlow

Corona
Elev. = 600 ft

Red Mesa
Elev. = 2350 ft

500-mil-long, 20-in pipeline

50 psi

Figure 3.13 Corona to Red Mesa pipeline.
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pumping stations, besides Corona, will be required to transport the given
flow rate?

Solution The flow rate Q in gal/min is

Q = 11.5 × 106

24 × 60
= 7986.11 gal/min

If Pm is the head loss in psi/mi of pipe, using the Hazen Williams equation,

Pm = 23,909

(
7986.11

140

)1.852 1
19.254.87

= 23.76 psi/mi

Therefore,

Frictional pressure drop = 23.76 psi/mi

The total pressure required at Corona is calculated by adding the pressure
drop due to friction to the delivery pressure required at Red Mesa and the
static elevation head between Corona and Red Mesa.

Pt = Pf + Pelev + Pdel

= (23.76 × 500) + 2350 − 600
2.31

+ 50

= 11,880 + 757.58 + 50 = 12,688 psi rounded off to the nearest psi

Since a total pressure of 12,688 psi at Corona far exceeds the maximum op-
erating pressure of 1400 psi, it is clear that we need additional intermediate
booster pump stations besides Corona. The approximate number of pump
stations required without exceeding the pipeline pressure of 1400 psi is

Number of pump stations = 12,688
1400

= 9.06 or 10 pump stations

With 10 pump stations the average pressure per pump station will be

Average pump station pressure = 12,688
10

= 1269 psi

3.13.2 Tight line operation

When there are drastic elevation differences in a long pipeline, some-
times the last section of the pipeline toward the delivery terminus may
operate in an open-channel flow. This means that the pipeline section
will not be full of water and there will be a vapor space above the water.
Such situations are acceptable in water pipelines but not in pipelines
transporting high vapor pressure liquids such as liquefied petroleum
gas (LPG). To prevent such open-channel flow or slack line conditions,
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Pipeline pressure gradient

Pipeline elevation profile
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A B

Pump station
Flow

Delivery terminus
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Figure 3.14 Tight line operation.

we pack the line by providing adequate back pressure at the delivery
terminus as illustrated in Fig. 3.14.

3.13.3 Slack line flow

Slack line or open-channel flow occurs in the last segment of a long-
distance water pipeline where a large elevation difference exists be-
tween the delivery terminus and intermediate point in the pipeline as
indicated in Fig. 3.15.

If the pipeline were packed to avoid slack line flow, the hydraulic
gradient is as shown by the solid line in Fig. 3.15. However, the piping
system at the delivery terminal may not be able to handle the higher
pressure due to line pack. Therefore, we may have to reduce the pres-
sure at some point within the delivery terminal using a pressure control
valve. This is illustrated in Fig. 3.15.

Hydraulic pressure gradient

Peak

Pipeline elevation profile

Open-channel flow

∆P

D

BA
Flow

C

Pump station Delivery terminus

Figure 3.15 Slack line flow.
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3.14 Hydraulic Gradient

The graphical representation of the pressures along the pipeline, as
shown in Fig. 3.16, is called the hydraulic pressure gradient. Since ele-
vation is measured in feet, the pipeline pressures are converted to feet of
head and plotted against the distance along the pipeline superimposed
on the elevation profile. If we assume a beginning elevation of 100 ft,
a delivery terminus elevation of 500 ft, a total pressure of 1000 psi re-
quired at the beginning, and a delivery pressure of 25 at the terminus,
we can plot the hydraulic pressure gradient graphically by the following
method.

At the beginning of the pipeline the point C representing the total
pressure will be plotted at a height of

100 ft + (1000 × 2.31) = 2410 ft

Similarly, at the delivery terminus the point D representing the total
head at delivery will be plotted at a height of

500 + (25 × 2.31) = 558 ft rounded off to the nearest foot

The line connecting the points C and D represents the variation of the
total head in the pipeline and is termed the hydraulic gradient. At any
intermediate point such as E along the pipeline the pipeline pressure
will be the difference between the total head represented by point F on
the hydraulic gradient and the actual elevation of the pipeline at E.

If the total head at F is 1850 ft and the pipeline elevation at E is
250 ft, the actual pipeline pressure at E is

(1850 − 250) ft = 1600
2.31

= 693 psi

It can be seen that the hydraulic gradient clears all peaks along the
pipeline. If the elevation at E were 2000 ft, we would have a negative

C
F

D

E

A B

Pipeline elevation profile

Pressure

Pipeline pressure gradient

Pump station Delivery terminus

Figure 3.16 Hydraulic pressure gradient.
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pressure in the pipeline at E equivalent to

(1850 − 2000) ft = −150 ft = − 150
2.31

= −65 psi

Since a negative pressure is not acceptable, the total pressure at the be-
ginning of the pipeline will have to be higher by the preceding amount.

Revised total head at A = 2410 + 150 = 2560 ft

This will result in zero gauge pressure in the pipeline at peak E. The ac-
tual pressure in the pipeline will therefore be equal to the atmospheric
pressure at that location. Since we would like to always maintain some
positive pressure above the atmospheric pressure, in this case the total
head at A must be slightly higher than 2560 ft. Assuming a 10-psi posi-
tive pressure is desired at the highest peak such as E (2000-ft elevation),
the revised total pressure at A would be

Total pressure at A = 1000 + 65 + 10 = 1075 psi

Therefore,

Total head at C = 100 + (1075 × 2.31) = 2483 ft

This will ensure a positive pressure of 10 psi at the peak E.

3.15 Gravity Flow

Gravity flow in a water pipeline occurs when water flows from a source
at point A at a higher elevation than the delivery point B, without any
pumping pressure at A and purely under gravity. This is illustrated in
Fig. 3.17.

The volume flow rate under gravity flow for the reservoir pipe system
shown in Fig. 3.17 can be calculated as follows. If the head loss in the
pipeline is h ft/ft of pipe length, the total head loss in length L is (h× L).
Since the available driving force is the difference in tank levels at A
and B, we can write

H1 − (h × L) = H2 (3.72)

A

B

H1

H2

L

Q

Figure 3.17 Gravity flow from reservoir.
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Therefore,

hL = H1 − H2 (3.73)

and

h = H1 − H2

L
(3.74)

where h = head loss in pipe, ft/ft
L = length of pipe

H1 = head loss in pipe A
H2 = head loss in pipe B

In the preceding analysis, we have neglected the entrance and exit
losses at A and B. Using the Hazen-Williams equation we can then
calculate flow rate based on a C value.

Example 3.26 The gravity feed system shown in Fig. 3.17 consists of a 16-in
(0.250-in wall thickness) 3000-ft-long pipeline, with a tank elevation at A =
500 ft and elevation at B = 150 ft. Calculate the flow rate through this gravity
flow system. Use a Hazen-Williams C factor of 130.

Solution

h = 500 − 150
3000

= 0.1167 ft/ft

Substituting in the Hazen-Williams equation, we get

0.1167 × 1000 = 10,460 ×
(

Q
130

)1.852( 1
15.5

)4.87

Solving for flow rate Q,

Q = 15,484 gal/min

Compare the results using the Colebrook-White equation assuming
e = 0.002.

e
D

= 0.002
15.5

= 0.0001

We will assume a friction factor f = 0.02 initially. Head loss due to friction
per Eq. (3.20) is

Pm = 71.16 × 0.02(Q2)
(15.5)5

psi/mi

or

Pm = 1.5908 × 10−6 Q2 psi/mi

=
(

1.5908 × 10−6 2.31
5280

)
Q2 ft/ft

= (6.9596 × 10−10)Q2 ft/ft

0.1167 = (6.9596 × 10−10)Q2
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Solving for flow rate Q, we get

Q = 12,949 gal/min

Solving for the Reynolds number, we get

Re = 3162.5 × 12,949
15.5

× 1 = 2,642,053

From the Moody diagram, f = 0.0128. Now we recalculate Pm,

Pm = 71.16 × 0.0128 × Q2

(15.5)5
psi/mi

= 4.4541 × 10−10 Q2 ft/ft

Solving for Q again,

Q = 16,186 gal/min

By successive iteration we arrive at the final flow rate of 16,379 gal/min using
the Colebrook-White equation. Comparing this with 15,484 gal/min obtained
using the Hazen-Williams equation, we see that the flow rate is underesti-
mated probably because the assumed Hazen-Williams C factor (C = 130) was
too low.

3.16 Pumping Horsepower

In the previous sections we calculated the total pressure required at
the beginning of the pipeline to transport a given volume of water over
a certain distance. We will now calculate the pumping horsepower (HP)
required to accomplish this.

Consider Example 3.25 in which we calculated the total pressure
required to pump 11.5 Mgal/day of water from Corona to Red Mesa
through a 500-mi-long, 20-in pipeline. We calculated the total pressure
required to be 12,688 psi. Since the maximum allowable working pres-
sure in the pipeline was limited to 1400 psi, we concluded that nine
additional pump stations besides Corona were required. With a total of
10 pump stations, each pump station would be discharging at a pressure
of approximately 1269 psi.

At the Corona pump station, water would enter the pump at some
minimum pressure, say 50 psi and the pumps would boost the pressure
to the required discharge pressure of 1269 psi. Effectively, the pumps
would add the energy equivalent of 1269 − 50, or 1219 psi at a flow
rate of 11.5 Mgal/day (7986.11 gal/min). The water horsepower (WHP)
required is calculated as

WHP = (1219 × 2.31) × 7986.11 × 1.0
3960

= 5679 HP
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The general equation used to calculate WHP, also known as hydraulic
horsepower (HHP), is as follows:

WHP = ft of head × (gal/min) × specific gravity
3960

(3.75)

Assuming a pump efficiency of 80 percent, the pump brake horsepower
(BHP) required is

BHP = 5679
0.8

= 7099 HP

The general equation for calculating the BHP of a pump is

BHP = ft of head × (gal/min) × specific gravity
3960 × effy

(3.76)

where effy is the pump efficiency expressed as a decimal value.
If the pump is driven by an electric motor with a motor efficiency of

95 percent, the drive motor HP required will be

Motor HP = 7099
0.95

= 7473 HP

The nearest standard size motor of 8000 HP would be adequate for this
application. Of course this assumes that the entire pumping require-
ment at the Corona pump station is handled by a single pump-motor
unit. In reality, to provide for operational flexibility and maintenance
two or more pumps will be configured in series or parallel configura-
tions to provide the necessary pressure at the specified flow rate. Let us
assume that two pumps are configured in parallel to provide the nec-
essary head pressure of 1219 psi (2816 ft) at the Corona pump station.
Each pump will be designed for one-half the total flow rate (7986.11) or
3993 gal/min and a head pressure of 2816 ft. If the pumps selected had
an efficiency of 80 percent, we can calculate the BHP required for each
pump as follows:

BHP = 2816 × 3993 × 1.0
3960 × 0.80

from Eq. (3.76)

= 3550 HP

Alternatively, if the pumps were configured in series instead of
parallel, each pump will be designed for the full flow rate of 7986.11
gal/min but at half the total pressure required, or 1408 ft. The BHP
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required per pump will still be the same as determined by the preceding
equation.

3.17 Pumps

Pumps are installed on water pipelines to provide the necessary pres-
sure at the beginning of the pipeline to compensate for pipe friction and
any elevation head and provide the necessary delivery pressure at the
pipeline terminus. Pumps used on water pipelines are either positive
displacement (PD) type or centrifugal pumps.

PD pumps generally have higher efficiency, higher maintenance cost,
and a fixed volume flow rate at any pressure within allowable limits.
Centrifugal pumps on the other hand are more flexible in terms of flow
rates but have lower efficiency and lower operating and maintenance
cost. The majority of liquid pipelines today are driven by centrifugal
pumps.

Since pumps are designed to produce pressure at a given flow rate,
an important characteristic of a pump is its performance curve. The
performance curve is a graphic representation of how the pressure gen-
erated by a pump varies with its flow rate. Other parameters, such as
efficiency and horsepower, are also considered as part of a pump per-
formance curve.

3.17.1 Positive displacement pumps

Positive displacement (PD) pumps include piston pumps, gear pumps,
and screw pumps. These are used generally in applications where a
constant volume of liquid must be pumped against a fixed or variable
pressure.

PD pumps can effectively generate any amount of pressure at the
fixed flow rate, which depends on its geometry, as long as equipment
pressure limits are not exceeded. Since a PD pump can generate any
pressure required, we must ensure that proper pressure control de-
vices are installed to prevent rupture of the piping on the discharge
side of the PD pump. As indicated earlier, PD pumps have less flexi-
bility with flow rates and higher maintenance cost. Because of these
reasons, PD pumps are not popular in long-distance and distribution
water pipelines. Centrifugal pumps are preferred due to their flexibility
and low operating cost.

3.17.2 Centrifugal pumps

Centrifugal pumps consist of one or more rotating impellers contained
in a casing. The centrifugal force of rotation generates the pressure in
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Figure 3.18 Performance curve for centrifugal pump.

the liquid as it goes from the suction side to the discharge side of the
pump. Centrifugal pumps have a wide range of operating flow rates
with fairly good efficiency. The operating and maintenance cost of a
centrifugal pump is lower than that of a PD pump. The performance
curves of a centrifugal pump consist of head versus capacity, efficiency
versus capacity, and BHP versus capacity. The term capacity is used
synonymously with flow rate in connection with centrifugal pumps. Also
the term head is used in preference to pressure when dealing with
centrifugal pumps. Figure 3.18 shows a typical performance curve for
a centrifugal pump.

Generally, the head-capacity curve of a centrifugal pump is a drooping
curve. The highest head is generated at zero flow rate (shutoff head) and
the head decreases with an increase in the flow rate as shown in Fig.
3.18. The efficiency increases with flow rate up to the best efficiency
point (BEP) after which the efficiency drops off. The BHP calculated
using Eq. (3.76 ) also generally increases with flow rate but may taper off
or start decreasing at some point depending on the head-capacity curve.

For further discussion on centrifugal pump performance, including
operating in series and parallel configurations and system head analy-
sis, refer to Chap. 1.

3.18 Pipe Materials

Pipes used for wastewater and stormwater may be constructed of dif-
ferent materials depending upon whether pressure flow or gravity flow
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is involved. Sewer pipes may be constructed of rigid pipe or flexible pipe.
Types of rigid pipe include vitrified clay, asbestos-cement, concrete, and
cast iron. Types of flexible sewer pipes include corrugated aluminum,
steel, ductile iron, and thermoset plastic.

For gravity flow sewer pipes, diameters range from 4 to 42 in and
lengths are of 10 to 14 ft. Vitrified clay pipe is manufactured to ASTM
Standard C700. Diameter sizes range from 4 to 36 in. Joint types and
materials are in accordance with ASTM C425, and construction and
testing is done per ASTM C12, C828, and C1091. Vitrified clay pipes
are used in corrosive environments.

Concrete pipe is defined by specifications given in ASTM C14. Con-
struction and testing are in accordance with ASTM C924 and C969,
respectively. The burial depth is limited to 10 to 25 ft.

Reinforced concrete pipe is specified in accordance with ASTM C76
and C361. Diameter sizes range from 12 to 120 in. Construction and
testing standards are in accordance with ASTM C924 and C969, respec-
tively. These pipes can be used for gravity sewers and pressure sewers.
Burial depth is limited to 35 ft.

Ductile iron pipe is generally manufactured according to AWWA C151/
ANSI A21.51 standards. Diameter sizes range from 4 to 36 in. The
burial depth is limited to 32 ft. Ductile iron pipes are not used for grav-
ity sewers.

Types of plastic pipe used in sewer systems include polyvinyl chloride
(PVC), acrylonitrile-butadiene-styrene (ABS), and polyethylene (PE).
These have good corrosion resistance and low-friction characteristics
in addition to being lightweight. Plastic pipe diameter sizes range from
4 to 15 in.

3.19 Loads on Sewer Pipe

Sewer pipes must be able to withstand the vertical load arising from
the soil above them and any vehicle loads that are superimposed on top
of the soil loads. As the burial depth increases, the effect of the superim-
posed load decreases. Table 3.11 shows the percentage of vehicle loading

TABLE 3.11 Vehicle Loading on Buried Pipe

Trench width at top of pipe, ft

Depth of backfill over top of pipe, ft 1 2 3 4 5 6 7

1 17.0 26.0 28.6 29.7 29.9 30.2 30.3
2 8.3 14.2 18.3 20.7 21.8 22.7 23.0
3 4.3 8.3 11.3 13.5 14.8 15.8 16.7
4 2.5 5.2 7.2 9.0 10.3 11.5 12.3
5 1.7 3.3 5.0 6.3 7.3 8.3 9.0
6 1.0 2.3 3.7 4.7 5.5 6.2 7.0
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H

B

Figure 3.19 Buried pipe and
trench dimensions.

transmitted to a buried pipe. It can be seen from the table that as the
trench width increases, the load transmitted to the pipe increases. On
the other hand as the depth of backfill over the pipe increases, the load
on the pipe decreases.

Figure 3.19 shows a buried pipe in a trench. The width of the trench
is B, and the depth of the trench is H. The load transmitted to the pipe
from the backfill depends upon the weight of the surrounding soil, the
width of the trench, and a dimensionless coefficient C. The following
formula, referred to as Marston’s formula, may be used for calculating
the vertical soil load on a rigid pipe that is buried in the ground.

W = CwB2 (3.77)

where W = vertical load on pipe due to soil, per unit length, lb/ft
C = dimensionless coefficient
w = weight of backfill material on top of pipe, lb/ft3

B = width of trench above pipe, ft

Table 3.12 lists the density of common backfill materials. The coefficient
C depends upon the backfill material and the ratio H/B, where H is
the height of the backfill material above the pipe. Table 3.13 gives the
buried loading coefficient C for various backfill materials and trench
dimensions.

TABLE 3.12 Density of Common Backfill Materials

Materials Density, lb/ft3

Dry sand 100
Ordinary (damp) sand 115
Wet sand 120
Damp clay 120
Saturated clay 130
Saturated topsoil 115
Sand and damp topsoil 100
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TABLE 3.13 Buried Loading Coefficient

Coefficient C

Ratio of depth Sand and Saturated Damp Saturated
to trench width damp topsoil topsoil clay clay

0.5 0.46 0.46 0.47 0.47
1.0 0.85 0.86 0.88 0.9
1.5 1.18 1.21 1.24 1.28
2.0 1.46 1.5 1.56 1.62
2.5 1.70 1.76 1.84 1.92
3.0 1.90 1.98 2.08 2.2
3.5 2.08 2.17 2.3 2.44
4.0 2.22 2.33 2.49 2.66
4.5 2.34 2.47 2.65 2.87
5.0 2.45 2.59 2.8 3.03
5.5 2.54 2.69 2.93 3.19
6.0 2.61 2.78 3.04 3.33
6.5 2.68 2.86 3.14 3.46
7.0 2.73 2.93 3.22 3.57
7.5 2.78 2.98 3.3 3.67
8.0 2.81 3.03 3.37 3.76
8.5 2.85 3.07 3.42 3.85
9.0 2.88 3.11 3.48 3.92
9.5 2.90 3.14 3.52 3.98

10.0 2.92 3.17 3.56 4.04
11.0 2.95 3.21 3.63 4.14
12.0 2.97 3.24 3.68 4.22
13.0 2.99 3.27 3.72 4.29
14.0 3.00 3.28 3.75 4.34
15.0 3.01 3.3 3.77 4.38

Very great 3.03 3.33 3.85 4.55

Example 3.27 A 24-in-diameter sewer pipe is installed in a trench of width
48 in. The top of the pipe is 6 ft below the ground surface. The topsoil is damp
clay. What is the vertical loading due to the backfill material on the sewer
pipe per linear foot?

Solution To determine the coefficient C in Marston’s equation we need the
ratio of trench height to trench width,

H
B

= 6 × 12
48

= 1.5

From Table 3.13 we get C = 1.24 for H/B = 1.5 and for damp clay.
From Table 3.12 the density of damp clay is

w = 120 lb/ft3

Therefore, using Marston’s equation (3.77), we get the vertical loading on the
pipe per linear foot as

W = 1.24 × 120 × 42 = 2381 lb/ft

The load on the buried pipe due to the backfill material is 2381 lb/ft.
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4
Steam Systems Piping

Introduction

Steam systems piping is used in many industrial applications for cre-
ating the pressure and energy required to drive machines and other
equipment and to convey the condensed steam back to the start of the
process. Steam is used in heating and for converting the energy in water
to beneficial use in industries. Steam is generally transported through
piping systems and distributed to various locations with minimal noise
and in the absence of air. Any air present in a steam piping system must
be rapidly removed or the system will become inefficient.

4.1 Codes and Standards

The following American Society of Mechanical Engineers (ASME) codes
and standards are used in the design and construction of steam piping
systems.

1. ASME Boiler and Pressure Vessel Code—Section 3

2. ASME Code for Pressure Piping—B31.1

3. ASME Code for Pressure Piping—B31.3

4. ASME B36.10 M

5. ASME B36.19 M

6. ASME B16.9

Other codes include special regulations and standards imposed by in-
dividual state, city, and local agencies having jurisdiction over the in-
stallation and operation of steam piping.

203
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4.2 Types of Steam Systems Piping

There are several types of steam systems piping in use today. They
may be categorized as steam distribution systems, underground steam
piping, fossil-fueled power plants, and nuclear fuel power plants.

The steam distribution systems consist of trunk line distribution sys-
tems and main and feeder distribution network systems. Underground
piping consists of piping used in the district heating industry where
steam piping is used to carry process steam. In fossil-fueled power
plants superheated steam is supplied to turbines and for auxiliary ser-
vices. In nuclear power plants steam is supplied from the boiler to the
power plant for various services within the power plant.

4.3 Properties of Steam

Steam is produced by the evaporation of water. Water consists of hy-
drogen and oxygen and has the chemical formula H2O. Considering
the atomic weight of the two elements, the composition of water is two
parts by weight of H2 and eight parts by weight of O2. In the solid form
H2O is called ice, and in the liquid form it is known as water. When
water boils at 212◦F (100◦C) under normal atmospheric conditions, it
is converted into vapor (or gaseous) form and is generally referred to
as steam. The heat required to form steam from a unit weight of water
is known as the latent heat of vaporization, and it will vary with the
pressure. At an atmospheric pressure of 14.7 pounds per square inch
absolute (psia), the latent heat of vaporization of dry steam is equal to
970 British thermal units per pound (Btu/lb).

When a quantity of water is heated to the point where vaporization
occurs and a quantity of liquid and vapor are in equilibrium at the
same temperature and pressure, we say that there is saturated vapor
in equilibrium with saturated liquid. The particular temperature and
pressure at which this occurs are called the saturation temperature and
saturation pressure, respectively. As heat is applied and more liquid
vaporizes to form steam, a point would be reached when the liquid will
be uniformly dispersed within the steam. This mixture of vapor and
liquid is referred to as wet saturated steam. The quality of steam, also
known as the dryness fraction, Sx is defined as the ratio of the mass of
saturated vapor (dry steam) to the mass of the total mixture of water
and vapor (wet steam).

Sx = Msv

Mt
(4.1)

where Sx = steam quality
Msv = mass of saturated vapor
Mt = total mass of liquid and vapor
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Thus wet steam with a quality, or dryness fraction, of 0.9 has 10 percent
moisture present. As more heat is applied to the wet steam, all liquid
will be converted to vapor, and dry saturated steam is the final product.
Under normal atmospheric conditions at 14.7 psia this happens at
212◦F. At this point, the steam quality is 100 percent saturated and is
also referred to as dry saturated steam. Further heating of the steam be-
yond the saturation point at constant pressure will result in an increase
in temperature beyond 212◦F, and then the steam becomes superheated.

As an example, if steam is heated to 320◦F, it is said to be superheated
steam at 14.7 psi and 320◦F. The difference between the temperature of
the superheated steam (320◦F) and the boiling point (212◦F) is referred
to as 108◦F of superheat. Superheated steam at any pressure is defined
as steam that is heated to a higher temperature than the corresponding
saturation temperature at that pressure. Therefore, at 14.7 psia, any
steam that is at a temperature above 212◦F is called superheated steam.

The boiling temperature of water occurs at 212◦F when the pres-
sure is 14.7 psia. As the pressure increases, the saturation tempera-
ture changes. As pressure increases, less heat is necessary to change
the phase from liquid to vapor. Ultimately, at some pressure, known
as the critical pressure, the least amount of heat is necessary to change
the phase from liquid to vapor. The critical pressure of steam is ap-
proximately 3206 psia, and the corresponding critical temperature is
705.4◦F.

4.3.1 Enthalpy

The amount of heat H at constant pressure needed to convert a unit
mass of water at its freezing point into wet steam is the sum of the
enthalpy of water and the fraction of the latent heat. Thus the enthalpy,
or heat content, of wet steam is given by the following equation:

Hws = Hw + xL (4.2)

where Hws = enthalpy of wet steam
Hw = enthalpy of water

x = dryness fraction or quality of steam,
a number less than 1.0

L = latent heat of vaporization

For dry steam, x = 1 and

Hds = Hw + L (4.3)

where Hds is the enthalpy of dry steam. Enthalpy or heat content is
measured in Btu/lb in U.S. Customary System (USCS) units and kilo-
joules per kilogram (kJ/kg) in Systeme International (SI) units.
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4.3.2 Specific heat

The specific heat of a substance is defined as the heat required per
unit weight of the substance to increase its temperature by one degree.
Solids, liquids, and gases have defined specific heats. The specific heats
of gases change with temperature and pressure. Wet steam is consid-
ered to be partly liquid and partly gas. Hence, since wet steam contains
water, it cannot be considered to have a specific heat. This is because,
upon heating wet steam, the water evaporates and the steam quality
approaches 1.0. Thus wet steam, unlike a pure gas, cannot have a Cp
(specific heat at constant pressure) or Cv (specific heat at constant vol-
ume) property, since these values would continuously change as the
steam quality changes.

Similarly, wet steam also cannot have a constant value of the specific
heat ratio γ = Cp/Cv or a gas constant R. When wet steam expands
adiabatically, we can assume that it follows some type of polytropic ex-
pansion law PVn = constant as long as the range of pressure is fairly
small. An average value of the polytrophic exponent n can be calculated
from measured values of pressure and temperature. In most calcula-
tions, an average value of n equal to 1.13 can be used with a fair degree
of accuracy. However, if the pressure drop is large, this value of n will
not be correct.

Dry saturated steam and superheated steam do have defined specific
heat values and specific heat ratios. Generally, the specific heat ratio
γ = 1.135 for saturated steam and γ = 1.3 for superheated steam, are
used in calculations.

4.3.3 Pressure

The pressure measured by a pressure gauge on a steam piping system is
called the gauge pressure (lb/in2 gauge or psig.) The absolute pressure
(lb/in2 absolute or psia) must be calculated by adding the atmospheric
pressure at the location of the system to the gauge pressure. Therefore,

Pabs = Pgauge + Patm (4.4)

where Pabs = absolute pressure, psia
Pgauge = gauge pressure, psig

Patm = atmospheric pressure, psia

As an example, if the steam pressure is 150 psig and the atmospheric
pressure is 14.7 psia, the absolute pressure is 150 + 14.7 = 164.7
psia.

In SI units, steam pressure may be measured in kilopascals (kPa) or
bar. The atmospheric pressure may be 101 kPa or 1 bar. If the steam
piping is at a pressure of 1000 kPa gauge, the absolute pressure of
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steam will be 1000 + 101 = 1101 kPa absolute. Sometimes in SI units,
megapascal (MPa) and pascal (Pa) are also used for pressure where
1 kPa = 0.145 psi. Conversion factors from various USCS units to SI
units are given in App. A.

4.3.4 Steam tables

Many thermodynamic properties of steam, such as specific volume, en-
thalpy, and entropy at various saturation temperatures are listed in
steam tables, such as the abbreviated version shown in Table 4.1. All
pressures in the steam tables are listed in absolute pressures.

Steam tables are for dry steam only. When calculating properties for
wet steam, we must consider the steam quality similar to the calculation
of the enthalpy of wet steam discussed in Eq. (4.1).

Example 4.1 Calculate the enthalpy of 1 lb of steam at 60 psia and with 0.9
steam quality. How much heat would be required to raise 5 lb of this steam
from water at 50◦F?

Solution From Table 4.1, at 60 psia, the enthalpy of water is

Hw = 262.09 Btu/lb

Latent heat of vaporization L = 915.5 Btu/lb

Therefore, from Eq. (4.2), the enthalpy of wet steam is

Hs = 262.09 + 0.9 × 915.5

= 1086.04 Btu/lb

Enthalpy of water at 50◦F = 50 − 32 = 18 Btu/lb

Therefore, the heat required to raise 5 lb of wet steam from water at 50◦F is

H = 5 × (1086.04 − 18) = 5340.2 Btu

4.3.5 Superheated steam

The enthalpy of superheated steam can be calculated by considering it
as a perfect gas. Since superheating is done at constant pressure, we
can use the specific heat Cp for calculating enthalpy. The Cp for super-
heated steam varies from 0.48 to 3.5 and depends on the pressure and
temperature. Steam tables also can be used to determine the enthalpy
of superheated steam. If T1 is the saturated temperature of steam at
pressure P1, and Ts is the temperature of the superheated steam, the
heat absorbed per pound of steam during superheating is

�H = Cp(Ts − T1) (4.5)



TABLE 4.1 Properties of Dry Steam

(a) Saturated Steam at Various Saturation Temperatures

Temperature, Pressure,
Specific volume, ft3/lb Enthalpy, Btu/lb Entropy, Btu/(lb · F)

◦F psia Sat. liquid Evaporation Sat. vapor Sat. liquid Evaporation Sat. vapor Sat. liquid Evaporation Sat. vapor

32 0.08854 0.01602 3306 3306 0 1075.8 1075.8 0 2.1877 2.1877
35 0.09995 0.01602 2947 2947 3.02 1074.1 1077.1 0.0061 2.1709 2.177
40 0.1217 0.01602 2444 2444 8.05 1071.3 1079.3 0.0162 2.1435 2.1597
45 0.14752 0.01602 2036.4 2036.4 13.06 1068.4 1081.5 0.0262 2.1167 2.1429
50 0.17811 0.01603 1703.2 1703.2 18.07 1065.6 1083.7 0.0361 2.0903 2.1264
60 0.2563 0.01604 1206.6 1206.7 28.06 1059.9 1088 0.0555 2.0393 2.0948
70 0.3631 0.0606 867.8 867.9 38.04 1054.3 1092.3 0.0745 1.9902 2.0647
80 0.5069 0.01608 633.1 633.1 48.02 1048.6 1096.6 0.0932 1.9428 2.036
90 0.6982 0.0161 468 468.0 57.99 1042.9 1100.9 0.1115 1.8972 2.0087

100 0.9492 0.01613 350.3 350.4 67.97 1037.2 1105.2 0.1295 1.8531 1.9826
110 1.2748 0.01617 265.3 265.4 77.94 1031.6 1109.5 0.1471 1.8106 1.9577
120 1.6924 0.0162 203.25 203.27 87.92 1025.8 1113.7 0.1645 1.7694 1.9339
130 2.2225 0.01625 157.32 157.34 97.9 1020 1117.9 0.1816 1.7296 1.9112
150 3.718 0.01634 97.06 97.07 117.89 1008.2 1126.1 0.2149 1.6537 1.8685
160 4.741 0.01639 77.27 77.29 127.89 1002.3 1130.2 0.2311 1.6174 1.8485
170 5.992 0.01645 62.04 62.06 137.9 996.3 1134.2 0.2472 1.5822 1.8293
180 7.51 0.01651 50.21 50.23 147.92 990.2 1138.1 0.263 1.548 1.8109
190 9.339 0.01657 40.94 40.96 157.95 984.1 1142 0.2785 1.5147 1.7932
200 11.526 0.01663 33.62 33.64 167.99 977.9 1145.9 0.2938 1.4824 1.7762
210 14.123 0.0167 27.8 27.82 178.05 971.6 1149.7 0.309 1.4508 1.7598
212 14.696 0.01672 26.78 26.8 180.7 970.3 1150.4 0.312 1.4446 1.7566
220 17.186 0.01677 23.13 23.15 188.13 965.2 1153.4 0.3239 1.4201 1.744
230 20.78 0.01684 19.365 19.382 198.23 958.8 1137 0.3387 1.3901 1.7288
240 24.969 0.01692 16.306 16.323 208.34 952.2 1160.5 0.3531 1.3609 1.714
250 29.825 0.017 13.804 13.821 216.48 945.5 1164 0.3675 1.3223 1.6998
260 35.429 0.01709 11.746 11.763 228.64 938.7 1167.3 0.3817 1.3043 1.686
270 41.858 0.01717 10.044 10.061 238.84 931.8 1170.6 0.3958 1.2769 1.6727
280 49.203 0.01726 8.628 8.645 249.06 924.7 1173.8 0.4096 1.2501 1.6597
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290 57.556 0.01735 7.444 7.461 259.31 917.5 1176.8 0.4234 1.2338 1.6472
300 67.013 0.01745 6.449 6.466 269.59 910.1 1179.7 0.4369 1.198 1.635
310 77.68 0.01755 5.609 5.626 279.92 902.6 1182.5 0.4504 1.1727 1.6231
320 89.66 0.01765 4.896 4.914 290.28 894.9 1185.2 0.4637 1.1478 1.6115
330 103.06 0.01776 4.289 4.307 300.68 887 1187.7 0.4769 1.1233 1.6002
340 118.01 0.01787 3.77 3.788 311.13 879 1190.1 0.49 1.0992 1.5891
350 134.63 0.01799 3.324 3.342 321.63 870.7 1192.3 0.5029 1.0754 1.5783
360 153.04 0.01811 2.939 2.957 332.18 862.2 1194.4 0.5158 1.0519 1.5677
370 173.37 0.01823 2.606 2.625 342.79 853.5 1196.3 0.5286 1.0287 1.5573
380 195.77 0.01836 2.317 2.335 353.45 844.6 1198.1 0.5413 1.0059 1.5471
390 220.37 0.0185 2.0651 2.0836 364.17 835.4 1199.6 0.5539 0.9832 1.5371
400 247.31 0.01864 1.8447 1.8633 374.97 826.0 1201 0.5664 0.9608 1.5272
410 276.75 0.01878 1.6512 1.6700 385.83 816.3 1202.1 0.5788 0.9386 1.5174
420 308.83 0.01894 1.4811 1.500 396.77 806.3 1203.1 0.5912 0.9166 1.5078
430 343.72 0.01910 1.3308 1.3499 407.79 796.0 1203.8 0.6035 0.8947 1.4982
440 381.59 0.01926 1.1979 1.2171 408.9 785.4 1204.3 0.6158 0.873 1.4887
450 422.6 0.0194 1.0799 1.0993 430.1 774.5 1204.6 0.628 0.8513 1.4793
460 466.9 0.0196 0.9748 0.9944 441.4 763.2 1204.6 0.6402 0.8298 1.4700
470 514.7 0.0198 0.8811 0.9009 452.8 751.5 1204.3 0.6523 0.8083 1.4606
480 566.1 0.0200 0.7972 0.8172 464.4 739.4 1203.7 0.6645 0.7868 1.4513
490 621.4 0.0202 0.7221 0.7423 476 726.8 1202.8 0.6766 0.7653 1.4419
500 680.8 0.0204 0.6545 0.6749 487.8 713.9 1201.7 0.6887 0.7438 1.4325
520 812.4 0.0209 0.5385 0.5594 511.9 686.4 1198.2 0.713 0.7006 1.4136
540 962.5 0.0215 0.4434 0.4649 536.6 656.6 1193.2 0.7374 0.6568 1.3942
560 1133.1 0.0221 0.3647 0.3868 562.2 624.2 1186.4 0.7621 0.6121 1.3742
580 1325.8 0.0228 0.2989 0.3217 588.9 588.4 1177.3 0.7872 0.5659 1.3532
600 1542.9 0.0236 0.2432 0.2668 617 548.5 1165.5 0.8131 0.5176 1.3307
620 1786.6 0.0247 0.1955 0.2201 646.7 503.6 1150.3 0.8398 0.4664 1.3062
640 2059.7 0.0260 0.1538 0.1798 678.6 452 1130.5 0.8679 0.411 1.2789
660 2365.4 0.0278 0.1165 0.1442 714.2 390.2 1104.4 0.8987 0.3485 1.2472
680 2708.1 0.0305 0.081 0.1115 757.3 309.9 1067.2 0.9351 0.2719 1.2071
700 3093.7 0.0369 0.0392 0.0761 823.3 172.1 995.4 0.9905 0.1484 1.1389
705.4 3206.2 0.0503 0 0.0503 902.7 0 902.7 1.0580 0 1.0580
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TABLE 4.1 Properties of Dry Steam (Continued )

(b) Saturated Steam at Various Saturation Pressures

Pressure, Temperature,
Specific volume, ft3/lb Enthalpy, Btu/lb Entropy, Btu/(lb · ◦F) Internal Energy, Btu/lb

psia ◦F Sat. liquid Sat. vapor Sat. liquid Evaporation Sat. vapor Sat. liquid Evaporation Sat. vapor Sat. liquid Sat. vapor

0.491 79.03 0.01608 652.300 47.05 1049.20 1096.3 0.0914 1.9473 2.0387 47.05 1037.0
0.736 91.72 0.01611 444.900 59.71 1042.00 1101.7 0.1147 1.8894 2.0041 59.71 1041.1
0.982 101.14 0.01614 339.200 69.10 1036.60 1105.7 0.1316 1.8481 1.9797 69.10 1044.0
1.227 108.71 0.01616 274.900 76.65 1032.30 1108.9 0.1449 1.816 1.9609 76.65 1046.4
1.473 115.06 0.01618 231.600 82.99 1028.60 1111.6 0.156 1.7896 1.9456 82.99 1048.5
1.964 125.43 0.01622 176.700 93.34 1022.70 1116.0 0.1738 1.7476 1.9214 93.33 1051.8
2.455 133.76 0.01626 143.250 101.66 1017.70 1119.4 0.1879 1.715 1.9028 101.65 1054.3
5 162.24 0.01640 73.520 130.13 1001.00 1131.1 0.2347 1.6094 1.8441 130.12 1063.1

10 193.21 0.01659 38.420 161.17 982.10 1143.3 0.2835 1.5041 1.7876 161.14 1072.2
14.696 212 0.01672 26.800 180.07 970.30 1150.4 0.312 1.4446 1.7566 180.02 1077.5
15 213.03 0.01672 26.290 181.11 969.70 1150.8 0.3135 1.4415 1.7549 181.06 1077.8
16 216.32 0.01674 24.750 184.42 967.60 1152.0 0.3184 1.4313 1.7497 184.37 1078.7
18 222.41 0.01679 22.170 190.56 963.60 1154.2 0.3275 1.4128 1.7403 190.50 1080.4
20 227.96 0.01683 20.089 196.16 960.10 1156.3 0.3356 1.3962 1.7319 196.10 1081.9
25 240.07 0.01692 16.303 208.42 952.10 1160.6 0.3533 1.3606 1.7139 208.34 1085.1
30 250.33 0.01701 13.746 218.82 945.30 1164.1 0.368 1.3313 1.6993 218.73 1087.8
35 259.28 0.01708 11.898 227.91 939.20 1167.1 0.3807 1.3063 1.6870 227.80 1090.1
40 267.25 0.01715 10.498 236.03 933.70 1169.7 0.3919 1.2844 1.6763 235.90 1092.0
45 274.44 0.01721 9.401 243.36 928.60 1172.0 0.4019 1.265 1.6669 243.22 1093.7
50 281.01 0.01727 8.515 250.09 924.00 1174.1 0.411 1.2474 1.6585 294.93 1095.3
55 287.07 0.01732 7.787 256.30 919.60 1175.9 0.4193 1.2316 1.6509 256.12 1095.7
60 292.71 0.01738 7.175 262.09 915.50 1177.6 0.417 1.2168 1.6438 261.90 1097.9
65 297.97 0.01743 6.655 267.50 911.60 1179.1 0.4342 1.2032 1.6374 267.29 1099.1
70 302.92 0.01748 6.206 272.61 907.90 1180.6 0.4409 1.1906 1.6315 272.38 1100.2
75 307.6 0.01753 5.816 277.43 904.50 1181.9 0.4472 1.1787 1.6259 277.19 1101.2
80 312.03 0.01757 5.472 282.02 901.10 1183.1 0.4531 1.1676 1.6207 281.76 1102.1
85 316.25 0.01761 5.168 286.39 897.80 1184.2 0.4587 1.1571 1.6158 286.11 1102.9
90 320.27 0.01766 4.896 290.56 894.70 1185.3 0.4641 1.1471 1.6112 290.27 1103.7

100 327.81 0.01774 4.432 298.40 888.80 1187.2 0.474 1.1286 1.6026 298.08 1105.2
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110 334.77 0.01782 4.049 305.66 883.20 1188.9 0.4832 1.1117 1.5948 305.30 1106.5
120 341.25 0.01789 3.728 312.44 877.90 1190.4 0.4916 1.0962 1.5878 312.05 1107.6
130 347.32 0.01796 3.455 318.81 872.90 1191.7 0.4995 1.0817 1.5812 318.38 1108.6
140 353.02 0.01802 3.220 324.82 868.20 1193.0 0.5069 1.0682 1.5751 324.35 1109.6
150 358.42 0.01809 3.015 330.51 863.60 1194.1 0.5138 1.0556 1.5694 330.01 1110.5
160 363.53 0.01815 2.834 335.95 859.20 1195.1 0.5204 1.0436 1.564 335.39 1111.2
170 368.41 0.01822 2.675 341.09 854.90 1196.0 0.5266 1.0324 1.559 340.52 1111.9
180 373.06 0.01827 2.532 346.03 850.80 1196.9 0.5325 1.0217 1.5542 345.42 1112.5
190 377.51 0.01833 2.404 350.79 846.80 1197.6 0.5381 1.0116 1.5497 350.15 1113.1
200 381.79 0.01839 2.288 355.36 843.00 1198.4 0.5435 1.0018 1.5453 354.68 1113.7
250 400.95 0.01865 1.844 376.00 825.10 1201.1 0.5675 0.9588 1.5263 375.14 1115.8
300 417.33 0.0189 1.543 393.84 809.00 1202.8 0.5879 0.9225 1.5104 392.79 1117.1
350 431.72 0.01913 1.326 409.69 794.20 1203.9 0.6056 0.891 1.4966 408.45 1118.0
400 444.59 0.0193 1.161 424.00 780.50 1204.5 0.6214 0.863 1.4844 422.60 1118.5
450 456.28 0.0195 1.032 437.20 767.40 1204.6 0.6356 0.8378 1.4734 435.50 1118.7
500 467.01 0.0197 0.928 449.40 755.00 1204.4 0.6487 0.8147 1.4634 447.60 1118.6
550 476.94 0.0199 0.842 460.80 743.10 1203.9 0.6608 0.7934 1.4542 458.80 1118.2
600 486.21 0.0201 0.770 471.60 731.60 1203.2 0.672 0.7734 1.4454 469.40 1117.7
650 494.9 0.0201 0.708 481.80 720.50 1202.3 0.6826 0.7548 1.4374 479.40 1117.1
700 503.1 0.0203 0.655 491.50 709.70 1201.2 0.6925 0.7371 1.4296 488.80 1116.3
750 510.86 0.0205 0.609 500.80 699.20 1200.0 0.7019 0.7204 1.4223 598.00 1115.4
800 518.23 0.0207 0.569 509.70 688.90 1198.6 0.7108 0.7045 1.4153 506.60 1114.4
850 525.26 0.0209 0.533 518.30 678.80 1197.1 0.7194 0.6891 1.4085 515.00 1113.3
900 531.98 0.0212 0.501 526.60 668.80 1195.4 0.7275 0.6744 1.402 523.10 1112.1
950 538.43 0.0214 0.472 534.60 659.10 1193.7 0.7355 0.6602 1.3957 530.90 1110.8

1000 544.61 0.0216 0.444 542.40 649.40 1191.8 0.743 0.6467 1.3897 538.40 1109.4
1100 556.31 0.022 0.400 557.40 630.40 1187.8 0.7575 0.6205 1.378 552.50 1106.4
1200 567.22 0.0223 0.362 571.70 611.70 1183.4 0.7711 0.5956 1.3667 566.70 1103.0
1300 577.46 0.0227 0.329 585.40 593.20 1178.6 0.784 0.5719 1.3559 580.00 1099.4
1400 587.1 0.0231 0.301 598.70 574.70 1173.4 0.7963 0.5491 1.3454 592.70 1095.4
1500 596.23 0.0235 0.277 611.60 556.30 1167.9 0.8082 0.5269 1.3351 605.10 1091.2
2000 635.82 0.0257 0.188 671.70 463.40 1135.1 0.8619 0.423 1.2849 662.20 1065.6
2500 668.13 0.0287 0.131 730.60 360.50 1091.1 0.9126 0.3197 1.2322 717.30 1030.6
3000 695.36 0.0346 0.086 802.50 217.80 1020.3 0.9731 0.1885 1.1615 783.40 972.7
3206.2 705.4 0.0503 0.050 902.70 0.00 902.7 1.0580 0 1.058 872.90 872.9211
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where �H = heat necessary to superheat steam from T1 to Ts
Cp = specific heat of superheated steam
Ts = temperature of superheated steam
T1 = saturated temperature of steam

The total enthalpy of superheated steam can now be calculated by
adding the enthalpy of water, the latent heat of vaporization of steam,
and the heat of superheating as follows:

Hs = Hw + L + Cp(Ts − T1) (4.6)

where Hs = enthalpy of superheated steam
Hw = enthalpy of water

L = latent heat of vaporization
Cp = specific heat of superheated steam
Ts = temperature of superheated steam
T1 = saturated temperature of steam

Of course, to calculate the enthalpy of superheated steam we must know
Cp. Using the steam tables avoids having to know the specific heat. We
can in fact calculate the specific heat Cp by using the enthalpy from the
steam tables in conjunction with Eq. (4.6).

Since superheated steam behaves fairly close to a perfect gas, we can
say that adiabatic expansion of superheated steam follows the equation:

PVγ = constant (4.7)

where P = pressure
V = volume of steam
γ = ratio of specific heats for superheated steam

Variable V may be replaced by the specific volume. Since γ is 1.3 for
superheated steam, the adiabatic expansion of superheated steam can
be expressed by

PV1.3 = constant (4.8)

Example 4.2 Calculate the amount of heat required to superheat 5 lb of dry
saturated steam at a pressure of 160 psia to a temperature of 500◦F. What
is the specific heat of this steam?

Solution From Tables 4.1 and 4.2,

Enthalpy of superheated steam at 160 psia and 500◦F = 1273.1 Btu/lb

Enthalpy of saturated steam at 160 psia or 500◦F = 1195.1 Btu/lb

Saturation temperature = 363.53◦F

The amount of heat required to superheat 5 lb of dry saturated steam is then

H = 5 × (1273.1 − 1195.1) = 390 Btu
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The specific heat of steam can be found from the heat balance equation (4.5)
as follows:

5 × Cp(500 − 363.53) = 390

Cp = 390
5 × 136.47

= 0.5716

Therefore, the specific heat of the superheated steam is 0.5716 Btu/(lb · ◦F).

When the steam properties are plotted such that entropy is on the
horizontal axis and enthalpy is on the vertical axis at various tem-
peratures and pressures, we get the Mollier diagram. This diagram is
useful in calculations involving steam flow processes. A typical Mollier
diagram is shown in Fig. 4.1. An abbreviated steam table of saturated
and superheated steam is shown in Table 4.2a and b.

4.3.6 Volume

The volume of a unit weight of dry steam depends on the pressure and
is determined experimentally. The steam tables include the specific vol-
ume (ft3/lb) of dry steam at various saturation pressures and saturation
temperatures. The density of dry steam is the reciprocal of the specific
volume and is given by

Density = 1
vs

lb/ft3 (4.9)

where vs is the specific volume (ft3/lb).
Consider wet steam of quality x. One pound of this steam will contain

x lb of dry steam and (1 − x) lb of water. Since the volume of the wet
steam is the sum of the volume of dry steam and that of the water, we
can write

Vws = Vds + Vw (4.10)

or

Vws = xvs + (1 − x)vw (4.11)

where Vws = volume of 1 lb of wet steam
x = quality of steam, a number less than 1.0

vs = specific volume of dry steam, ft3/lb
vw = specific volume of water, ft3/lb

Vds = volume of dry steam

Since the specific volume of water vw is very small in comparison with
the specific volume of steam vs at low pressure, we can neglect the term



TABLE 4.2a Properties of Superheated Steam

Pressure, Temperature,
psia ◦F 200 300 400 500 600

1 101.74 v 392.6 452.3 512.0 571.6 631.2
h 1150.4 1195.8 1241.7 1288.3 1335.7
s 2.0512 2.1153 2.1720 2.2233 2.2702

5 162.24 v 78.16 90.25 102.3 114.22 126.16
h 1148.8 1195.0 1241.0 1288.0 1335.4
s 1.8718 1.9370 1.9942 2.0456 2.0927

10 193.21 v 38.85 45.00 51.04 57.05 63.03
h 1146.6 1193.9 1240.6 1287.5 1335.1
s 1.7927 1.8595 1.9172 1.9689 2.0160

14.696 212 v 30.53 34.68 38.78 42.86
h 1192.8 1239.9 1287.1 1334.8
s 1.8160 1.8743 1.9261 1.9734

20 227.96 v 22.36 25.43 28.46 31.47
h 1191.6 1239.2 1286.6 1334.4
s 1.7808 1.8396 1.8918 1.9392

40 267.25 v 11.04 12.628 14.168 15.688
h 1186.8 1236.5 1284.8 1333.1
s 1.6994 1.7608 1.8140 1.8619

60 292.71 v 7.2590 8.357 9.403 10.427
h 1181.6 1233.6 1283.0 1331.8
s 1.6492 1.7135 1.7678 1.8162

80 312.03 v 6.22 7.020 7.797
h 1230.7 1281.1 1337.5
s 1.6791 1.7346 1.7836

100 327.81 v 4.937 5.589 6.218
h 1227.6 1279.1 1329.1
s 1.6518 1.7085 1.7581

120 341.25 v 4.081 4.636 5.165
h 1224.4 1277.2 1327.7
s 1.6287 1.6869 1.7370

140 353.02 v 3.468 3.954 4.413
h 1221.1 1275.2 1326.4
s 1.6087 1.6683 1.7190

160 363.53 v 3.008 3.443 3.849
h 1217.6 1273.1 1325
s 1.5908 1.6519 1.7033

180 373.06 v 2.649 3.044 3.411
h 1214.0 1271.0 1323.5
s 1.5745 1.6373 1.6894

200 381.79 v 2.361 2.726 3.06
h 1210.3 1268.9 1322.1
s 1.5594 1.6240 1.6767

220 389.86 v 2.125 2.465 2.772
h 1206.5 1266.7 1320.7
s 1.5453 1.6117 1.6652

240 397.37 v 1.9276 2.247 2.533
h 1202.5 1264.5 1319.2
s 1.5319 1.6003 1.6546

260 404.42 v 2.063 2.33
h 1262.3 1317.7
s 1.5897 1.6447

280 411.05 v 1.9047 2.156
h 1260.0 1316.2
s 1.5796 1.6354

300 417.33 v 1.7675 2.005
h 1257.6 1314.7
s 1.5701 1.6268

350 431.72 v 1.4923 1.7036
h 1251.5 1310.9
s 1.5481 1.607

400 444.59 v 1.2881 1.477
h 1245.1 1306.9
s 1.5281 1.5894
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Temperature,◦F

700 800 900 1000 1100 1200 1400 1600

690.8 750.4 809.9 869.5 869.5 988.7 1107.8 1227.0
1383.8 1432.8 1482.7 1533.5 1585.2 1637.7 1745.7 1857.5

2.2137 2.3542 2.3923 2.4283 2.4625 2.4192 2.5566 2.6137
138.10 150.03 161.95 173.87 185.79 197.71 221.60 245.40

1383.6 1432.7 1482.6 1533.4 1585.1 1637.7 1745.7 1857.4
2.1361 2.1767 2.2148 2.2509 2.2851 2.3178 2.3792 2.4363

69.01 74.98 80.95 86.92 92.88 98.84 110.77 122.69
1383.4 1432.5 1482.4 1533.2 1585.0 1637.6 1745.6 1857.3

2.0596 2.1003 2.1383 2.1744 2.2086 2.2413 2.3028 2.3598
46.94 51.00 55.07 59.13 63.19 67.25 75.37 83.48

1383.2 1432.3 1482.3 1533.1 1584.8 1637.5 1745.5 1857.3
2.0170 2.0576 2.0958 2.1319 2.1662 2.1989 2.2603 2.3174

34.47 37.46 40.45 43.44 46.42 49.41 55.37 61.34
1382.9 1432.1 1482.1 1533.0 1584.7 1637.4 1745.4 1857.2

1.9829 2.0 2.0618 2.0978 2.1321 2.1648 2.2263 2.2834
17.198 18.702 20.200 21.700 23.200 24.690 27.680 30.660

1381.9 1431.3 148.4 1532.4 1584.3 1637.0 1745.1 1857.0
1.9058 1.9467 1.9850 2.0212 2.0555 2.0883 2.1498 2.2069

11.441 12.449 13.452 14.454 15.453 16.451 18.446 20.440
1380.9 1430.5 1480.8 1531.9 1583.8 1636.6 1744.8 1856.7

1.8605 1.9015 1.9400 1.9762 2.0106 2.0434 2.1049 2.1621
8.562 9.322 10.077 10.830 11.582 12.332 13.830 15.523

1379.9 1429.7 1487.1 1531.3 1583.4 1636.2 1744.5 1856.5
1.8281 1.8694 1.9079 1.9442 1.9787 2.0115 2.0731 2.1303
6.835 7.446 8.052 8.656 9.259 9.860 11.060 12.258

1378.9 1428.9 1479.5 1530.8 1582.9 1635.7 1744.2 1856.2
1.8029 1.8443 1.8829 1.9193 1.9538 1.9867 2.0484 2.1056
5.683 6.195 6.207 7.207 7.710 8.212 9.214 10.213

1377.8 1428.1 1378.8 1530.2 1582.4 1635.3 1743.9 1856.0
1.8722 1.8237 1.8625 1.8990 1.9335 1.9664 2.0281 2.0854
4.861 5.301 5.738 6.172 6.604 7.035 7.895 8.752

1376.8 1427.3 1478.2 1529.7 1581.9 1634.9 1743.5 1855.7
1.7645 1.8063 1.8451 1.8817 1.9163 1.9493 2.0110 2.0683
4.244 4.631 5.015 5.396 5.775 6.152 6.906 7.656

1375.7 1426.4 1477.5 1529.1 1581.4 1634.5 1743.2 1855.5
1.7491 1.7911 1.8301 1.8667 1.9014 1.9344 1.9962 2.0535
4.764 4.11 4.452 4.792 5.129 5.466 6.136 6.804

1374.7 1425.6 1476.8 1528.6 1581.0 1634.1 1742.9 1855.2
1.7355 1.7776 1.8167 1.8534 1.8882 1.9212 1.9831 2.0404
3.38 3.693 4.002 4.309 4.613 4.917 5.521 6.123

1373.6 1424.8 1476.2 1528 1580.5 1633.7 1742.6 1855
1.7232 1.7655 1.8048 1.8415 1.8763 1.9094 1.9713 2.0287
3.066 3.352 3.634 3.913 4.191 4.467 5.017 5.565

1372.6 1424 1475.5 1527.5 1580 1633.3 1742.3 1854.7
1.712 1.7545 1.7939 1.8308 1.8656 1.8987 1.9607 2.0181
2.804 3.068 3.327 3.584 3.839 4.093 4.597 5.1

1371.5 1423.2 1474.8 1526.9 1579.6 1632.9 1742 1854.5
1.7017 1.7444 1.7839 1.8209 1.8558 1.8889 1.951 2.0084
2.582 2.827 3.067 3.305 3.541 3.776 4.242 4.707

1370.4 1422.4 1474.2 1526.3 1579.1 1632.5 1741.7 1854.2
1.6922 1.7352 1.7748 1.8118 1.8467 1.8799 1.942 1.9995
2.392 2.621 2.845 3.066 3.286 3.504 3.938 4.37

1369.4 1421.5 1473.5 1525.8 1578.6 1632.1 1741.4 1854.0
1.6834 1.7265 1.7662 1.8033 1.8383 1.8716 1.9337 1.9912
2.227 2.442 2.652 2.895 3.065 3.269 3.674 4.078

1368.3 1420.6 1472.8 1525.2 1578.1 1631.7 1741 1853.7
1.6751 1.7184 1.7582 1.7954 1.8305 1.8638 1.926 1.9835
1.898 2.084 2.266 2.445 2.622 2.798 3.147 3.493

1365.5 1418.5 1471.1 1523.8 1577 1630.7 1740.3 1853.1
1.6563 1.7002 1.7403 1.7777 1.813 1.8463 1.9086 1.9663
1.6508 1.8161 1.9767 2.134 2.29 2.445 2.751 3.055

1362.7 1416.4 1469.4 1522.4 1575.8 1629.6 1739.5 1852.5
1.6398 1.6842 1.7247 1.7623 1.7977 1.8311 1.8936 1.9513
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TABLE 4.2b Properties of Superheated Steam

Pressure, Temperature,
psia ◦F 500 550 600 620 640 660

450 456.28 v 1.1231 1.2155 1.3005 1.3332 1.3652 1.3967
h 1238.4 1272.0 1302.8 1314.6 1326.2 1337.5
s 1.5095 1.5437 1.5735 1.5845 1.5951 1.6054

500 467.01 v 0.9927 1.0800 1.1591 1.1893 1.2188 1.2478
h 1231.3 1266.80 1298.6 1310.7 1322.6 1334.2
s 1.4919 1.5280 1.5588 1.5701 1.5810 1.5915

550 476.94 v 0.8852 0.9686 1.0431 1.0714 1.0989 1.1259
h 1223.7 1261.20 294.3 1306.8 1318.9 1330.8
s 1.4751 1.5131 1.5451 1.5568 1.5680 1.5787

600 486.21 v 0.7947 0.8753 0.9463 0.9729 0.9988 1.0241
h 1215.7 1255.50 1289.90 1302.7 1315.2 1327.4
s 1.4586 1.4990 1.5323 1.5443 1.5558 1.5667

700 503.1 v 0.0277 0.7934 0.8177 0.8411 0.8639
h 1243.2 1280.6 1294.3 1307.5 1320.3
s 1.4722 1.5084 1.5212 1.5333 1.5449

800 518.23 v 0.6154 0.6779 0.7006 0.7223 0.7433
h 1229.80 1270.70 1285.4 1299.4 1312.9
s 1.4467 1.4863 1.5000 1.5129 1.5250

900 531.98 v 0.5364 0.5873 0.6089 0.6294 0.6491
h 1215.00 1260.10 1279.9 1290.9 1305.1
s 1.4216 1.4653 1.4800 1.4938 1.5066

1000 544.61 v 0.4533 0.5140 0.535 0.555 0.5733
h 1198.30 1248.80 1265.9 1297.0 1297.0
s 1.3961 1.4450 1.4610 1.4757 1.4893

1100 556.31 v 0.4532 0.4738 0.4929 0.510
h 1236.70 1255.3 1272.4 1288.5
s 1.4251 1.4425 1.4583 1.4728

1200 567.22 v 0.4056 0.4222 0.4410 0.4586
h 1223.5 1243.9 1262.4 1279.6
s 1.4052 1.4243 1.4413 1.4568

1400 587.1 v 0.3174 0.339 0.358 0.3753
h 1193.0 1218.4 1240.4 1260.3
s 1.3639 1.3877 1.4079 1.4258

1600 604.9 v 0.2733 0.2936 0.3112
h 1187.8 1215.2 1238.7
s 1.3489 1.3741 1.3952

1800 621.03 v 0.2407 0.2597
h 1185.1 1214.0
s 1.3377 1.3638

2000 635.82 v 0.1936 0.2161
h 1145.6 1184.9
s 1.2945 1.3300

2500 668.13 v
h
s

3000 695.36 v
h
s

3206.2 705.4 v
h
s

3500 v
h
s

4000 v
h
s

4500 v
h
s

5000 v
h
s

5500 v
h
s

NOTE: v = specific volume; h = enthalpy; s = entropy.



Temperature,◦F

680 700 800 900 1000 1200 1400 1600

1.4278 1.4584 1.6074 1.7516 1.8928 2.1700 2.4430 2.7140
1348.8 1359.9 1414.3 1467.7 1521.0 1628.6 1738.7 1851.9

1.6153 1.6250 1.6699 1.7108 1.7486 1.8177 1.8803 1.9381
1.2763 1.3044 1.4405 1.5715 1.6996 1.9504 2.1970 2.4420

1345.7 1357.0 1412.1 1566.0 1519.6 1627.6 1737.9 1851.3
1.6016 1.6115 1.6571 1.6982 1.7363 1.8056 1.8683 1.9262
1.1523 1.7830 1.3038 1.4241 1.5414 1.7706 1.9957 2.2190

1342.5 1354.0 1409.9 1464.3 1318.2 1626.6 1737.1 1850.6
1.5890 1.5991 1.6452 1.6868 1.7250 1.7946 1.8675 1.9155
1.0489 1.0732 1.1899 1.3013 1.6208 1.6208 1.8279 2.0330

1339.3 1351.1 1407.7 1462.5 1516.7 1625.5 1736.3 1850.0
1.5773 1.5875 1.6343 1.6762 1.7147 1.7846 1.8476 1.9056
0.8860 0.9077 1.0108 1.1082 1.2024 1.3853 1.5641 1.7405

1332.8 1345.0 1403.2 1459.0 1315.9 1623.5 1734.8 1848.8
1.5559 1.5665 1.6147 1.6573 1.6963 1.7666 1.8299 1.8881
0.7635 0.7833 0.8763 0.9633 1.0470 1.2088 1.3662 1.5214

1325.9 1338.6 1398.6 1455.4 1511.4 1621.4 1733.2 1847.5
1.5366 1.5476 1.5972 1.6407 1.6801 1.7510 1.8146 1.8729
0.6680 0.6863 0.7716 0.8506 0.9262 1.0714 1.2124 1.3509

1318.8 1332.1 1393.9 1451.8 1508.1 1619.3 1731.6 1846.3
1.5187 1.5303 1.5814 1.6257 1.6656 1.7371 1.8009 1.8595
0.5912 0.6084 0.6878 0.7604 0.8294 0.9615 1.0893 1.2146

1311.4 1325.3 1389.2 1448.2 1505.1 1617.3 1730.0 1845.0
1.5021 1.5141 1.5670 1.6121 1.6525 1.7245 1.7885 1.8474
0.528 0.5445 0.619 0.687 0.7503 0.8716 0.9885 1.1031

1303.7 1318.3 1384.3 1444.5 1502.2 1615.2 1728.4 1843.8
1.4862 1.4989 1.5535 1.5995 1.6405 1.7130 1.7775 1.8363
0.4752 0.4909 0.5617 0.6250 0.6843 0.7967 0.9046 1.0101

1295.7 1311.0 1379.3 1440.7 1499.3 1613.1 1726.9 1842.5
1.4710 1.4843 1.5409 1.5879 1.6293 1.7025 1.7672 1.8263
0.3912 0.4062 0.4714 0.5281 0.5805 0.6789 0.7727 0.8640

1278.5 1295.5 1369.1 1433.1 1495.2 1608.9 1723.7 1840.0
1.4419 1.4597 1.5177 1.5666 1.6093 1.6836 1.7489 1.8083
0.3271 0.2417 0.4034 0.4553 0.5027 0.5904 0.6738 0.7545

1259.6 1278.7 1358.4 1425.3 1487.0 1604.6 1720.5 1837.5
1.4137 1.4303 1.4964 1.5476 1.5914 1.6669 1.7328 1.7926
0.276 0.2907 0.3502 0.3986 0.4421 0.5218 0.5968 0.6693

1238.5 1260.3 1347.2 1417.4 1480.8 1600.4 1717.3 1835.0
1.3855 1.4044 1.4765 1.5301 1.5712 1.652 1.7185 1.7786
0.2337 0.2489 0.3074 0.3532 0.3935 0.4668 0.5352 0.6011

1214.8 1240 1335.5 1409.2 1474.5 1596.1 1714.1 1832.5
1.3564 1.3783 1.4576 1.5139 1.5603 1.6384 1.7055 1.7660
0.1484 0.1686 0.2294 0.271 0.3061 0.3678 0.4244 0.4784

1132.3 1176.6 1303.6 1387.8 1458.4 1585.3 1706.1 1826.2
1.2687 1.3073 1.4127 1.4772 1.5273 1.6088 1.6775 1.7389

0.0984 0.176 0.2159 0.2476 0.3018 0.3505 0.3966
1060.7 1267.2 1365 1441.8 1574.3 1698 1819.9

1.1966 1.369 1.4439 1.4984 1.5837 1.654 1.7163
0.1583 0.1981 0.2288 0.2806 0.3267 0.3703

1250.5 1355.2 1434.7 1569.8 1694.6 1817.2
1.3508 1.4309 1.4874 1.5742 1.6452 1.708

0.0306 0.1364 0.1762 0.2058 0.2546 0.2977 0.3381
780.5 1224.9 1340.7 1424.5 1563.3 1689.8 1813.6

0.9515 1.3241 1.4127 1.4723 1.5615 1.6336 1.6968
0.0287 0.1052 0.1462 0.1743 0.2192 0.2581 0.2943

763.8 1174.8 1314.4 1406.8 1552.1 1681.7 1807.2
0.9347 1.2757 1.3827 1.4482 1.5417 1.6154 1.6795
0.0276 0.0798 0.1226 0.1500 0.1917 0.2273 0.2602

753.5 1115.9 1286.5 1388.4 1540.8 1673.5 1800.9
0.9235 1.2204 1.3529 1.4253 1.5235 1.5990 1.6640
0.0268 0.0593 0.1036 0.1303 0.1696 0.2027 0.2329

746.4 1047.1 1256.5 1369.5 1529.5 1665.3 1794.5
0.9152 1.1622 1.3231 1.4034 1.5066 1.5839 1.6499
0.0262 0.0463 0.0880 0.1143 0.1516 0.1825 0.2106

741.3 985.0 1224.1 1349.3 1518.2 1657.0 1788.1
0.909 1.1093 1.293 1.3821 1.4908 1.5699 1.6369
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Figure 4.1 Mollier diagram.

containing vw in Eq. (4.11), and therefore we can state that

Vws = xvs (4.12)

Thus, the density of wet steam is the reciprocal of the specific volume
given in Eq. (4.12).

Density of wet steam = 1
xvs

(4.13)
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where x is the quality of steam (a number less than 1.0) and vs is the
specific volume of dry steam (ft3/lb).

It must be remembered that we neglected the second term in Eq. (4.11)
at low pressures. For high-pressure steam or for low values of steam
quality, we must include both terms in Eq. (4.11).

Example 4.3 Calculate the weight of 4 ft3 of wet steam (quality = 0.7) at a
pressure of 100 psia. Also calculate the enthalpy of 1 ft3 of this steam.

Solution From Eq. (4.13),

Density of wet steam = 1
xvs

From (Table 4.1) at 100 psia the specific volume of dry saturated steam is
4.432 ft3/lb. Therefore the density of wet steam of dryness fraction 0.7 is

Density = 1
0.7 × 4.432

= 0.3223 lb/ft3

Weight of 4 ft3 of wet steam = 4 × 0.3223 = 1.2893 lb

The enthalpy of this wet steam is calculated using Eq. (4.2) as follows. From
Table 4.1, at 100 psia,

Enthalpy of water = 298.4 Btu/lb and L = 888.8 Btu/lb

Therefore,

Enthalpy of wet steam = 298.4 + 0.7 × 888.8 = 920.56 Btu/lb

Enthalpy per ft3 = 920.56 × 0.3223 = 296.70 Btu/ft3

The volume of superheated steam may be calculated by two different
methods. The first method is approximate and based on the assumption
that steam behaves as a perfect gas during superheating. This is found
to be accurate at low pressures and higher superheat temperatures.
For high pressures and lower superheat temperatures the calculated
volume will be inaccurate.

For ideal gases at low pressures we can apply the ideal gas equation
as well as Boyle’s law and Charles’s law. Superheated steam behaves
close to ideal gases at low pressures. The ideal gas law states that the
pressure, volume, and temperature of a given quantity of gas are related
by the ideal gas equation as follows:

PV = nRT (4.14)
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where P = absolute pressure, psia
V = gas volume, ft3

n = number of lb moles of gas in a given mass
R = universal gas constant
T = absolute temperature of gas, ◦R (◦F + 460)

In USCS units, R has a value of 10.732 (psia · ft3)/(lb · mol · ◦R). Using
Eq. (4.14) we can restate the ideal gas equation as follows:

PV = mRT
M

(4.15)

where mrepresents the mass and M is the molecular weight of gas. The
ideal gas equation is only valid at pressures near atmospheric pressure.
At high pressures it must be modified to include the effect of compress-
ibility.

Two other equations used with gases are called Boyle’s law and
Charles’s law. Boyle’s law states that the pressure of a given quantity
of gas varies inversely as its volume provided the temperature is kept
constant. Mathematically, Boyle’s law is expressed as

P1

P2
= V2

V1

or
P1V1 = P2V2 (4.16)

where P1 and V1 are the initial pressure and volume, respectively, at
condition 1 and P2 and V2 refer to condition 2. In other words, PV =
constant.

Charles’s law relates to volume-temperature and pressure-
temperature variations for a given mass of gas. Thus keeping the pres-
sure constant, the volume of gas will vary directly with the absolute
temperature. Similarly, keeping the volume constant, the absolute pres-
sure will vary directly with the absolute temperatures. These are rep-
resented mathematically as follows:

V1

V2
= T1

T2
for constant pressure (4.17)

P1

P2
= T1

T2
for constant volume (4.18)

Note that in the preceding discussion, the temperature is always ex-
pressed in absolute scale. In USCS units, the absolute temperature is
stated as ◦R equal to (◦F + 460). In SI units the absolute temperature
is expressed in kelvin equal to (◦C + 273).

Pressures used in Eq. (4.18) must also be in absolute units, such as
psi absolute or kPa absolute.
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If we know the pressure at which steam is superheated (P), the spe-
cific volume of dry steam at this pressure (vs), the saturation temper-
ature of steam at this pressure (T1), and the final temperature of the
superheated steam, (Tsup), then we can calculate the specific volume of
the superheated steam (vsup). Applying the ideal gas law, which becomes
Charles’s law since pressure is constant, we get

Pvsup

T1
= Pvs

Tsup
(4.19)

or

vsup = vsTs

T1
(4.20)

where vsup = specific volume of superheated steam, ft3/lb
vs = specific volume of dry saturated steam, ft3/lb

Tsup = final temperature of superheated steam, ◦R
T1 = saturation temperature of steam, ◦R

Equation (4.20) gives an approximate value of the specific volume of
superheated steam at a particular temperature and pressure.

A more accurate method is to use the following equation, known as
Callendar’s equation.

vsup − 0.016 = 0.1101JT
P

− 1.192
(

273.1
T

)10/3

(4.21)

where vsup = specific volume of superheated steam, ft3/lb
T = absolute temperature of steam, K
P = pressure of steam, psia
J = mechanical equivalent of heat, 1400 ft · lb per

centigrade heat unit

Another equation for calculating the specific volume of superheated
steam is as follows:

vsup = 1.253(Hs − 835)
P

(4.22)

where Hs is the enthalpy of superheated steam and P is the pressure
of superheated steam (psia).

Example 4.4 Calculate the approximate volume of 4 lb of superheated steam
at a pressure of 300 psia and a temperature of 500◦F.

Solution From Table 4.2a, at 300 psia, the saturation temperature is

T1 = 417.33◦F + 460 = 877.33◦R
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Therefore the steam is superheated at a temperature of

Ts = 500 + 460 = 960◦R

The specific volume of dry saturated steam from Table 4.1 is

vs = 1.5433 ft3/lb

The specific volume of superheated steam, per Eq. (4.20), is

vsup = 1.5433 × 960
877.33

= 1.6887 ft3/lb

Example 4.5 Calculate the specific volume of superheated steam at a pres-
sure of 120 psia and a temperature of 600◦F using both the approximate
method and the more exact method.

Solution Using the approximate method, at 120 psia the saturation temper-
ature is

T1 = 341.25◦F = 341.25 + 460 = 801.25◦R

Also from Table 4.1 the specific volume of dry steam is 3.728 ft3/lb. Therefore
using Eq. (4.20), the specific volume of superheated steam at 600◦F is

vsup = 3.728
801.25

× (600 + 460) = 4.9319 ft3/lb

Using the more exact method, from Eq. (4.21), we calculate the specific
volume of superheated steam at 600◦F as follows:

600◦F = 600 − 32
9

× 5 = 315.56◦C = 315.56 + 273 = 588.56 K

The specific volume of superheated steam at 600◦F is

vsup − 0.0016 = 0.1101 × 1400 × 588.56
120 × 144

− 1.192

(
273.1

588.56

)10/3

= 5.1594 ft3/lb

It can be seen that the difference between the valves obtained, respectively,
by approximate method and the exact method is 4.4 percent.

4.3.7 Viscosity

Viscosity is defined as resistance to flow. It is found that as temperature
increases, the viscosity of steam also increases. A similar behavior is
exhibited with an increase in pressure. This is similar to most gases.
Table 4.3 shows the variation of viscosity of steam with temperature
and pressure. At 500 psia the viscosity of saturated steam is 1.9 × 10−5

lb/(ft · s) and 2.08 × 10−5 lb/(ft · s) at a temperature of 600◦F. Viscosity
is measured in lb/(ft · s) or Poise.
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TABLE 4.3 Viscosity Variation with Temperature and Pressure

Pressure, Saturated
Temperature◦F

psia vapor (lb · s)/ft2 200 400 600 800 1000 1200

0 2.59 3.49 4.35 5.19 5.99 6.76
500 5.90 6.47 7.30 8.10 8.87

1000 8.17 8.41 9.24 10.00 10.80
1500 10.20 10.20 11.00 11.80 12.60
2000 11.90 12.60 13.40 14.20
2500 13.50 14.00 14.80 15.60
3000 14.80 15.20 16.00 16.80
3500 16.30 17.10 17.90

NOTE: Table values multiplied by 10−7 equal viscosity of steam in (lb · s)/ft2.

4.4 Pipe Materials

Piping material used in steam piping generally conforms to national
codes and standards published by the American National Standards
Institute (ANSI) and the ASME. Other codes such as European (DIN),
Japanese (JIS), British, and Canadian standards as applicable may be
consulted for overseas projects. ASTM and ASME material specifica-
tions conforming to ASME Boiler and Pressure Vessel Codes are also
consulted for steam piping.

Steel pipe used for steam piping may be welded or seamless pipe.
ASTM A53 grades A and B and A106 grade B are used in many instal-
lations. The allowable design pressures must be adjusted downward for
increased operating temperatures. For high-temperature operations,
chrome-moly alloy steel is used.

Pipes are joined by means of welding or by screwed and flange fittings.
Nowadays welding has mostly replaced all screwed joints. Flange con-
nections are still necessary, and many installations have flanged valves
in steam piping. For pressures not exceeding 250 psi and temperatures
below 450◦F, malleable, cast iron, or bronze fittings may be used. Cast or
forged carbon steel fittings are used for higher temperatures and pres-
sures. Welded fittings such as elbows, tees, and flanges must conform
to ANSI B16.9 standards and ASTM A216, A234, or A105.

4.5 Velocity of Steam Flow in Pipes

The velocity of steam flowing through a pipe depends on the mass flow
rate, pipe inside diameter, pressure, and steam properties.

Mass flow rate = density × pipe area × velocity (4.23)

Velocity = mass flow
area × density

(4.24)
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Instead of density, we can use the reciprocal of the specific volume
in Eqs. (4.23) and (4.24). For example, consider a 6-in pipe flowing
10,000 lb/h of dry saturated steam at 100 psia. At this pressure the spe-
cific volume of steam from Table 4.1 is 4.432 ft3/lb. The cross-sectional
area of 6-in schedule 40 pipe is

A = 0.7854
(

6.065
12

)2

= 0.2006 ft2

Therefore, the velocity of steam, using Eq. (4.24), is

Velocity = 10,000
0.2006 × 1/4.432

= 220,937 ft/h = 3682 ft/min

A higher steam velocity means a higher friction drop and increased
noise and erosion of the pipe wall.

Table 4.4 lists some reasonable design velocities of steam flowing
through pipes. The velocities are based on reasonable pressure drops
that do not cause too much erosion in pipes. The velocity should be kept
lower with wet steam than dry steam, since the former will tend to
cause more erosion.

TABLE 4.4 Steam Velocities in Pipes

USCS units

Approximate velocity

Fluid Pressure, psig Use ft/min ft/s

Water 25–40 City water 120–300 2–5
Water 50–150 General service 300–600 5–10
Water 150+ Boiler feed 600–1,200 10–20
Saturated steam 0–15 Heating 4,000–6,000 67–100
Saturated steam 50+ Miscellaneous 6,000–10,000 100–167
Superheated steam 200 Large turbine and 10,000–20,000 167–334

boiler leads

SI units

Pressure, kPa
Approximate velocity

Fluid gauge Use m/min m/s

Water 172–276 City water 36–91 0.61–1.52
Water 345–1034 General service 91–183 1.52–3.05
Water 1034+ Boiler feed 183–366 3.05–6.10
Saturated steam 1–103 Heating 1,220–1,830 20.4–30.5
Saturated steam 345+ Miscellaneous 1,830–3,050 30.5–50.9
Superheated steam 1380+ Large turbine and 3,050–4,570 50.9–76.2

boiler leads
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The maximum velocity of steam in a pipe is equal to the speed of
sound in the fluid. It is calculated as follows:

Us =
√

γgRT (4.25)

where Us = sonic velocity
γ = specific heat ratio of steam
g = acceleration due to gravity, 32.2 ft/s2

R = gas constant
T = absolute temperature, ◦R

Example 4.6 What is the maximum (sonic velocity) of dry steam flowing
through a 6-in schedule 40 pipe at 300◦F? What is the corresponding velocity
for superheated steam at 400◦F and pressure at 100 psia?

Solution At 300◦F saturation temperature, dry steam has a pressure of
67.013 psia and a specific volume of 6.449 ft3/lb. The sonic velocity, using
Eq. (4.25), is

Us =
√

γgRT

This equation can be rewritten using the ideal gas law as

Us =
√

γgPv

where P is the pressure in lb/ft2 and v is the specific volume.
Using a specific heat ratio of dry steam γ = 1.135,

Us =
√

1.135 × 32.2 × 67.013 × 144 × 6.449 = 1508 ft/s

Therefore, the sonic velocity of dry saturated steam = 1508 ft/s.
For superheated steam, we get the specific volume from Table 4.2a at 400◦F

and 100 psia pressure as

vsup = 4.937 ft3/lb

Therefore, using a specific heat ratio of γ = 1.3, the sonic velocity of super-
heated steam is

Us =
√

1.3 × 32.2 × 100 × 144 × 4.937 = 1725 ft/s

Thus, the sonic velocity of superheated steam is 1725 ft/s.

Example 4.7 A steam piping application requires 6000 lb of steam per hour
at 100 psig. The velocity is limited to 4500 ft/min. What pipe size must be
used?

Solution From Table 4.1, the specific volume of dry saturated steam at 100
psig is 4.049. From Eq. (4.24), the velocity is

Velocity = mass
density × area
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Therefore,

4500 = 6000/60
(1/4.049) × 0.7854 × D2

Solving for the required diameter D,

D = 0.339 ft = 4.06 in

4.6 Pressure Drop

As steam flows through a pipe, energy is lost due to friction between
the steam molecules and the pipe wall. This is evident in the form of
a pressure gradient along the pipe. Before we introduce the various
equations to calculate the amount of pressure drop due to friction, we
will discuss an important parameter related to the flow of steam in a
pipeline, called the Reynolds number.

The Reynolds number of flow is a dimensionless parameter that de-
pends on the flow rate, pipe diameter, and steam properties such as
density and viscosity. The Reynolds number is used to characterize flow
type such as laminar flow and turbulent flow.

The Reynolds number is calculated as follows:

Re = vDρ

µ
(4.26)

where Re = Reynolds number of flow, dimensionless
v = velocity of flow, ft/s
D = pipe inside diameter, ft
ρ = steam density, slug/ft3

µ = steam viscosity, lb/(ft · s)

In steam flow, the following equation for the Reynolds number is more
appropriate.

Re = 6.31W
µD

(4.27)

where W = steam flow rate, lb/h
D = pipe inside diameter, in
µ = steam viscosity, cP

In SI units the Reynolds number is given by

Re = 353.404W
µD

(4.28)

Next Page
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where W = steam flow rate, kg/h
D = pipe inside diameter, mm
µ = steam viscosity, cP

Laminar flow is defined as flow that causes the Reynolds number to be
below a threshold value such as 2000 to 2100. Turbulent flow is defined
as flow that causes the Reynolds number to be greater than 4000. The
range of Reynolds numbers between 2000 and 4000 characterizes an
unstable flow regime known as critical flow.

Example 4.8 Steam at 500 psig and 800◦F flows through a 6-in schedule 40
pipe at 20,000 lb/h. Calculate the Reynolds number.

Solution We need the viscosity of steam at 500 psig pressure and 800◦F. From
Table 4.3, we get

Viscosity of steam = 0.026 cP approximately

The inside diameter of 6-in schedule 40 pipe is

D = 6.625 − 2 × 0.280 = 6.065 in

Using Eq. (4.27), we get

Re = 6.31 × 20,000
0.026 × 6.065

= 800,304

The Reynolds number is 800,304. Since this is greater than 4000, the flow is
turbulent.

4.6.1 Darcy equation for pressure drop

The Darcy equation, also called the Darcy-Weisbach equation, is one of
the oldest formulas used in classical fluid mechanics. It can be used to
calculate the pressure drop in pipes transporting any type of fluid, such
as a liquid or gas.

As steam flows through a pipe from point A to point B, the pressure
decreases due to friction between the steam and the pipe wall. The
Darcy equation may be used to calculate the pressure drop in steam
pipes as follows:

h = f
L
D

U2

2g
(4.29)

Previous Page
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where h = frictional pressure loss, in ft of head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = inside pipe diameter, ft
U = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

In USCS units, g = 32.2 ft/s2, and in SI units, g = 9.81 m/s2.
Note that the Darcy equation gives the frictional pressure loss in

feet of head of flowing fluid. It can be converted to pressure loss in
psi by multiplying by the density and a suitable conversion factor. The
term (U2/2g) in the Darcy equation is called the velocity head, and it
represents the kinetic energy of steam. The term velocity head will be
used in subsequent sections of this chapter when discussing frictional
head loss through pipe fittings and valves.

Another more convenient form of the Darcy equation with frictional
pressure drop expressed in psi and using mass flow rate in lb/h of steam
is as follows:

�P = (3.3557 × 10−6)
f LvW2

D5 (4.30)

where �P = frictional pressure loss, psi
f = Darcy friction factor, dimensionless
L = pipe length, ft
v = specific volume of steam, ft3/lb

W = steam flow rate, lb/h
D = pipe inside diameter, ft

In SI units, the Darcy equation for steam flow may be written as

�P = 62,511
f LvW2

D5 (4.31)

where �P = frictional pressure loss, kPa
f = Darcy friction factor, dimensionless
L = pipe length, m
v = specific volume of steam, m3/kg

W = steam flow rate, kg/h
D = pipe inside diameter, mm

In order to calculate the friction loss in a steam pipeline using the
Darcy equation, we must know the friction factor f . The friction factor f
in the Darcy equation is the only unknown on the right-hand side of
Eq. (4.30). This friction factor is a dimensionless number between 0.0
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and 0.1 (usually around 0.02 for turbulent flow) that depends on the
internal roughness of the pipe, pipe diameter, and the Reynolds number,
and therefore the type of flow (laminar or turbulent).

The friction factor may be calculated using the method described next
or found from the Moody diagram shown in Fig. 4.2. The Moody diagram
is a graphical plot of the friction factor f for all flow regimes (laminar,
critical, and turbulent) against the Reynolds number at various values
of the relative roughness of pipe. The internal roughness of the pipe
is represented by e and is listed for various pipes in Table 4.5. The
ratio of the pipe roughness to the inside diameter of the pipe (e/D)
is a dimensionless term called the relative roughness. The graphical
method of determining the friction factor for turbulent flow using the
Moody diagram is discussed next.

For a given Reynolds number on the horizontal axis, a vertical line is
drawn up to the curve representing the relative roughness e/D. The fric-
tion factor is then read by going horizontally to the vertical axis on the
left. It can be seen from the Moody diagram that the turbulent region is
further divided into two regions: the “transition zone” and the “complete
turbulence in rough pipes” zone. The lower boundary is designated as
“smooth pipes,” and the transition zone extends up to the dashed line.
Beyond the dashed line is the complete turbulence in rough pipes zone.
In this zone the friction factor depends very little on the Reynolds num-
ber and more on the relative roughness. The Moody diagram method of
finding the friction factor is easier than the calculation method using
the Colebrook-White equation discussed next.

For laminar flow, the friction factor f depends only on the Reynolds
number and is calculated from the following equation:

f = 64
Re

(4.32)

where f is the friction factor for laminar flow and Re is the Reynolds
number for laminar flow (R < 2100) (dimensionless). Therefore, if the
Reynolds number for a particular flow is 1200, the friction factor for
this laminar flow is 64/1200 = 0.0533.

4.6.2 Colebrook-White equation

If the flow is turbulent (Re > 4000), calculation of the friction factor
is not as straightforward as that for laminar flow. For turbulent flow,
we can calculate the friction factor f , using the Colebrook-White equa-
tion as follows. The friction factor f is given for turbulent flow (for
Re > 4000) as:

1√
f

= −2 log

(
e

3.7D
+ 2.51

Re
√

f

)
(4.33)
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TABLE 4.5 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0

where f = Darcy friction factor
D = pipe inside diameter, in
e = absolute pipe roughness, in

Re = Reynolds number of flow, dimensionless

In SI units the friction factor equation is the same as Eq. (4.33), but
with pipe diameter and absolute roughness of pipe both expressed in
millimeters. The friction factor and Reynolds number are dimensionless
and hence will remain the same.

It can be seen from Eq. (4.33) that the solution of friction factor f
is not straightforward. This equation is implicit and therefore has to
be solved by successive iteration. Once the friction factor is known, the
pressure drop due to friction can be calculated using the Darcy equation
(4.30).

Other formulas that have found popularity among engineers for fric-
tion loss calculations in steam pipes will be discussed next.

4.6.3 Unwin formula

The Unwin formula has been successfully used in steam piping calcula-
tions for many years. It is quite satisfactory for most purposes. However,
at high flow rates, the pressure drops predicted by the Unwin formula
are found to be higher than actual values. The Unwin formula in USCS
units is as follows:

�P = (3.625 × 10−8)vLW2 1 + 3.6/D
D5 (4.34)

where �P = pressure drop, psi
W = steam flow rate, lb/h
L = pipe length, ft
D = pipe inside diameter, in
v = specific volume, ft3/lb
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In SI units, the Unwin formula is as follows:

�P = 675.2723vLW2 1 + 91.44/D
D5 (4.35)

where �P = pressure drop, kPa
W = steam flow rate, kg/h
L = pipe length, m
D = pipe inside diameter, mm
v = specific volume, m3/kg

4.6.4 Babcock formula

Another empirical equation for steam flow is the Babcock formula. It can
also be used to calculate the pressure drop in steam piping. A version
of the Babcock formula is as follows:

�P = 0.47
D + 3.6

D6 w2Lv (4.36)

where �P = pressure drop, psig
D = pipe inside diameter, in
w = mass flow rate, lb/s
L = pipe length, ft
v = specific volume, ft3/lb

Note that in Eq. (4.36), the steam flow rate is in lb/s, not in lb/h as in
other equations discussed earlier.

In SI units the Babcock formula is

�P = (8.755 × 109)
D + 3.6

D6 w2Lv (4.37)

where �P = pressure drop, kPa
D = pipe inside diameter, mm
w = mass flow rate, kg/s
L = pipe length, m
v = specific volume, m3/kg

Several other pressure drop equations are used in steam piping cal-
culations, including the Spitzglass and Fritzche formulas. Generally,
because of their ease of use, charts are used to determine the pres-
sure drop in steam piping. Thus a nomogram is available based on the
Fritzche formula, and a chart using the Spitzglass formula is used for
saturated steam calculations. Refer to Standard Handbook of Engi-
neering Calculations by Tyler Hicks, McGraw-Hill, New York, 1995, for
charts based on the Fritzche and Spitzglass formulas.
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4.6.5 Fritzche’s equation

This is another empirical equation for calculating pressure drop in
steam piping. As indicated earlier, charts have been constructed based
on this equation for quickly calculating the pressure drop. Fritzche’s
equation is as follows:

�P = (2.1082 × 10−7)vLW1.85 1
D4.97 (4.38)

where �P = frictional pressure loss, psi
v = specific volume of steam, ft3/lb
L = pipe length, ft

W = steam flow rate, lb/h
D = pipe inside diameter, ft

In SI units Fritzche’s equation is as follows:

�P = 3165.38vLW1.85 1
D4.97 (4.39)

where �P = frictional pressure loss, kPa
v = specific volume of steam, m3/kg
L = pipe length, m

W = steam flow rate, kg/h
D = pipe inside diameter, mm

Another equation that takes into account the compressibility of the
steam, by using an expansion factor Y, is the modified Darcy formula
applicable to steam and other compressible fluids. This equation is ex-
pressed as follows:

W = 1891 Yd2 �P
Kv

(4.40)

K = f
L
D

(4.41)

where W = mass flow rate, lb/h
Y = expansion factor for pipe
D = pipe inside diameter, in

�P = pressure drop, psig
K = resistance coefficient
L = pipe length, ft
f = Darcy friction factor
v = specific volume of steam at inlet pressure, ft3/lb



234 Chapter Four

TABLE 4.6 Sonic Velocity Factors
for γ = 1.3

K �P/P1 Y

1.2 0.525 0.612
1.5 0.550 0.631
2.0 0.593 0.635
3.0 0.642 0.658
4.0 0.678 0.670
6.0 0.722 0.685
8.0 0.750 0.698

10.0 0.773 0.705
15.0 0.807 0.718
20.0 0.831 0.718
40.0 0.877 0.718

100.0 0.920 0.718

Using the equivalent length of valves and fittings, discussed in Sec.
4.9, the K values, of pipe, valves, and fittings may be calculated from
Eq. (4.41) and added up to get the total value to be used in Eq. (4.40).
The expansion factor Y must be found graphically or using a table. It
depends on the specific heat ratio γ and the K value calculated for all
pipe, valves, and fittings. Tables 4.6 and 4.7 list values to be used when
sonic velocity occurs in pipes.

Example 4.9 Calculate the pressure drop in a 200-ft-long NPS 8 (0.250-in
wall thickness) steam pipe flowing saturated steam at 50,000 lb/h. The initial
pressure is 150 psia.

Solution From Table 4.1, at 150 psia, saturated steam has a specific volume
of 3.015 ft3/lb. The inside diameter of the pipe is

D = 8.625 − 2 × 0.250 = 8.125 in

TABLE 4.7 Sonic Velocity Factors
for γ = 1.4

K �P/P1 Y

1.2 0.552 0.588
1.5 0.576 0.606
2.0 0.612 0.622
3.0 0.662 0.639
4.0 0.697 0.649
6.0 0.737 0.671
8.0 0.762 0.685

10.0 0.784 0.695
15.0 0.818 0.702
20.0 0.839 0.710
40.0 0.883 0.710

100.0 0.926 0.710
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Using the Unwin formula (4.34), we get the pressure drop as

�P = 3.625 × 10−8 × 3.015 × 200 × (50,000)2 (1 + 3.6/8.125)
(8.125)5

= 2.23 psi

Therefore, the pressure drop is 2.23 psi.

Example 4.10 Steam flows through a 150-m-long DN 200 (6-mm wall thick-
ness) pipe. If the steam velocity is limited to 40 m/s, what is the maximum
flow rate permissible at an inlet pressure of 1000 kPa gauge? Calculate the
pressure drop at this flow rate using the Unwin formula.

Solution At 1000 kPa, the specific volume of steam is found from Table 4.1
as follows:

1000 kPa gauge pressure = 145 + 14.7 = 159.7 psia

Specific volume = 2.839 ft3/lb

Therefore, the density is

ρ = 1
2.839

× 35.3147
2.205

= 5.6413 kg/m3

The steam velocity is given by Eq. (4.24) as follows:

Velocity = mass flow
area × density

The DN 200 (6-mm wall thickness) pipe has an inside diameter of

D = 200 − 2 × 6 = 188 mm

Limiting the velocity to 500 m/s, we get the mass flow rate as

W = 40 × 0.7854 ×
(

188
1000

)2

× 5.6413 = 6.26 kg/s = 22,536 kg/h

Next, using the Unwin formula, we get

�P = 675.2723 × 1
5.6413

× 150 × (22,536)2 1 + 91.44/188
(188)5

= 57.71 kPa

Therefore, the pressure drop is 57.71 kPa.

Example 4.11 A 50 ft-long, 2-in schedule 40 steam header pipe is flowing
saturated steam at 200 psia. The piping includes two standard 90◦ elbows
and a fully open globe valve. The exit pressure is atmospheric. Calculate the
steam flow rate in lb/h using the Darcy equation.

Solution At 200 psia, from Table 4.1, we get

Specific volume vs = 2.288 ft3/lb

We will use the K factor to account for the resistance in fittings, valves, and
straight pipe. K is calculated from Eq. (4.41) for each component, such as
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TABLE 4.8 Equivalent Lengths of
Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

pipe fittings, and added up to obtain the combined K factor. We will assume
a friction factor of 0.02 since we do not know the Reynolds number as the
flow rate is unknown.

For pipe,

K = 0.02 × 50 × 12
2.067

= 5.806

From a table of equivalent lengths of valves and fittings, Table 4.8, we get
for two 90◦ elbows,

K = 2 × 30 × 0.02 = 1.2

and for one globe valve,

K = 340 × 0.02 = 6.8

Adding one entrance loss of K = 0.5 and one exit loss of K = 1.0, we get

Total K for all components = 5.806 + 1.2 + 6.8 + 1.5 = 15.31

Pressure drop = 200 − 14.7 = 185.3 psi

�P
P1

= 185.3
200

= 0.9265

For this pressure ratio, γ = 1.3, and K = 15.31, we get the maximum value
of �P/P1 = 0.81 from Table 4.7. Since the actual pressure ratio is 0.9265,
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the sonic velocity exists at the pipe outlet. Therefore,

�P = 0.81 × 200 = 162 psi

We also can obtain the expansion factor Y = 0.718 from Table 4.7. The steam
flow rate can now be calculated from Eq. (4.40) as follows:

W = 1891 × 0.718 × (2.067)2 ×
(

162
15.31 × 2.288

)0.5

= 12,475 lb/h

4.7 Nozzles and Orifices

As steam flows through restrictions in a pipe, such as nozzles and ori-
fices, the pressure drops and the velocity of flow increases. The required
cross-sectional area of the nozzle will be based upon the properties of
the steam, temperature, pressure, and mass flow rate. It has been found
that for steam flow in nozzles, to handle a specific flow rate the shape
of the nozzle must converge to a smaller diameter (known as a throat)
and then increase in size. This is known as a convergent-divergent noz-
zle. If the divergent portion of the nozzle did not exist and the pressure
P2 at the discharge of the nozzle is decreased, keeping the inlet pressure
P1 fixed, the quantity of steam flowing through the nozzle will increase
up to a point where P2 reaches a critical pressure. A further decrease in
P2 will not increase the mass flow rate. The ratio of the critical pressure
Pc to the inlet pressure P1 is found to be a constant value that depends
upon the specific heat ratio of steam. This ratio, known as the critical
pressure ratio, is as follows:

Pc

P1
=
(

2
γ + 1

)γ /(γ−1)

(4.42)

For saturated steam, γ = 1.135 and the critical pressure ratio becomes

Pc

P1
= 0.575 (4.43)

For superheated steam, γ = 1.3 and the critical pressure ratio is

Pc

P1
= 0.545 (4.44)

where P1 = upstream pressure, psia
P2 = downstream pressure, psia
Pc = critical pressure, psia

Consider an orifice of area A2 installed in a pipe of cross-sectional
area A1. If the upstream pressure is P1 and the pressure at the orifice
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is P2, then the mass flow rate is given by the following equation:

M = A2√
1 − (P2/P1)2/γ (A2/A1)2

√√√√ 2gγ

γ − 1
P1ρ1

[(
P2

P1

)2/γ

−
(

P2

P1

)(γ+1)/γ
]

(4.45)

where M = mass flow rate, lb/s
A1 = upstream pipe cross-sectional area, ft2

A2 = nozzle throat area, ft2

γ = ratio of specific heats of steam (usually 1.3), dimensionless
g = acceleration due to gravity, ft/s2

ρ1 = density of steam at upstream location, lb/ft3

P1 = upstream pressure, lb/ft2absolute
P2 = downstream pressure, lb/ft2absolute

As steam flow approaches a smaller-diameter nozzle (see Fig. 4.3),
the velocity increases and may equal the sonic velocity. At sonic ve-
locity the Mach number (steam speed/sound speed) is 1.0. When this
happens, the ratio of the pressure in nozzle P2 to the upstream pressure
P1 is defined as the critical pressure ratio. This ratio is a function of the
specific heat ratio γ of steam.

If the steam flow through the nozzle has not reached sonic velocity,
the flow is termed subsonic. In this case the pressure ratio P2/P1 will
be a larger number than the critical pressure ratio calculated from
Eq. (4.42).

If the pressure drop (P1 − P2) increases such that the critical pressure
ratio is reached, the flow through the nozzle will be sonic. The flow rate
equation then becomes, after setting P2/P1 equal to the critical pressure

1 2

P1, T1, r1 P2, T2, r2

Area A1

Area A2

Velocity U2Velocity U1

Figure 4.3 Steam flow through a restriction.
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ratio from Eq. (4.42),

M = A2 P1√
T1

√
gγ

R

(
2

γ + 1

)(γ+1)/(γ−1)

(4.46)

A further increase in pressure drop causes the flow through the nozzle
to remain sonic, and the pressure at the exit of the nozzle will increase.
Even though the pressure drop has increased, there will be no change
in mass flow rate. This is known as choked flow.

For pressure drops less than the critical ratio, the flow rate through
a nozzle can also be calculated from

Q1 = 31.5CD2
2Y
(

�P
ρ1

)0.5

(4.47)

where Q1 = upstream flow, ft3/min
C = coefficient of discharge for nozzle, 0.94–0.96

D1 = diameter of the upstream end of pipe
D2 = diameter of throat
Y = expansion factor, depends on ratio of pressure P2/P1,

ratio of diameters D2/D1, and specific heat ratio

Some values of Y are listed in Table 4.9. Equation (4.47) can also be used
for orifices, but the coefficient of discharge C will range from 0.5 to 0.6.

TABLE 4.9 Expansion Factors for Nozzles

Ratio of diameters, D2/D1

Ratio of pressure P2/P1 k 0.30 0.40 0.50 0.60 0.70

0.95 1.40 0.973 0.972 0.971 0.968 0.962
1.30 0.970 0.970 0.968 0.965 0.959
1.20 0.968 0.967 0.966 0.963 0.956

0.90 1.40 0.944 0.943 0.941 0.935 0.925
1.30 0.940 0.939 0.936 0.931 0.918
1.20 0.935 0.933 0.931 0.925 0.912

0.85 1.40 0.915 0.914 0.910 0.902 0.887
1.30 0.910 0.907 0.904 0.896 0.880
1.20 0.902 0.900 0.896 0.887 0.870

0.80 1.40 0.886 0.884 0.880 0.868 0.850
1.30 0.876 0.873 0.869 0.857 0.839
1.20 0.866 0.864 0.859 0.848 0.829

0.75 1.40 0.856 0.853 0.846 0.836 0.814
1.30 0.844 0.841 0.836 0.823 0.802
1.20 0.820 0.818 0.812 0.798 0.776

0.70 1.40 0.824 0.820 0.815 0.800 0.778
1.30 0.812 0.808 0.802 0.788 0.763
1.20 0.794 0.791 0.784 0.770 0.745
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For saturated steam when the back pressure past the orifice falls
below the critical pressure, the flow rate depends upon the inlet pres-
sure P1 and the orifice area A2. The mass flow rate w of saturated steam
can then be calculated approximately using one of the following equa-
tions:

Napier’s equation: w = P1 × A2

70
(4.48)

Grashof equation: w = 0.0165A2 × P1
0.97 (4.49)

Rateau’s equation: w = A2 P1[16.367 − 0.96 log10(P1)]
1000

(4.50)

where w = mass flow rate, lb/s
A2 = orifice throat area, in2

P1 = upstream pressure, psia

The Grashof and Rateau’s equations can be applied to well-rounded
convergent orifices with a discharge coefficient of 1.0. For saturated
steam calculation, for flow through convergent-divergent nozzles, the
Grashof or Rateau equations may be used. When the back pressure P2
is greater than the critical flow pressure Pc, the mass flow rate can be
calculated from the general flow formula. Using steam tables or the
Mollier chart we can determine the enthalpies H1 and H2 after the
isentropic expansion. The velocity at throat U2 is calculated from

U2 = 223.7(H1 − H2)1/2 (4.51)

where H1 = enthalpy of steam at upstream location, Btu/lb
H2 = enthalpy of steam at throat of nozzle, Btu/lb
U2 = velocity of steam at throat of nozzle, ft/s

The mass flow rate is calculated from

W = A2U2

v2
(4.52)

where W = mass flow rate, lb/s
A2 = throat area, ft2

U2 = velocity of steam at throat of nozzle, ft/s
v2 = specific volume of steam at throat of nozzle, ft3/lb

Example 4.12 Superheated steam at 400◦F flows through a convergent-
divergent nozzle that decreases in size from 2 in to 1 in at the throat.

(a) What is the mass flow rate of steam if the ratio of specific heat γ = 1.3,
the pressure upstream is 160 psia, and the pressure at the throat is 120 psia?
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(b) What is the maximum steam flow rate possible through this nozzle for
critical pressure at the throat?

Solution

(a) At 160 psia, from Table 4.1 we get the following. The specific volume of
superheated steam is

vs = 3.008 ft3/lb

The cross-sectional area of the upstream section of pipe is

A1 = 0.7854 ×
(

2
12

)2

= 0.0218 ft2

and the cross-sectional area at the nozzle throat is

A2 = 0.7854 ×
(

1
12

)2

= 0.00545 ft2

Therefore, the ratio of the areas is

A2

A1
= 0.00545

0.0218
= 0.25

The ratio of throat pressure to upstream pressure is

P2

P1
= 120

160
= 0.75

For superheated steam, from Eq. (4.42), the critical pressure ratio is

Pc

P1
= 0.545

Therefore, the critical pressure ratio has not been reached.
Next we will calculate the various ratios needed in Eq. (4.45) for calculating

the mass flow rate through the nozzle:

γ

γ − 1
= 1.3

0.3
= 4.33

2
γ

= 2
1.3

= 1.5385

γ + 1
γ

= 2.3
1.3

= 1.7692

The mass flow rate can now be calculated from Eq. (4.45) as follows:

M = 0.00545√
1 − (0.75)1.5385(0.25)2

×
√

2 × 32.2 × 4.33
3.008

× 160 × 144[(0.75)1.5385 − (0.75)1.7692]

= 1.6853 lb/s = 1.6853 × 3600 = 6067 lb/h
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Therefore, the mass flow rate of steam is 6067 lb/h.

(b) When the pressure at the throat reaches the critical value Pc/P1 =
0.545, then using the ideal gas equation,

RT1 = P
ρ1

Therefore,

RT1 = 160 × 144 × 3.008 = 69, 304.32

The mass flow rate can be calculated by substituting values into Eq. (4.46):

M = 0.00545 × 160 × 144

√
32.2 × 1.3
69, 304.32

(
2

2.3

)7.6667

= 1.806 lb/s = 6502 lb/h

Therefore, the maximum flow rate of steam at the critical pressure condition
at the throat is 6502 lb/h.

Example 4.13 A saturated steam piping (200-mm inside diameter) operates
at an inlet pressure of 1400 kPa absolute.

(a) What is the maximum flow rate if the velocity of the steam is limited to
1200 m/min?

(b) Calculate the pressure loss in a 200-m length of pipe. Use the Darcy
equation with a friction factor of 0.02.

(c) What is the sonic velocity limit in this pipe?

Solution

(a) Converting kilopascals to psia,

1400 kPa = 1400 × 0.145 = 203 psia

From Table 4.1, dry saturated steam has a specific volume of

vs = 2.28 ft3/lb = 0.1424 m3/kg

The mass flow rate is

W = area × velocity
specific volume

= 0.7854 × (0.200)2 × 1200
0.1424

= 264.7 kg/min

= 15,844 kg/h

Therefore, to limit the velocity to 1200 m/min, the steam flow rate must not
exceed 15,844 kg/h.

(b) Using the Darcy equation (4.31), the pressure loss is

�P = 62,511 × 0.02 × 200 × 0.1424 × (15,844)2

(200)5
= 27.93 kPa
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Therefore, the pressure drop is 27.93 kPa.

(c) The sonic velocity limit is given by

Us =
√

γgPvs =
√

1.135 × 9.81 × 1400 × 0.1424

= 47.11 m/s = 2827 m/min

where we have used g = 1.135 for saturated steam. Therefore the sonic
velocity limit is 2827 m/min.

Example 4.14 Steam at a flow rate of 20,000 lb/h is expanded in a convergent-
divergent nozzle from an initial pressure of 300 psia at 700◦F to a final
pressure of 100 psia. Assuming the nozzle efficiency is 92 percent, calculate
the areas of the exit and the throat. What inlet area would be required if the
velocity of approach cannot exceed 90 ft/s?

Solution From the Mollier diagram (Fig. 4.1), at 300 psia and 700◦F, the
specific volume, enthalpy, and entropy are as follows:

v1 = 2227 ft3/lb

h1 = 1368.3 Btu/lb

s1 = 1.6751 Btu/lb R

Drawing a vertical line for the isentropic process to 100 psia, the enthalpy
for the Mollier diagram is h2 = 1250 Btu/lb. The velocity at the outlet is

U2 =
√

902 + 2 × 32.2 × 778 × 0.92(1368.3 − 1250) = 2337 ft/s

The actual enthalpy at the nozzle exit is calculated using the nozzle efficiency
of 92 percent as

h2 = 1368.3 − 0.92(1368.3 − 1250) = 1259.5 Btu/lb

From Table 4.1 at 100 psia and above enthalpy h2, the specific volume of
steam, by interpolation, is

v2 = 5.34 ft3/lb

The nozzle exit area is then, using the mass flow equation,

A2 = 20,000 × 5.34
2337 × 3600

= 0.0127 ft2

To determine the throat area, assuming the critical pressure ratio is reached
for superheated steam,

Pc = 0.55 × 300 = 165 psia

From the Mollier diagram, expansion to this pressure results in an enthalpy
of

hc = 1290 Btu/lb
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Applying the same nozzle efficiency of 92 percent, enthalpy at the throat is

ht = 1368.3 − 0.92(1368.3 − 1290) = 1296.3 Btu/lb

From Table 4.1, the specific volume for 165 psia and the obtained enthalpy
ht is, by interpolation,

vt = 3.523 ft3/lb

The velocity at the throat is

Vt = 223.7
√

1368.3 − 1296.3 = 1898.2 ft/s

The area of the throat is

At = 20,000
3600

× 3.523
1898.2

= 0.0103 ft2 = 1.48 in2

The inlet area required is

A1 = 20,000
3600

× 2.227
90

= 0.1375 ft2 = 19.8 in2

Example 4.15 Determine the pipe size required for 22,000 kg/h of saturated
steam flowing at an inlet pressure of 1100 kPa absolute, if the pressure drop
is limited to 20 percent in a 200-m length of pipe.

Solution From Table 4.1 at 1100 kPa = 1100×0.145 = 159.5 psia, the specific
volume of dry saturated steam is

vs = 2.834 ft3/lb = 0.177 m3/kg

Using Unwin’s equation 4.35, and letting pressure drop be 0.2 × 1100 =
220 kPa,

�P = 220 = 675.2723 × 0.177 × 200 × (22,000)2 (1 + 91.44)/D
D 5

This equation will be solved for diameter d by successive iteration. First
we will neglect the term 91.44/d and calculate a first approximation for the
diameter as

D = 18.56 mm

Substituting this value of d in the neglected term and recalculating the di-
ameter we get

D = 26.49 mm

Repeating the process a few more times we get a final value of diameter as

D = 25.21 mm

Therefore, the pipe size required is 25.21-mm inside diameter.



Steam Systems Piping 245

4.8 Pipe Wall Thickness

The pipe wall thickness required to withstand the maximum operating
pressure in a steel pipe is calculated using the ASME B31.1 Code for
Pressure Piping as follows:

t = DP
2(S+ YP)

+ C (4.53)

where t = pipe wall thickness, in
D = pipe outside diameter, in
P = internal pressure, psig
S= allowable stress in pipe material, psig
Y = temperature coefficient
C = end condition factor, in

Values of S, Y, and C are taken from the ASME Code for Pressure Piping,
Boiler and Pressure Vessel Code, and Code for Pressure Piping. For
example, for a seamless Ferritic steel pipe with a 55,000-psi minimum
tensile strength, the allowable pipe stress at 850◦F is 13,150 psi.

Example 4.16 Calculate the pipe wall thickness required in an 8-in steel
pipe used for steam at 900◦F and 800 psig pressure. Assume allowable
stress = 12,500 psi, Y = 0.4, and C = 0.065 in.

Solution Using Eq. (4.53), the pipe wall thickness required is

t = 8.625 × 800
2(12,500 + 0.4 × 800)

+ 0.065 = 0.3341 in

Allowing 12.5 percent for manufacturing tolerance, the wall thickness
required = 0.3341 × 1.125 = 0.3759 in.

Example 4.17 Calculate the pressure loss in 500 ft of 4-in schedule 40 steel
pipe used for conveying 300◦F superheated steam at 10,000 lb/h and 60 psia
pressure.

Solution The specific volume at 60 psia and 300◦F from Table 4.1 is

vs = 7.259 ft3/lb

From Unwin’s formula

�P = 3.625 × 10−8 × 7.259 × 500 × (10,000)2 1 + 3.6/4.026
(4.026)5

= 23.56 psi

Therefore, the pressure loss in 500 ft of pipe is 23.56 psi.
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4.9 Determining Pipe Size

To calculate the size of pipe required to transport a given quantity of
steam through a piping system we must take into account the initial
pressure of the steam at the source and the total pressure drop allow-
able through the piping system. The velocity of steam affects noise and
therefore is also an important consideration. Tables are available to
use as a guide for pressure drops in steam piping such as shown in
Table 4.10. As an example, if the initial steam pressure is 100 psig,
the pressure drop recommended per 100 ft of pipe is 2 to 5 psi, and a
total pressure drop in the steam supply piping should range between
15 and 25 psi. Charts are available from various HVAC sources that
may be used for sizing steam piping and calculating pressure drops
and velocities at different steam flow rates.

In the previous sections, we introduced several formulas and tables to
calculate the pressure drop in steam piping. Based on allowable steam
velocities, the mass flow rate of steam is calculated. Next for the speci-
fied flow rate and allowable pressure drop a suitable pipe size is calcu-
lated using one of the Unwin, Darcy, or Fritzsche equations.

Example 4.18 A steam piping system transports 20,000 lb/h of dry sat-
urated steam at 150 psia. If the velocity is limited to 3000 ft/min, what
size pipe is required? Calculate the pressure loss due to friction in 500 ft
of pipe using the Unwin and Darcy equations, and compare the answers
obtained.

Solution At 150 psia, from Table 4.1, the specific volume of saturated
steam is

vs = 3.015 ft3/lb

TABLE 4.10 Pressure Drops in Steam Piping

Initial steam pressure, Pressure drop Total pressure drop in steam
psig per 100 ft supply piping, psi

Subatmosphere 2–4 oz 1–2
0 0.5 oz 1
1 2 oz 1–4
2 2 oz 8
5 4 oz 1.5

10 8 oz 3
15 1 psi 4
30 2 psi 5–10
50 2–5 psi 10–15

100 2–5 psi 15–25
150 2–10 psi 25–30
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The mass flow rate and velocity are related by Eq. (4.24). Therefore,

20,000
60

= Area × 3000 × 1
3.015

Area required = 20, 000 × 3.015
60 × 3000

= 0.335 ft2

If the pipe inside diameter is D inches,

0.7854

(
D
12

)2

= 0.335

Solving for D, we get

D = 7.84 in

The pressure loss due to friction per the Unwin formula is by Eq. (4.34).

�P = 3.625 × 10−8 × 3.015 × 500 × (20,000)2 (1 + 3.6/7.84)
(7.84)5

= 1.077 psi

At the given conditions, the steam viscosity = 0.015 cP and the Reynolds
number is

Re = 6.31 × 20,000
0.015 × 7.84

= 1.07 × 106

From the Moody diagram f = 0.0155. Using the Darcy equation (4.30), we
get

�P = 3.3557 × 10−6 × 0.0155 × 3.015 × 500 × 20,0002

7.845
= 1.06 psi

It can be seen from the calculations that the Unwin and Darcy eqations give
close results.

4.10 Valves and Fittings

Valves of various types such as gate valves, globe valves, and check
valves are used on steam piping systems to isolate piping and to provide
connections to equipment. Gate valves are normally used in instances
where the valve needs to be fully open or fully closed. For throttling
purposes globe valves may be used. Check valves are used to prevent
backflow such as on steam-feed lines. Control valves are used to provide
pressure reduction to protect low-pressure equipment. Relief valves are
installed to prevent overpressuring and rupture of piping and connected
equipment. Safety and relief valves are designed in accordance with
ASME codes.
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Pressure loss through valves and fittings may be accounted for by
using an equivalent length or resistance coefficient K. Table 4.8 lists
the equivalent lengths and K factors for commonly used valves and
fittings.

It can be seen from Table 4.8 that a gate valve has an L/D ratio of 8
compared to straight pipe. Therefore a 10-in-diameter gate valve may
be replaced with a 10 × 8 = 80-in-long piece of pipe that will match the
frictional pressure drop through the valve.

Example 4.19 A piping system is 2000 ft of NPS 20 pipe that has two 20-
in gate valves, three 20-in ball valves, one swing check valve, and four 90◦
standard elbows. Using the equivalent length concept, calculate the total
pipe length that will include all straight pipe, valves, and fittings.

Solution Using Table 4.8, we can convert all valves and fittings in terms of
20-in pipe as follows,

Two 20-in gate valves = 2 × 20 × 8 = 320 in of 20-in pipe

Three 20-in ball valves = 3 × 20 × 3 = 180 in of 20-in pipe

One 20-in swing check valve = 1 × 20 × 50 = 1000 in of 20-in pipe

Four 90◦ elbows = 4 × 20 × 30 = 2400 in of 20-in pipe

Total for all valves and fittings = 4220 in of 20 in-pipe

= 351.67 ft of 20-in pipe

Adding the 2000 ft of straight pipe, the total equivalent length of straight
pipe and all fittings is

Le = 2000 + 351.67 = 2351.67 ft

The pressure drop due to friction in this piping system can now be calculated
based on 2351.67 ft of pipe. It can be seen in this example that the valves
and fittings represent roughly 15 percent of the total pipeline length.

4.10.1 Minor losses

Another approach to accounting for minor losses is using the resistance
coefficient or K factor. The K factor and the velocity head approach to
calculating pressure drop through valves and fittings can be analyzed as
follows using the Darcy equation. From the Darcy equation the pressure
drop in a straight length of pipe is given by

h = f
L
D

U2

2g
(4.54)
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The term f (L/D) may be substituted with a head loss coefficient K
(also known as the resistance coefficient), and Eq. (4.54) then becomes

h = K
U2

2g
(4.55)

In Eq. (4.55), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head U2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(U2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings
are listed in Table 4.8. It can be seen that the K factor depends on
the nominal pipe size of the valve or fitting. The equivalent length, on
the other hand, is given as a ratio of L/D for a particular fitting or
valve.

From Table 4.8 it can be seen that a 6-in gate valve has a K factor
of 0.12, while a 20-in gate valve has a K factor of 0.10. However, both
sizes of gate valves have the same equivalent length–to–diameter ratio
of 8. The head loss through the 6-in valve can be estimated to be 0.12
(U2/2g) and that in the 20-in valve is 0.10 (U2/2g). The velocities in
both cases will be different due to the difference in diameters.

4.10.2 Pipe enlargement and reduction

Pipe enlargements and reductions contribute to head loss that can be
included in minor losses. For sudden enlargement of pipes, the following
head loss equation may be used:

hf = (U1 − U2)2

2g
(4.56)

where U1 and U2 are the velocities of the liquid in the two pipe sizes D1
and D2, respectively. Writing Eq. (4.56) in terms of pipe cross-sectional
areas A1 and A2,

hf =
(

1 − A1

A2

)2 U1
2

2g
(4.57)

for sudden enlargement. This is illustrated in Fig. 4.4.
For sudden contraction or reduction in pipe size as shown in Fig. 4.4,

the head loss is calculated from

hf =
(

1
Cc

− 1
)

U2
2

2g
(4.58)
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D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 4.4 Sudden pipe enlargement and pipe reduction.

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 4.4.

Gradual enlargement and reduction of pipe size, as shown in Fig. 4.5,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc(U1 − U2)2

2g
(4.59)

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is given in Fig. 4.6.

D1

D1
D2

D2

Figure 4.5 Gradual pipe enlargement and pipe reduction.
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Figure 4.6 Gradual pipe expansion head loss coefficient.

4.10.3 Pipe entrance and exit losses

The K factors for computing the head loss associated with pipe entrance
and exit are as follows:

K =



0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting



Chapter

5
Compressed-Air
Systems Piping

Introduction

Compressed air is clean and easily available. As an energy source it can
be put to use in many different forms. However, the cost of producing
compressed air must be compared against that of other forms of energy
such as electricity. For several decades, despite the advent of new energy
services, compressed air–driven equipment and tools have continued to
be used in many industrial applications. In addition, the efficiency of
these systems has increased in recent years.

Compressed air is used in food processing, material handling, and the
operation of machines and tools. In plants that use compressed air the
pressures range from 60 to 150 pounds per square inch (lb/in2 or psi).
Low-pressure compressed air, in the range of 10 to 25 psi, is used for the
control of instruments. Low-pressure air is also used in heating, venti-
lating, and air-conditioning (HVAC) systems. Portable air compressors
are used in construction, road building, painting, etc. The flow rates
used in these applications range from 20 to 1500 cubic feet per minute
(ft3/min or CFM) with power ranging from 2 to 400 horsepower (HP).

5.1 Properties of Air

Air consists of approximately 78 percent nitrogen and 21 percent oxy-
gen and small amounts of other gases such as argon, CO2, and helium.
Generally, for most calculations the composition of air is assumed to
be 79 percent nitrogen and 21 percent oxygen on a volumetric basis.
The corresponding values on a weight basis are 76.8 percent nitro-
gen and 23.2 percent oxygen. Air has a molecular weight of 28.97.

253
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Pressure above atmospheric

Gauge pressure Pg
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Figure 5.1 Absolute pressure and gauge pressure.

The gas constant R for air is 53.33 (ft · lb)/(lb · ◦R) [29.2 (N · m)/(N · K) in
SI units].

In most instances, example problems are discussed in English units,
also called U.S. Customary (USCS) units. However, Système Interna-
tional (SI) units are also illustrated in some examples.

The pressure of air in a vessel or pipe may be expressed as gauge
pressure or absolute pressure. The gauge pressure, denoted by psig, is
that which is measured by a pressure gauge or instrument that records
the magnitude of pressure above the atmospheric pressure at a partic-
ular location. The absolute pressure, denoted by psia, includes the local
atmospheric pressure. This is illustrated in Fig. 5.1. Mathematically,
the gauge pressure and absolute pressure are related by the following
equation:

Absolute pressure = gauge pressure + atmospheric pressure

All calculations involving air such as the perfect gas laws require
knowledge of the local atmospheric pressure. The pressure drop due to
friction, which represents the difference between the absolute pressure
at two points along a compressed air pipeline, is expressed in psig. This
is because the common pressure representing the atmospheric pressure
cancels out when the downstream pressure is subtracted from the up-
stream pressure. Thus, if we denote the upstream pressure as P1 in psia
and the downstream pressure as P2 in psia, the pressure loss is simply
P1 − P2, measured in psig. Although sometimes pressure differences are
indicated in absolute terms, gauge pressures are more appropriate.

In SI units, the pressures are measured in kilopascals (kPa) or mega-
pascals (MPa), and we must clearly state whether the pressure is in
absolute or gauge values. In USCS units, the psig and psia designations
are self-explanatory. Other SI units for pressure are bar and kg/cm2.

For many calculations air may be considered a perfect gas and, there-
fore, said to obey Boyle’s law, Charles’s law, and the ideal gas equation.
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However, at high pressures the behavior of compressed air deviates
from that of ideal gas, and hence compressibility effects must be con-
sidered.

Considering the perfect gas equation of state, we can calculate the
density of air ρ at the standard conditions of 14.7 psia and 60◦F as
follows:

P
ρ

= RT = 1545
Mw

T (5.1)

where P = pressure, lb/ft2

ρ = air density, lb/ft3

R = gas constant for air
T = air temperature, ◦R (◦F +460)

Mw = molecular weight of air, equal to 28.97
1545 = universal gas constant

In some books you will see the specific weight of air γ used instead of
the density ρ. We will use the mass density ρ in this chapter. Care must
be taken to use proper conversion factors to ensure that correct units
are maintained.

Sometimes mass is expressed in slugs in USCS units. The unit of
pound (lb) is reserved for force, including weight. Since it is more com-
mon to talk about mass flow rate (or weight flow rate) of air in lb/s
or lb/min, we will use lb for mass throughout this chapter when using
USCS units. In this regard, the mass flow and weight flow rates are in-
terchangeable. Strictly speaking, mass is a scalar quantity while weight
is a vector quantity, like force. Numerically 1 lb mass and 1 lb weight
will be considered equal.

The mass flow rate of air in SI units may be expressed in kg/s, kg/min,
kilonewtons/s (kN/s), or kN/min, even though the newton is actually
defined as the force that is necessary to accelerate a mass of 1 kg at the
rate of 1 m/s2.

Standard conditions are an atmospheric pressure of 14.7 psia and a
temperature of 60◦F. Substituting these temperature and pressure val-
ues and the molecular weight of air into Eq. (5.1), we calculate the den-
sity of air at standard conditions (also referred to as base conditions) as

ρ = 14.7 × 144 × 28.97
1545 × (460 + 60)

= 0.07633 lb/ft3

Thus, dry air has a density of 0.07633 lb/ft3 at standard conditions (14.7
psia and 60◦F). In SI units the base temperature and pressure used are
0◦C and 760 mm pressure (1.033 kg/cm2). Sometimes 15◦C and 101 kPa
are also used.
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Even though temperatures are normally reported in ◦F or ◦C, calcu-
lations require that these temperatures be converted to absolute scale.
In USCS units we use the absolute temperature scale of Rankine. In SI
units the absolute temperature is denoted by the kelvin scale. The con-
version from the ordinary temperatures of ◦F and ◦C to absolute scales
are as follows:

◦R = ◦F + 460

and

K = ◦C + 273

The temperature in kelvin is usually given without the degree symbol.
Thus 60◦F is 520◦R and 20◦C is 293 K.

The pressure of air may be expressed in psi in USCS units. To ensure
proper units, the pressure in psi is multiplied by 144 to result in lb/ft2

pressure as can be seen in the earlier calculation of the density of air
using Eq. (5.1). In SI units, pressure may be expressed in kilopascals,
megapascals, or bars.

The critical temperature is defined as the temperature above which,
regardless of the pressure, a gas cannot be compressed into the liquid
state. The critical pressure is defined as the least pressure at the crit-
ical temperature necessary to liquefy a gas. The critical temperature
and critical pressure of air are −221◦F and 546 psia, respectively. In
comparison with a critical pressure and temperature, atmospheric air
may be assumed to obey the perfect gas law fairly accurately.

The specific heat of air at constant pressure Cp is approximately
0.239 Btu/(lb · ◦R) at temperatures up to 400◦R. The ratio of specific
heat for air Cp/Cv is approximately 1.4. It is found that as tempera-
ture increases, Cp increases and the specific heat ratio denoted by k
decreases. At 60◦F, Cp = 0.24 and k = 1.4. Air tables (Tables 5.1 to 5.4)
are used in calculations involving expansion and compression of air.

TABLE 5.1 Properties of Air for Temperatures in ◦F

Temperature, Density, Specific weight, Kinematic viscosity, Dynamic viscosity,
◦F slug/ft3 lb/ft3 ft2/s (lb · s)/ft2

0.0 0.00268 0.0862 12.6 × 10−5 3.28 × 10−7

20.0 0.00257 0.0827 13.6 × 10−5 3.50 × 10−7

40.0 0.00247 0.0794 14.6 × 10−5 3.62 × 10−7

60.0 0.00237 0.0764 15.8 × 10−5 3.74 × 10−7

68.0 0.00233 0.0752 16.0 × 10−5 3.75 × 10−7

80.0 0.00228 0.0736 16.9 × 10−5 3.85 × 10−7

100.0 0.00220 0.0709 18.0 × 10−5 3.96 × 10−7

120.0 0.00215 0.0684 18.9 × 10−5 4.07 × 10−7



TABLE 5.2 Properties of Air for Temperatures in ◦C

Temperature, Density, Specific weight, Kinematic viscosity, Dynamic viscosity,
◦C kg/m3 N/m3 m2/s N · s/m2

0.0 1.29 12.7 13.3 × 10−6 1.72 × 10−5

10.0 1.25 12.2 14.2 × 10−6 1.77 × 10−5

20.0 1.20 11.8 15.1 × 10−6 1.81 × 10−5

30.0 1.16 11.4 16.0 × 10−6 1.86 × 10−5

40.0 1.13 11.0 16.9 × 10−6 1.91 × 10−5

50.0 1.09 10.7 17.9 × 10−6 1.95 × 10−5

60.0 1.06 10.4 18.9 × 10−6 1.99 × 10−5

70.0 1.03 10.1 19.9 × 10−6 2.04 × 10−5

80.0 1.00 9.8 20.9 × 10−6 2.09 × 10−5

90.0 0.972 9.53 21.9 × 10−6 2.19 × 10−5

100.0 0.946 9.28 23.0 × 10−6 2.30 × 10−5

TABLE 5.3 Correction Factor for Altitude

Altitude

ft m Correction factor

0 0 1.00
1600 480 1.05
3300 990 1.11
5000 1500 1.17
6600 1980 1.24
8200 2460 1.31
9900 2970 1.39

TABLE 5.4 Correction Factor for Temperature

Temperature of intake

◦F ◦C Correction factor

−50 −46 0.773
−40 −40 0.792
−30 −34 0.811
−20 −28 0.830
−10 −23 0.849

0 −18 0.867
10 −9 0.886
20 −5 0.905
30 −1 0.925
40 4 0.943
50 10 0.962
60 18 0.981
70 22 1.000
80 27 1.019
90 32 1.038

100 38 1.057
110 43 1.076
120 49 1.095

257
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The viscosity of air, like that of other gases, increases with a rise in
temperature. At 40◦F the viscosity of air is approximately 3.62 × 10−7

(lb · s)ft2; at 240◦F the viscosity increases to 4.68 × 10−7 (lb · s)/ft2. The
variation of viscosity of dry low-pressure air with temperature is listed
in Tables 5.1 and 5.2. Although the viscosity variation is nonlinear for
most calculations, we could use an average viscosity based on interpo-
lation of values from the tables.

In many industrial processes we encounter air mixed with vapor. In
the field of air-conditioning, air is mixed with water vapor. If we assume
that each constituent obeys the perfect gas law, we can use Dalton’s law
of partial pressure in the calculations. Dalton’s law of partial pressures
states that in a mixture of gases, the pressure exerted by each gas is
equal to the pressure that it would exert if it alone occupied the volume
occupied by the gas mixture. Also the total pressure exerted by the
mixture is equal to the sum of the pressures exerted by each component
gas. The pressure exerted by each component is known as its partial
pressure.

5.1.1 Relative humidity

Relative humidity is defined as the ratio of the actual vapor pressure to
that of the saturated vapor at the current dry bulb temperature. The dry
bulb temperature is the temperature of the atmospheric air measured
by an ordinary thermometer. When the atmospheric air is cooled under
constant total pressure, condensation of vapor occurs at a specific tem-
perature. This temperature of condensation is called the dew point. It
is the same as the saturation temperature or boiling point at the actual
vapor pressure. When a thermometer bulb is covered with some ab-
sorbent material that is moistened with distilled water and exposed to
atmospheric air, evaporation occurs from the moist cover that will cool
the water and the bulb and the temperature will drop to the wet bulb
temperature. Generally the wet bulb temperature is the temperature
between the extremes of the dew point and the dry bulb temperature.
The three temperatures, dew point, wet bulb temperature, and dry bulb
temperature coincide when the air is saturated. Since atmospheric air
is a mixture of air and water vapor, Dalton’s law of partial pressures
may be applied. The total atmospheric pressure Pt, also known as the
barometric pressure, is composed of the vapor pressure of water and the
air pressure as follows:

Pt = Pv + Pa (5.2)

where Pt = total atmospheric pressure, psia
Pv = vapor pressure of water vapor, psia
Pa = air pressure, psia
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Three vapor pressures correspond to the three temperatures previ-
ously discussed. At the dew point the vapor pressure Pv, called the
actual vapor pressure, is used in calculations. At the dry bulb and wet
bulb temperatures, the vapor pressures Pd and Pw, respectively, are
used. Relative humidity is thus defined as

RH = Pv

Pd
(5.3)

For all practical purposes the ratio of the vapor pressures may be re-
placed with the ratio of the vapor density:

RH = ρv

ρd
(5.4)

5.1.2 Humidity ratio

The humidity ratio, also known as the specific humidity, is defined as
the mass of water vapor per pound of air. Since the molecular weight of
air is 28.97 and that of water is 18.0,

Ratio of molecular weights = 28.97
18.0

= 1.609

The humidity ratio can than be expressed using the relative humidity
definition (5.3) as follows:

Humidity ratio = Pv

1.609Pa
(5.5)

If the air density is represented by ρa and vapor density by ρv, then the
density of the mixture is

ρm = ρa + ρv (5.6)

5.2 Fans, Blowers, and Compressors

The pressure necessary to compress air and move it through pipes and
equipment must be provided by some pressure-creating device such as
a fan, blower, or compressor. The classification of these various devices
is based on the pressure level that is produced. For small pressures,
up to 2 psi, used in HVAC systems, fans are the most suitable. For
pressures between 2 and 10 psi, blowers are used. For higher pressures,
in hundreds or thousands of psi, compressors are used.

Several designs of fans, blowers, and compressors exist for specific
applications. Propeller fans, duct fans, and centrifugal fans are used
to circulate the air within a space or move air through ducts in HVAC
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systems. Fans are driven by electric motors and may deliver up to 50,000
CFM at low static pressure.

Centrifugal blowers are used for intermediate pressures and flow
rates. These consist of a rotor with rotating blades that impart kinetic
energy to the air and a mechanism that collects the air and discharges
it through a duct system.

Centrifugal compressors are used for higher flow rates and pressures
and may be driven by engines or turbines. The pressure is created by
the conversion of kinetic energy due to centrifugal force. Larger pres-
sures are created by employing multiple stages of compressor elements.
Positive displacement compressors are also used to produce the neces-
sary pressure in a compressed-air system. These include reciprocating
and rotary compressors.

Example 5.1 The static pressure in a heating duct is measured as 4.5 inches
of water (inH2O). What is this pressure in psi?

Solution Using Eq. (5.11),

4.5 inH2O = 4.5
12

× 1
2.31

= 0.162 psi

5.3 Flow of Compressed Air

5.3.1 Free air, standard air, and actual air

Free air (also called standard air) represents the volume of air mea-
sured under standard conditions. As stated in Sec. 5.1 in USCS units,
standard conditions are defined as a temperature of 60◦F and an atmo-
spheric pressure of 14.7 psia. In SI units 0◦C and 101.3 kPa absolute
pressure are used. The actual air volume, or flow rate, is defined as that
volume at actual operating conditions of temperature and pressure. We
can convert the volume of standard air, or free air, to that of actual air
by using the perfect gas law equation.

PV
T

= constant (5.7)

Thus,

P1V1

T1
= P2V2

T2
(5.8)

where P1, P2 = pressure at initial and final conditions, respectively,
psia

V1, V2 = volume at initial and final conditions, respectively, ft3

T1, T2 = temperature at initial and final conditions,
respectively, ◦R
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Using subscript a for actual conditions and s for standard conditions,

PaVa

Ta
= PsVs

Ts
(5.9)

Therefore,

Va = Vs
Ta

Ts

Ps

Pa
(5.10)

Using the 60◦F and 14.7 psia standard conditions, we get

Va = Vs
ta + 460
60 + 460

14.7
Pa

where ta is the actual air temperature (◦F) and Pa is the actual air
pressure (psia). Remember that Pa is in absolute pressure and therefore
includes the local atmospheric pressure.

When pressures are small, they are expressed in inches of water col-
umn (inH2O). The head pressure due to a column of water can be con-
verted to pressure in psi using the following equation:

Pressure in psi = head of water in inches
2.31 × 12

= 0.03608 × h (5.11)

where h represents the pressure in inches of water.
The factor 2.31 in Eq. (5.11) is simply the ratio 144/62.4 where the

density of water is used as 62.4 lb/ft3. For example a 2-in water column
is equal to a pressure of

0.03608 × 2 = 0.072 psi

In many formulas in this chapter the pressure drop may be expressed
in psi or sometimes in feet of head. Knowing the density of the flowing
fluid and using Eq. (5.11) we can easily convert from feet of head to
pressures in psi.

Example 5.2 A fan is rated at 5000 CFM at a static pressure of 0.75 inH2O.
Convert this in terms of SI units of flow rate (m3/s) and pressure (Pa).

Solution

5000 CFM = 5000 × (0.3048)3

60
= 2.36 m3/s

0.75 inH2O = 0.75
12

× 1
2.31

= 0.02706 psi

0.02706
0.145

= 0.1866 kPa

= 186.6 Pa
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Example 5.3 A compressor is used to pump dry air through a pipeline at
150 psig and a flow temperature of 75◦F. The compressor is rated at 600
standard ft3/min (SCFM). Calculate the airflow rate under actual conditions
in actual ft3/min (ACFM).

Solution Here we have 600 ft3/min air at 14.7 psia and 60◦F (standard
conditions). We need to calculate the corresponding volume flow rate at the
actual conditions of 150 psig and 75◦F.

Using Eq. (5.10) and assuming the local atmospheric pressure is 14.7 psia,
we get

Va = 600 × 75 + 460
60 + 460

14.7
150 + 14.7

= 55.1 ft3/min or 55.1 ACFM

It can be seen that the volume of air is drastically reduced at the higher
pressure, even though the temperature is slightly higher than standard con-
ditions.

Example 5.4 The flow rate of air at 21◦C and a pressure of 700 kPa gauge
is 100 m3/h. What is the volume flow rate of free air at standard conditions
(0◦C and 101.3 kPa)? Assume the atmospheric pressure is 102 kPa.

Solution Substituting in Eq. (5.10), we get

100 = Vs
21 + 273
0 + 273

101.3
700 + 102

Solving for the standard volume flow rate

Vs = 100 × 273
294

802
101.3

= 735.16 m3/h

It must be noted that the standard pressure condition is 101.3 kPa, while the
local atmospheric pressure is 102 kPa.

Airflow is expressed in terms of standard ft3/min (SCFM) or standard
ft3/h, and in SI units as cubic meters per hour (m3/h). This implies
that the flow rate is measured at the standard conditions of 14.7 psia
pressure and 60◦F temperature. As seen from previous discussions, the
flow rate at other temperatures and pressures will be different from
that at standard conditions. If Q1 represents the airflow at pressure
P1 and temperature T1 corresponding to a standard volume of Qs at
standard pressure Ps and standard temperature Ts, using the perfect
gas equation, we can state that

P1 Q1

T1
= Ps Qs

Ts
(5.12)

This is similar to Eq. (5.9).
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Sometimes we are interested in the mass flow rate of air. If the density
of air is ρ, the mass flow rate can be calculated from

M = Qs × ρs (5.13)

where M = mass flow rate, lb/h
Qs = standard volume flow rate, ft3/h
ρs = density of air, lb/ft3

If the density of air is assumed to be 0.07633 lb/ft3 at standard con-
ditions, the mass flow rate corresponding to a volume flow rate of
1000 ft3/min (SCFM) is

M = 1000 × 0.07633 = 76.33 lb/min

Since mass does not change with pressure or temperature, due to the
law of conservation of mass, the mass flow rate defined in Eq. (5.13)
can really be applied to any other pressure and temperature condi-
tions. Therefore the mass flow rate at some condition represented by
subscript 1 may be written as M = Q1 × ρ1, where Q1 and ρ1 may cor-
respond to the actual conditions of flow rate and density of air at some
other temperature and pressure than that of the standard conditions.

Let’s return to the recent example of air that flows at 1000 SCFM at
60◦F and 14.7 psia, where the mass flow rate is 76.33 lb/min. When the
actual condition of the air changes to 75◦F and 100 psig pressure, the
actual volume flow rate can be calculated from Eq. (5.10) as follows:

Va = 1000 × 14.7
114.7

× 75 + 460
60 + 460

= 131.86 ft3/min

However, at these new conditions (75◦F and 100 psig) the mass flow
rate will still be the same: 76.33 lb/min. Because of the constancy of the
mass flow rate we can state that

M = Qs × ρs = Q1 × ρ1 = Q2 × ρ2, etc.

where the subscript s stands for standard conditions and subscripts
1 and 2 refer to two other conditions.

In flow through piping and nozzles, the preceding equation represent-
ing the conservation of mass flow rate will be used quite often.

Example 5.5 A compressor delivers 2900 CFM of free air. If the air flows
through a pipe at an inlet pressure of 60 psig and a temperature of 90◦F,
what is the flow rate of air at actual conditions?
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Solution Using Eq. (5.10),

Va = Vs
Ta

Ts

Ps

Pa
= 2900

90 + 460
60 + 460

14.7
60 + 14.7

= 603.6 CFM

Example 5.6 Consider air at 70◦F and 100 psig pressure to be an ideal gas.
Calculate the specific weight of this air in lb/ft3. The atmospheric pressure
is 14.7 psia.

Solution Rearranging Eq. (5.1),

P
ρ

= RT

we get

ρ = P
RT

= (100 + 14.7) × 144
53.3 × (460 + 70)

= 0.5847 lb/ft3

Example 5.7 Calculate the density of air in N/m3, if the pressure is 700 kPa
gauge and the temperature is 25◦C. The atmospheric pressure is 101.3 kPa.

Solution Rearranging Eq. (5.1),

P
ρ

= RT

we get

ρ = P
RT

= (700 + 101.3) × 103

29.2 × (273 + 25)
= 92.09 N/m3

5.3.2 Isothermal flow

Isothermal flow occurs at constant temperature. Thus the pressure,
volume, and density of air change, but temperature remains the same.
To maintain the constant temperature isothermal flow of air requires
heat to be transferred out of the air. Compressed air flowing in long
pipes can be analyzed considering isothermal flow. Under isothermal
flow, the pressure, flow rate, and temperature of air flowing through a
pipe are related by the following equation:

P 2
1 − P 2

2 = M 2 RT
gA2

(
f

L
D

+ 2 loge
P1

P2

)
(5.14)

where P1 = upstream pressure at point 1, psia
P2 = downstream pressure at point 2, psia
M = mass flow rate, lb/s
R = gas constant
T = absolute temperature of air, ◦R
g = acceleration due to gravity, ft/s2
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A = cross-sectional area of pipe, ft2

f = friction factor, dimensionless
L = pipe length, ft
D = inside diameter of pipe, ft

Equation (5.14) can be used for small pressure drops and when eleva-
tion differences between points along the pipe are ignored. The friction
factor f used in Eq. (5.14) will be discussed in detail in Sec. 5.4.

A consistent set of units must be used in Eq. (5.14). An example will
illustrate the use of the isothermal flow equation.

Example 5.8 Air flows at 50 ft/s through a 2-in inside diameter pipe at 80◦F
at an initial pressure of 100 psig. If the pipe is horizontal and 1000 ft long,
calculate the pressure drop considering isothermal flow. Use a friction factor
f = 0.02.

Solution First calculate the density of air at 80◦F. From Table 5.1

Density at 80◦F = 0.0736 lb/ft3

This density is at the standard condition of 14.7 psia. Using Eq. (5.1) we
calculate the density at 100 psig as

ρ = 100 + 14.7
14.7

× 0.0736 = 0.5743 lb/ft3

The cross-sectional area of the pipe is

A = 0.7854 ×
(

2
12

)2

= 0.0218 ft2

Next, the mass flow rate can be calculated from the density, velocity, and the
pipe cross-sectional area using Eq. (5.13) as follows:

M = ρ Av = 0.5743 × 0.0218 × 50 = 0.6265 lb/s

Using Eq. (5.14) we can write

[(100 + 14.7)2 − P 2
2 ] × (144)2 = (0.6265)2 × 53.3 × (80 + 460)

× (0.02 × 1000 × 12/2) + [2 loge(114.7/P2)]
32.2 × 0.0218 × 0.0218

Simplifying we get

13,156.09 − P 2
2 = 35.6016

(
120.0 + 2 loge

114.7
P2

)
We will first calculate P2 by ignoring the second term containing P2 on the
right-hand side of the equation. This is acceptable since the term being ig-
nored is a much smaller value compared to the first term 120.0 within the
parentheses.

Therefore the first approximation to P2 is calculated from

13,156.09 − P 2
2 = 35.6016 × 120
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or

P2 = 94.25 psia

We can recalculate a better solution for P2 by substituting the value just
calculated in the preceding equation, this time including the loge (114.7/P2)
term:

13,156.09 − P 2
2 = 35.6016 ×

(
120 + 2 loge

114.7
94.25

)

Solving for P2we get

P2 = 94.18 psia

which is quite close to our first approximation of P2 = 94.25. Therefore

Pressure drop = P1 − P2 = 114.7 − 94.18 = 20.52 psig

Example 5.9 Air flows through a 2000-ft-long NPS 6 pipeline at an initial
pressure of 150 psig and a temperature of 80◦F. If the flow is considered
isothermal, calculate the pressure drop due to friction at a flow rate of 5000
SCFM. Assume smooth pipe.

Solution We start by calculating the Reynolds number (discussed in Sec. 5.4)
from the flow rate. Assume a 6-inch inside diameter pipe.

Area of cross section A = 0.7854

(
6
12

)2

= 0.1964 ft2

Velocity v = flow rate
area

= 5000
60 × 0.1964

= 424.3 ft/s

Next we need to find the density and viscosity of air at 80◦F and 150 psig
pressure. From Table 5.1, at 80◦F

Density ρ = 0.0736 lb/ft3 at 14.7 psia

and

Viscosity µ = 3.85 × 10−7 (lb · s)/ft2

The density must be corrected for the higher pressure of 150 psig:

ρ = 0.0736 × 164.7
14.7

= 0.8246 lb/ft3 at 150 psig

The Reynolds number from Eq. (5.18) is

Re = 424.3 × 0.5 × 0.8246
32.2 × 3.85 × 10−7

= 1.41 × 107

From the Moody diagram (Fig. 5.2), for smooth pipe, the friction factor is

f = 0.0077
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The mass flow rate will be calculated first from the given volume flow rate.

M = volume rate × density

From Table 5.1 for density of air at 60◦F (standard condition),

Density = 0.0764 lb/ft3

Therefore the mass flow rate is

M = 5000 × 0.0764 = 382 lb/min = 6.367 lb/s

Using Eq. (5.14) for isothermal flow,

[
(164.7)2 − P 2

2

]× (144)2 = (6.367)2 × 53.3 × 540
32.2 × (0.1964)2

×
(

0.0077 × 2000
0.5

+ 2 loge
164.7

P2

)
This equation for P2 must be solved by trial and error. Solving we get P2 =
160.4 psia. Thus

Pressure drop due to friction = (P1 − P2) = 164.7 − 160.4 = 4.3 psi

Example 5.10 Air flows through a 500-m-long, 200-mm inside diameter
pipeline at 20◦C. The upstream and downstream pressures are 1035 and
900 kPa, respectively. Calculate the flow rate through the pipeline assum-
ing isothermal conditions. Pressures are in absolute values, and the relative
roughness of pipe is 0.0003.

Solution We will use the isothermal equation (5.14) for calculating the flow
rate through the pipeline. The friction factor f depends on the Reynolds
number which in turn depends on the flow rate which is unknown. Therefore,
we will assume an initial value of the friction factor f and calculate the mass
flow rate from Eq. (5.14). This mass flow rate will then be used to calculate
the flow velocity and hence the corresponding Reynolds number. From this
Reynolds number using the Moody diagram the friction factor will be found.
The mass flow rate will be recalculated from the newly found friction factor.
The process is continued until successive values of the mass flow rate are
within 1 percent or less.

Assume f = 0.01 initially; from Eq. (5.14) we get,

(1035)2 − (900)2 = M 2 × 29.3 × 293
9.81 × (0.7854 × 0.04)2

(
0.01 × 500

0.2
+ 2 loge

1035
900

)
Solving for M, we get

M = 0.108 kN/s

Next, calculate the density at 20◦C from the perfect gas equation:

ρ = P
RT

= 1035
29.3 × 293

= 0.1206 kN/m3
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The viscosity of air from Table 5.1 is

µ = 1.81 × 10−5 Pa · s

The flow velocity is calculated from the mass flow rate as follows:

M = ρ Av

Therefore,

0.108 = 0.1206 × (0.7854 × 0.04)v

Thus, velocity is

v = 28.505 m/s

The Reynolds number is calculated from Eq. (5.18) as

Re = 0.1206
9.81

× 28.505 × 0.2
1.81 × 10−8

= 3.87 × 106

For this Reynolds number, from the Moody diagram we get the friction factor
for a relative roughness (e/D) = 0.0003 as

f = 0.0151

Using this value of f , we recalculate the mass flow rate as follows:

(1035)2 − (900)2 = M 2 × 29.3 × 293
9.81 × (0.7854 × 0.04)2

(
0.0151 × 500

0.2
+ 2 loge

1035
900

)

Solving for M, we get

M = 0.088 kN/s

The earlier value was M = 0.108 kN/s. This represents a 22 percent differ-
ence, and hence we must recalculate the friction factor and repeat the process
for a better value of M.

Based on the recently calculated value of M = 0.088 we will recalculate
the velocity and Reynolds number as follows. Using proportions, the new
velocity is

v = 0.088
0.108

× 28.505 = 23.226 m/s

The new Reynolds number is

Re = 23.226
28.505

× 3.87 × 106 = 3.15 × 106

Next from the Moody diagram for the preceding Reynolds number we get a
friction factor

f = 0.0152
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Using this value of f in the isothermal flow equation we get a new value of
mass flow rate as follows:

(1035)2 − (900)2 = M 2 × 29.3 × 293
9.81 × (0.7854 × 0.04)2

(
0.0152 × 500

0.2
+ 2 loge

1035
900

)
Solving for M, we get

M = 0.0877 kN/s

The earlier value was M = 0.088 kN/s.
This represents a difference of 0.34 percent and hence we can stop iterating

any further. The flow rate through the pipeline is 0.0877 kN/s.

Example 5.11 Air flows through a 1500-ft-long, NPS 10 (0.25-in wall thick-
ness) pipeline, at a mass flow rate of 23 lb/s. What pressure is required at the
upstream end to provide a delivery pressure of 80 psig? The airflow temper-
ature is 80◦F. Consider isothermal flow. Assume the friction factor is 0.02.

Solution The mass flow rate is M = 23.0 lb/s and the friction factor is f =
0.02. The cross-sectional area of pipe, with 10.75-in outside diameter and
0.25-in wall thickness, is

A = 0.7854

(
10.25

12

)2

= 0.573 ft2

From the isothermal flow equation (5.14), substituting the given values, we
get

[
P1

2 − (94.7)2]× (144)2 = 232 × 53.3 × 540
32.2 × (0.573)2

(
0.02 × 1500 × 12

10.25

+ 2 loge
P1

94.7

)

Assume P1 = 100 psig initially and substitute this value on the right-hand
side of the preceding equation to calculate the next approximation for P1.
Continue this process until successive values of P1 are within 1 percent or
less. Solving we get P1 = 106.93 psia by successive iteration. Therefore the
upstream pressure required is 106.93 − 14.7 = 92.23 psig. The pressure loss
in the 1500-ft-long pipe is 92.23 − 80 = 12.23 psi.

Example 5.12 Consider isothermal flow of air in a 6-inch inside diameter
pipe at 60◦F. The upstream and downstream pressures for a 500-ft section of
horizontal length of pipe are 80 and 60 psia, respectively. Calculate the mass
flow rate of air assuming the pipe is smooth.

Solution From Eq. (5.14) for isothermal flow, we get

P 2
1 − P 2

2 = M 2 RT
gA2

(
f

L
D

+ 2 loge
P1

P2

)
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We must first calculate the Reynolds number Re and the friction factor f .
Since Re depends on the flow rate (unknown), we will assume a value of f
and calculate the flow rate from the preceding equation. We will then verify
if the assumed f was correct. Some adjustment may be needed in the f value
to get convergence.

Assume f = 0.01 in the preceding pressure drop equation. Substituting
the given value, we get

(144)2(802 − 602) = M 2 × 53.3 × 520
32.2(0.7854 × 0.5 × 0.5)2

(
0.01

500
0.5

+ 2 loge
80
60

)

Solving for the mass flow rate,

M = 15.68 lb/s

The gas density is

ρ = P
RT

= 80 × 144
53.3 × 520

= 0.4156 lb/ft3

The mass flow rate is then calculated from Eq. (5.13),

Mass flow = density × volume flow rate = density × area × velocity

Therefore,

M = ρ Av

Substituting the calculated values in Eq. (5.13), we get

15.68 = (0.4156)(0.7854 × 0.5 × 0.5)v

Flow velocity v = 192.15 ft/s

The Reynolds number is then

Re = ρdv
µ

= 0.4156
32.2

(0.5)
192.15

3.78 × 10−7

= 3.28 × 106

From the Moody diagram (Fig. 5.2), the Darcy friction factor f = 0.0096. We
assumed f = 0.01 initially. This is quite close to the newly calculated value
of f . If we use the value of f = 0.0096 and recalculate the mass flow rate,
we get

M = 15.99 lb/s

5.3.3 Adiabatic flow

Adiabatic flow of air occurs when there is no heat transfer between
the flowing air and its surroundings. Adiabatic flow generally includes
friction. When friction is neglected, the flow becomes isentropic.
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5.3.4 Isentropic flow

When air flows through a conduit such that it is adiabatic and friction-
less, the flow is termed isentropic flow. This type of flow also means
that the entropy of the air is constant. If the flow occurs very quickly
such that heat transfer does not occur and the friction is small, the flow
may be considered isentropic. In reality, high-velocity flow occurring
over short lengths of pipe with low friction and low heat transfer may
be characterized as isentropic flow. The pressure drop that occurs in
isentropic flow can be calculated from the following equation:

v 2
2 − v 2

1

2g
= P1

ρ1

k
k − 1

[
1 −
(

P2

P1

)(k−1)/k
]

(5.15)

or

v 2
2 − v 2

1

2g
= P2

ρ2

k
k − 1

[(
P1

P2

)(k−1)/k

− 1

]
(5.16)

where v1 = velocity at upstream location
v2 = velocity at downstream location
P1 = pressure at upstream location
P2 = pressure at downstream location
k = specific heat ratio
g = acceleration of gravity

ρ1 = density at upstream location
ρ2 = density at downstream location

It can be seen from Eqs. (5.15) and (5.16) that the pressure drop
P1 − P2 between the upstream and downstream locations in a pipe de-
pends only on the pressures, velocities, and specific heat ratio of air.
Unlike isothermal flow, discussed earlier, no frictional term exists in
the isentropic flow equation. This is because, by definition, isentropic
flow is considered to be a frictionless process.

Example 5.13 Isentropic flow of air occurs in a 6-inch inside diameter pipe-
line. If the upstream pressure and temperature are 50 psig and 70◦F and the
velocity of air at the upstream and downstream locations are 50 and 120 ft/s,
respectively, calculate the pressure drop assuming k = 1.4.

Solution We will use Eq. (5.15) for isentropic flow of air. First let us calculate
the ratio k/(k − 1) and its reciprocal.

k
k − 1

= 1.4
0.4

= 3.5

k − 1
k

= 0.4
1.4

= 0.2857
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The term P1/ρ1, in Eq. (5.15) may be replaced with the term RT1 using
the perfect gas equation (5.1). Substituting the given values in Eq. (5.15)
we get

(120)2 − (50)2

2 × 32.2
= 53.3 × (70 + 460) × 3.5 ×

[
1 −
(

P2

150 + 14.7

)0.2857
]

Simplifying and solving for P2 we get

P2 = 163.63 psia

Therefore the pressure drop is

P1 − P2 = 164.7 − 163.63 = 1.07 psig

5.4 Pressure Drop in Piping

The pressure drop due to friction for air flowing through pipes is gen-
erally calculated using one of the many formulas or empirical correla-
tions. Charts have also been developed to approximately estimate the
friction loss in compressed-air piping based on pipe size, pipe diameter,
inlet pressure, flow temperature, and properties of air. These charts are
shown in Tables 5.5 through 5.7. These tables list the friction loss in psi
per 100 ft of pipe for 50 psi, 100 psi, and 125 psi, respectively. Table 5.8
lists typical pipe sizes for different flow rates.

Various formulas are also available to calculate the pressure drop,
mass flow rate, and volume flow rate for specified pipe sizes. These will
be discussed next.

5.4.1 Darcy equation

For both compressible fluids (such as air and other gases) and incom-
pressible fluids (all liquids), the classical pressure drop formula, known
as the Darcy-Weisbach equation or sometimes simply the Darcy equa-
tion, may be used. The Darcy equation is expressed as follows:

hf = f
L
D

v2

2g
(5.17)

where hf = friction loss, ft of head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = pipe inside diameter, ft
v = flow velocity, ft/s
g = acceleration due to gravity, ft/s2
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TABLE 5.5 Pressure Drop in psi/100 ft at a 50-psi Inlet Pressure

Flow rate,
CFM

(Standard
Pipe size (NPS)

conditions) 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 3 4 5 6

1 0.006
2 0.024 0.006
3 0.055 0.012
4 0.098 0.022 0.006
5 0.153 0.034 0.009
6 0.220 0.050 0.013
8 0.391 0.088 0.023 0.006

10 0.611 0.138 0.036 0.009
15 1.374 0.310 0.082 0.020 0.009
20 2.443 0.551 0.146 0.035 0.016
25 3.617 0.861 0.227 0.055 0.024 0.007
30 5.497 1.240 0.328 0.079 0.035 0.010
35 1.688 0.446 0.108 0.047 0.013 0.005
40 2.205 0.582 0.141 0.062 0.017 0.007
45 2.791 0.737 0.178 0.078 0.021 0.009
50 3.445 0.910 0.220 0.097 0.026 0.011
60 4.961 1.310 0.317 0.140 0.038 0.016 0.005
70 1.783 0.432 0.190 0.052 0.021 0.007
80 2.329 0.564 0.248 0.068 0.028 0.009
90 2.948 0.713 0.314 0.086 0.035 0.011

100 3.639 0.881 0.388 0.106 0.044 0.014
125 5.686 1.376 0.606 0.165 0.068 0.022
150 1.982 0.872 0.238 0.098 0.031 0.007
175 2.697 1.187 0.324 0.133 0.043 0.010
200 3.523 1.550 0.423 0.174 0.056 0.013
225 4.459 1.962 0.536 0.220 0.070 0.016
250 5.505 2.423 0.662 0.272 0.087 0.020 0.006
275 2.931 0.801 0.329 0.105 0.024 0.007
300 3.489 0.953 0.392 0.125 0.029 0.009
325 4.094 1.118 0.460 0.147 0.034 0.010
350 4.748 1.297 0.533 0.17 0.039 0.012
375 5.451 1.489 0.612 0.195 0.045 0.014 0.005
400 6.202 1.694 0.696 0.222 0.051 0.015 0.006
425 1.912 0.786 0.251 0.057 0.017 0.007
450 2.144 0.881 0.281 0.064 0.019 0.008
475 2.388 0.982 0.313 0.072 0.022 0.009
500 2.464 1.088 0.347 0.079 0.024 0.010
550 3.202 1.317 0.420 0.096 0.029 0.012
600 3.811 1.567 0.500 0.114 0.035 0.014
650 4.473 1.839 0.587 0.134 0.041 0.016

It must be noted that the Darcy equation (5.17) gives the head loss due
to friction in terms of feet of head not psig. It needs to be converted to
psig using the density of air at the flowing temperature.

The Darcy friction factor f in Eq. (5.17) must be calculated based
on the dimensionless parameter known as Reynolds number of flow.
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TABLE 5.6 Pressure Drop in psi/100 ft at a 100-psi Inlet Pressure

Flow rate,
CFM

(Standard
Pipe size (NPS)

conditions) 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 3 4 5

1
2 0.014
3 0.031
4 0.055 0.012
5 0.086 0.019
6 0.124 0.028
8 0.220 0.050 0.013

10 0.345 0.078 0.021
15 0.775 0.175 0.046 0.011
20 1.378 0.311 0.082 0.020
25 2.153 0.486 0.128 0.031 0.014
30 3.101 0.700 0.185 0.045 0.020
35 4.220 0.952 0.251 0.061 0.027
40 5.512 1.244 0.328 0.079 0.035
45 6.976 1.574 0.416 0.101 0.044 0.012
50 8.613 1.943 0.513 0.124 0.055 0.015
60 12.402 2.799 0.739 0.179 0.079 0.021
70 3.809 1.006 0.243 0.107 0.029 0.012
80 4.975 1.314 0.318 0.14 0.038 0.016
90 6.297 1.663 0.402 0.177 0.048 0.020

100 7.774 2.053 0.497 0.219 0.060 0.025
125 12.147 3.207 0.776 0.342 0.093 0.038 0.012
150 4.619 1.118 0.492 0.134 0.055 0.018
175 6.287 1.522 0.67 0.183 0.075 0.024
200 8.211 1.987 0.875 0.239 0.098 0.031
225 10.392 2.515 1.107 0.302 0.124 0.040
250 12.830 3.105 1.367 0.373 0.153 0.049 0.011
275 3.757 1.654 0.452 0.186 0.059 0.014
300 4.471 1.968 0.537 0.221 0.071 0.016
325 5.248 2.309 0.631 0.259 0.083 0.019
350 6.086 2.678 0.731 0.301 0.096 0.022
375 6.987 3.075 0.84 0.345 0.110 0.025
400 7.949 3.498 0.955 0.393 0.125 0.029
425 8.974 3.949 1.079 0.443 0.142 0.032
450 10.061 4.428 1.209 0.497 0.159 0.036 0.011
475 11.210 4.933 1.347 0.554 0.177 0.040 0.012
500 12.421 5.466 1.493 0.614 0.196 0.045 0.014
550 6.614 1.806 0.743 0.237 0.054 0.016
600 7.871 2.150 0.884 0.282 0.064 0.020
650 9.238 2.523 1.037 0.331 0.076 0.023

The Reynolds number depends on the flow velocity, pipe size, and prop-
erties of air and is defined as

Re = vDρ

µ
(5.18)
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TABLE 5.7 Pressure Drop in psi/100 ft at a 125-psi Inlet Pressure

Flow rate,
CFM

(Standard
Pipe size (NPS)

conditions) 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 3 4 5

3 0.025
4 0.045
5 0.071 0.016
6 0.102 0.023
8 0.181 0.041

10 0.283 0.064 0.017
15 0.636 0.144 0.038
20 1.131 0.255 0.067 0.016
25 1.768 0.399 0.105 0.025
30 2.546 0.574 0.152 0.037 0.016
35 3.465 0.782 0.206 0.050 0.022
40 4.526 1.021 0.270 0.065 0.029
45 5.728 1.292 0.341 0.083 0.036
50 7.071 1.596 0.421 0.102 0.045
60 10.183 2.298 0.607 0.147 0.065 0.018
70 13.860 3.128 0.826 0.200 0.088 0.024
80 4.085 1.079 0.261 0.115 0.031 0.013
90 5.170 1.365 0.330 0.145 0.04 0.016

100 6.383 1.685 0.408 0.180 0.049 0.020
125 9.973 2.633 0.637 0.281 0.077 0.031
150 14.361 3.792 0.918 0.404 0.110 0.045 0.014
175 5.162 1.249 0.550 0.150 0.062 0.02
200 6.742 1.632 0.718 0.196 0.081 0.026
225 8.533 2.065 0.909 0.248 0.102 0.033
250 10.534 2.550 1.122 0.306 0.126 0.040
275 12.746 3.085 1.358 0.371 0.152 0.049
300 15.169 3.671 1.616 0.441 0.181 0.058 0.013
325 4.309 1.896 0.518 0.213 0.068 0.016
350 4.997 2.199 0.601 0.247 0.079 0.018
375 5.736 2.525 0.689 0.283 0.090 0.021
400 6.527 2.872 0.784 0.323 0.103 0.024
425 7.368 3.243 0.886 0.364 0.115 0.027
450 8.260 3.635 0.993 0.408 0.130 0.030
475 9.204 4.050 1.106 0.455 0.145 0.033
500 10.198 4.488 1.226 0.504 0.161 0.037
550 12.340 5.430 1.483 0.610 0.195 0.044 0.013
600 14.685 6.463 1.765 0.726 0.232 0.053 0.016
650 7.585 2.071 0.852 0.272 0.062 0.019

where Re = Reynolds number, dimensionless
v = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = density of air
µ = dynamic viscosity of air
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TABLE 5.8 Flow Rate versus Pipe Size

Flow rate Pipe size

ft3/m L/s NPS DN

50 24 2 1
2 65

110 52 3 80
210 99 4 100
400 189 5 125
800 378 6 150

The units of ρ and µ in Eq. (5.18) must be chosen such that Re is dimen-
sionless. Note that the diameter D in the Reynolds number equation
(5.18) is in feet, whereas elsewhere in this chapter the pipe inside dia-
meter, designated as d, is in inches.

Example 5.14 Air flows through an NPS 8 (0.250-in wall thickness) pipe at
a flow rate of 6000 ft3/min at 60◦F and 14.7 psia. Calculate the Reynolds
number of flow.

Solution The velocity of flow is first calculated.

Velocity = flow rate (ft3/min)

area (ft2)

= 6000

0.7854
(
8.125/12

)2 = 16,664 ft/min or 278 ft/s

Where NPS 8 pipe has an outside diameter of 8.625 in and a wall thickness
of 0.250 in, the inside diameter is 8.125 in. The density and viscosity of air
from Table 5.1 are

ρ = 0.0764 lb/ft3

µ = 3.74 × 10−7 (lb · s)/ft2

The Reynolds number of flow is

Re = 278 × (8.125/12
)× 0.0764

3.74 × 10−7 × 32.2
= 1.2 × 106

If the flow is such that the Reynolds number is less than 2000 to 2100,
the flow is said to be laminar. When the Reynolds number is greater
than 4000, the flow is said to be turbulent. Critical flow occurs when the
Reynolds number is in the range of 2100 to 4000. Mathematically, the
three regimes of flow are defined as

Laminar flow : Re ≤ 2100
Critical flow : 2100 < Re ≤ 4000
Turbulent flow : Re ≥ 4000
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In the critical flow regime, where the Reynolds number is between 2100
and 4000 the flow is undefined as far as pressure drop calculations are
concerned.

It has been found that in laminar flow the friction factor f depends
only on the Reynolds number and is calculated from

f = 64
Re

(5.19)

where f is the friction factor for laminar flow and Re is the Reynolds
number for laminar flow (Re < 2100) (dimensionless).

For turbulent flow, the friction factor depends not only on the Reynolds
number but also on the pipe inside diameter and the internal pipe
roughness. It is either calculated using the Colebrook-White equation or
read from the Moody diagram (Fig. 5.2). The Colebrook-White equation
is as follows:

1√
f

= −2 log10

(
e

3.7d
+ 2.51

Re
√

f

)
(5.20)

where f = Darcy friction factor, dimensionless
d = pipe inside diameter, in
e = absolute pipe roughness, in

Re = Reynolds number, dimensionless

The internal roughness of pipe e depends on the condition of the pipe.
It ranges from 0.001 to 0.01. The term e/d is known as the relative
roughness. Table 5.9 lists the internal pipe roughness values.

It can be seen from Eq. (5.20) that calculating the friction factor is not
straightforward, since it appears on both sides of the equation. During
the last 20 years many researchers have proposed explicit equations
for the friction factor which are much easier to use than Eq. (5.20). Two
such equations that are used to calculate the friction factor f include

TABLE 5.9 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0

Next Page
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the Churchill equation and the Swamee-Jain equation. These equations
are explicit in friction factor calculations and therefore are easier to
use than the Colebrook-White equation which requires solution of the
friction factor by trial and error.

5.4.2 Churchill equation

This equation for the friction factor was proposed by Stuart Churchill
and published in Chemical Engineering magazine in November 1977.
This is an explicit equation for solving for the friction factor and is as
follows:

f =
[(

8
Re

)12

+ 1
(A+ B)3/2

]1/12

(5.21)

where

A =
[
2.457 loge

1
(7/Re)0.9 + 0.27e/d

]16

(5.22)

B =
(

37,530
Re

)16

(5.23)

The Churchill equation for the friction factor yields comparable results
with that obtained using the Colebrook-White equation.

5.4.3 Swamee-Jain equation

This is another explicit equation for calculating the friction factor. It was
first presented by P. K. Swamee and A. K. Jain in 1976 in the Journal
of the Hydraulics Division of ASCE. This equation is the easiest of all
explicit equations for calculating the friction factor. The Swamee-Jain
equation is expressed as

f = 0.25[
log10

(
e/3.7d + 5.74/Re0.9

)]2 (5.24)

The friction factor obtained using the Churchill equation also correlates
fairly well with that obtained from the Colebrook-White equation.

Since the Colebrook-White equation requires solution by trial and
error, the Moody diagram (Fig. 5.2) is preferred by some, as the friction
factor may be read off easily from the chart if the relative roughness
e/d and the Reynolds number Re are known.

Previous Page
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The Darcy equation (5.17) may be modified to calculate the pressure
drop in psi as follows:

�P = fρLQ2

82.76d5 (5.25)

where �P = pressure drop, psi
f = Darcy friction factor, dimensionless
ρ = air density, lb/ft3

L = pipe length, ft
Q = volume flow rate, ft3/min (actual)
d = pipe inside diameter, in

The following equation can be used to calculate the flow rate for the
given upstream and downstream pressures:

Qs = 3.92
Ts

Ps

[(
P 2

1 − P 2
2

)× d5

f TL

]1/2

(5.26)

where Qs = volume flow rate at standard conditions, SCFM
Ts = temperature at standard conditions, ◦R
Ps = pressure at standard conditions, psia
P1 = upstream pressure, psia
P2 = downstream pressure, psia
d = pipe inside diameter, in
f = Darcy friction factor, dimensionless
T = temperature, ◦R
L = pipe length, ft

In terms of mass flow rate in lb/min, considering the standard conditions
of 60◦F and 14.7 psia, Eq. (5.26) becomes

M = 10.58

[(
P 2

1 − P 2
2

)× d5

f TL

]1/2

(5.27)

where M is the mass flow rate (lb/min). Other symbols are as defined
earlier.

When pressures are low and slightly above atmospheric pressure,
such as in ventilating systems, it is generally more convenient to ex-
press the pressure drop due to friction in inches of H2O. Since 1 inch of
water column equals (1/12)62.4

144 = 0.03613 psi and considering pressures
close to atmospheric pressure, the flow equation becomes

Qs = Ts

3.64

(
hd5

f TL

)1/2

(5.28)
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where Qs = volume flow rate at standard conditions, SCFM
Ts = temperature at standard conditions, ◦R
h = pressure drop, inH2O column
d = pipe inside diameter, in
f = Darcy friction factor, dimensionless
T = temperature, ◦R
L = pipe length, ft

In ventilation work, standard conditions are 14.7 psia and 70◦F. This
results in the following equation for airflow:

Q = 145.6
(

hd5

f TL

)1/2

(5.29)

where Q = volume flow rate, ft3/min (actual)
h = pressure drop, inH2O column
d = pipe inside diameter, in
f = Darcy friction factor, dimensionless
T = temperature, ◦R
L = pipe length, ft

Example 5.15 A pipe is to be designed to carry 150 CFM free air at 100 psig
and 80◦F. If the pressure loss must be limited to 5 psi per 100 ft of pipe, what
is the minimum pipe diameter required?

Solution From Table 5.6 let us select 1-in pipe and from Table 5.1 at 80◦F
we get µ = 3.85 × 10−7 (lb · s)/ft2. Therefore, the density of air at 80◦F and
100 psig is from the perfect gas equation (5.1):

P
ρ

= RT

ρ = (100 + 14.7) × 144
53.3(80 + 460)

= 0.574 lb/ft3

The actual flow rate at 100 psig and 80◦F is

Qa = 150 × 14.7
100 + 14.7

80 + 460
60 + 460

= 19.96 ft3/min

Next, we calculate flow velocity (1-in pipe schedule 40 has an inside diameter
of 1.049 in).

Velocity = flow rate
area

v = Q
A

= 19.96/60
0.7854(1.049/12)2

= 55.43 ft/s
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Therefore, the Reynolds number, using Eq. (5.18), is

Re = vDρ

µ
= 55.43

3.85 × 10−7 × 1.049
12

× 0.574
32.2

= 2.2435 × 105

Using a pipe absolute roughness of e = 0.0018 in, the relative roughness
is

e
D

= 0.0018
1.049

= 0.00172

f = 0.0232

From the Darcy equation (5.17), the pressure drop in 100 ft of pipe is

h = f
L
D

v2

2g
= 0.0232

100 × 12
1.049

55.432

64.4
= 1266 ft

The pressure drop in psi, using Eq. (5.11), is

�P = 1266
0.574
144

= 5.05 psi

This is close to the 5 psi per 100 ft limit.
Several other empirical formulas are used in the calculation of flow

through ducts and pipes. Commonly used formulas include Harris,
Fritzsche, Unwin, Spitzglass, and Weymouth. The Harris formula is
similar to the Weymouth formula. In all these formulas, for a given pipe
size and flow rate the pressure drop can be calculated directly without
using charts or calculating a friction factor first. However, engineers
today still use the well-known Darcy equation to calculate pressure
drop in compressed-air piping in conjunction with the friction factor
computed from the Colebrook-White equation or the Moody diagram.

5.4.4 Harris formula

The Harris formula for standard conditions is

�P = LQ2

2390Pd5.31 (5.30)

where �P = pressure drop, psig
L = pipe length, ft
Q = volume flow rate at standard conditions, SCFM
P = average pressure, psia
d = pipe inside diameter, in
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Also in terms of mass flow rate

�P = LM 2

13.95Pd5.31 (5.31)

where �P = pressure drop, psig
L = pipe length, ft

M = mass flow rate, lb/min
P = average pressure, psia
d = pipe inside diameter, in

In terms of flow rate Q and upstream and downstream pressures P1
and P2, the following formula is used.

Q = 34.5

[(
P 2

1 − P 2
2

)
d5.31

L

]1/2

(5.32)

where Q = volume flow rate at standard conditions, SCFM
P1 = upstream pressure, psia
P2 = downstream pressure, psia
L = pipe length, ft
d = pipe inside diameter, in

5.4.5 Fritzsche formula

The Fritzsche formula uses the friction factor f calculated from the
following equation:

f = 0.02993
(

Ts

Ps Qs

)1/7

(5.33)

where f = friction factor
Ts = temperature at standard conditions, ◦R
Ps = pressure at standard conditions, psia
Qs = volume flow rate at standard conditions, SCFM

The Fritzsche formula for pressure drop then becomes

�P = (9.8265 × 10−4)TL
Pd5

(
Ps Qs

Ts

)1.857

(5.34)
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where �P = pressure drop, psi
L = pipe length, ft
d = pipe inside diameter, in
T = airflow temperature, ◦R
P = average air pressure, psia

Qs = volume flow rate at standard conditions, SCFM
Ps = pressure at standard conditions, psia
Ts = temperature at standard conditions, ◦R

And in terms of flow rate and the upstream and downstream pressures,
this becomes

Qs = 29.167
Ts

Ps

[(
P 2

1 − P 2
2

)
d5

TL

]0.538

(5.35)

where Qs = volume flow rate at standard conditions, SCFM
Ps = pressure at standard conditions, psia
Ts = temperature at standard conditions, ◦R
P1 = upstream pressure, psia
P2 = downstream pressure, psia
L = pipe length, ft
d = pipe inside diameter, in
T = airflow temperature, ◦R

The preceding formulas can be used for the flow of air at standard
conditions and any flowing temperatures. When standard conditions of
14.7 psia and 60◦F are used along with a flowing temperature of 60◦F,
the preceding formulas can be simplified as follows:

�P = LQ 1.857
s

1480Pd5 (5.36)

where �P = pressure drop, psi
L = pipe length, ft

Qs = volume flow rate at standard conditions, SCFM
d = pipe inside diameter, in
P = average air pressure, psia

Qs = 1
35

[(
P 2

1 − P 2
2

)
d5

L

]0.538

(5.37)
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where Qs = volume flow rate at standard conditions, SCFM
P1 = upstream pressure, psia
P2 = downstream pressure, psia
L = pipe length, ft
d = pipe inside diameter, in

Where air pressures are low and close to the atmospheric pressure
such as in ventilating work and in airflow through ducts, we can modify
the Fritzsche formula to calculate the pressure drops in inH2O. Since
1 in of water column is equal to 0.03613 psi, the pressure loss can be
expressed as follows:

h = LQ 1.857
s

785d5 (5.38)

where h is the pressure drop measured in inH2O.
Another variation of Eq. (5.38) in terms of flow rate is

Qs =
(

785hd5

L

)0.538

(5.39)

5.4.6 Unwin formula

The Unwin formula is applicable for airflow in smooth pipes. This is
based on tests conducted in Paris using compressed-air pipelines. In
this formula the friction factor for airflow is represented by the following
equation:

f = 0.0025
(

1 + 3.6
d

)
(5.40)

Using this friction factor under standard conditions we get the following
equations for pressure drop, flow rate, and mass flow rate of air flowing
through smooth pipes.

�P = (1 + 3.6/d )LQ 2
s

7400Pd5 (5.41)

Qs = 86

√
Pd5/�P

(1 + 3.6/d )L
(5.42)

M = 6.56

√
Pd5/�P

(1 + 3.6/d )L
(5.43)
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where �P = pressure drop, psi
L = pipe length, ft

Qs = volume flow rate at standard conditions, SCFM
d = pipe inside diameter, in
P = average air pressure, psia
M = mass flow rate of air, lb/min

Example 5.16 Air flows in a 6-in inside diameter pipe at the rate of 3000
ft3/min. If the upstream pressure is 100 psia, what is the downstream pres-
sure and pressure drop for 1000 ft of pipe?

Solution From the Harris equation (5.30),

�P = LQ2

2390Pd5.31
= 1000 × 3000 × 3000

2390 × 100 × (6.0)5.31
= 2.78 psi

Using the Unwin formula (5.41), we get

�P = 1000 × 3000 × 3000(1 + 3.6/6.0)
7400 × 100(6.0)5

= 2.5 psi

5.4.7 Spitzglass formula

Spitzglass introduced this formula in 1912 based on tests conducted
for the Peoples Gas Light and Coke Company of Chicago. This formula
uses a friction factor as follows:

f = 0.0112
(

1 + 3.6
d

+ 0.03d
)

(5.44)

There are two versions of the pressure drop equation using the
Spitzglass method. For low pressures up to 1 psig,

h = LQ 2
s

1.26 × 107K 2 (5.45)

Qs = 3550K

√
h
L

(5.46)

K =
√

d5

(1 + 3.6/d + 0.03d )
(5.47)

where h = frictional head loss, inH2O
L = pipe length, ft

Qs = volume flow rate at standard conditions, ft3/h (SCFH)
K = A parameter that is a function of pipe diameter d
d = pipe inside diameter, in
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For pressures greater than 1 psig,

�P = LQ 2
s

2.333 × 107 PK2 (5.48)

Qs = 4830K

√
P�P

L
(5.49)

Qs = 3415K

√(
P 2

1 − P 2
2

)
L

(5.50)

where P1 = upstream pressure, psia
P2 = downstream pressure, psia
P = average pressure, psia

All other symbols are as defined earlier.
It has been found that the Spitzglass formula gives a lower value

of flow rate for a given pressure drop and pipe size compared to the
Weymouth formula (discussed next). Hence the Spitzglass formula is
used in situations where a more conservative result is desired such as
in pipes that are rough or rusty.

5.4.8 Weymouth formula

Thomas R. Weymouth presented this formula in 1912 for calculating gas
flow through high-pressure pipelines. This formula is also used with the
flow of compressed air. The Weymouth friction factor is as follows:

f = 0.032
d0.3333 (5.51)

The Weymouth formula for airflow at standard conditions is

�P = (1.0457 × 10−3)TL
Pd5.3333

(
Ps Qs

Ts

)2

(5.52)

Also

Qs = 21.8742
Ts

Ps

√(
P 2

1 − P 2
2

)
d5.3333

TL
(5.53)

where all the symbols are as defined earlier.
Although many equations have been put forth for the flow of com-

pressed air through pipes, such as those of Harris and Unwin, the clas-
sical method of calculating the pressure drop of a fluid using the Darcy
equation (5.17) still finds popularity among engineers. Thus, knowing
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the pipe diameter, air properties, and flow rate the Reynolds number is
calculated first. Next a friction factor is calculated from the Colebrook-
White equation or read from the Moody diagram. Finally, using the
Darcy equation the pressure drop due to friction is calculated. As men-
tioned before, for quick calculations of compressed-air systems the head
loss may also be estimated from Tables 5.5 through 5.7.

Example 5.17 A pipeline 20,000 ft in length flows air at 4000 SCFM. The
initial pressure is 150 psia, and the flow temperature is 60◦F. If the pres-
sure drop is limited to 50 psi, determine the approximate pipe diameter
required. Compare solutions using the Harris, Fritzsche, and Weymouth
formulas.

Solution

Average pressure P = 150 + 100
2

= 125 psia

Harris formula: Using Eq. (5.30), we get

50 = 20,000(4000)2

2390 × 125 × d5.31

Solving for diameter d, we get

d = 6.54 in

Fritzsche formula: Using Eq. (5.34), we get

50 = 9.8265 × 10−4 × (60 + 460) × 20,000
125d5

(
14.7 × 4000

60 + 460

)1.857

Solving for diameter d, we get

d = 6.39 in

Weymouth formula: Using Eq. (5.52), we get

50 = 1.0457 × 10−3 × 520 × 20,000
125d5.333

(
14.7 × 4000

520

)2

Solving for diameter d, we get

d = 6.53 in

5.5 Minor Losses

Minor losses in a compressed-air piping system consist of those pres-
sure drops that are caused by piping components such as fittings and
valves. Fittings include elbows and tees. In addition there are pressure
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losses associated with pipe diameter enlargement and reduction. All
these pressure drops are called minor losses, as they are relatively small
compared to friction loss in a straight length of pipe.

Generally, minor losses are included in calculations by using the con-
cept of equivalent length of the device or using a K factor in conjunction
with the velocity head v2/2g. The term minor losses can be applied only
when the pipeline lengths and hence the friction losses in the straight
runs of pipe are relatively large compared to the friction loss in fittings
and valves. In a situation such as plant piping the pressure drop in
the straight length of pipe may be of the same order of magnitude as
that due to valves and fittings. In such cases the term minor losses
may be incorrect. Regardless, pressure losses through valves and fit-
tings can be approximated using the equivalent length or velocity head
concept.

Table 5.10 gives the equivalent length of commonly used valves and
fittings in a typical compressed-air piping system. For example, suppose
we have a compressed-air piping system consisting of 500 ft of NPS 12
pipe with two 10-in gate valves and four standard 90◦ elbows of 12-in
diameter.

TABLE 5.10 Equivalent Lengths of
Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60
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Using Table 5.10, we calculate the total equivalent length of pipe and
fittings as follows:

500 ft of NPS 12 pipe = 500 ft

Two 10-in gate valves = 2 × 8 × 10
12

= 13.33 ft

Four 12-in standard 90◦ elbows = 4 × 30 × 12
12

= 120 ft

Total equivalent length of pipe,
valves, and fittings = 500 + 13.33 + 120 = 633.33 ft

The pressure drop due to friction in the compressed-air piping system
just described can now be calculated based on a total equivalent length
of 633.33 ft of pipe. It can be seen in this example that the valves and fit-
tings represent roughly 21 percent of the total pipe length. In plant pip-
ing this percentage may be higher than that in a long-distance pipeline.
Hence, the reason for the term minor losses, when long lengths of piping
are involved.

The K factor or head loss coefficient and the velocity head approach to
calculating pressure drop through valves and fittings can be analyzed
as follows using the Darcy equation. From Eq. (5.17) the pressure drop
in a straight length of pipe is given by

hf = f
L
D

v2

2g

The term f (L/D) may be substituted with a head loss coefficient K.
The preceding equation then becomes

hf = K
(

v2

2g

)
(5.54)

where K = dimensionless head loss coefficient, also known as
the K factor

v = flow velocity, ft/s
g = acceleration due to gravity

In this form, the head loss in a straight piece of pipe is represented as
a multiple of the velocity head v2/2g. It must be remembered that the
factor K includes a friction factor and the L/D ratio of pipe. Following a
similar analysis, we can state that the pressure drop through a valve or
fitting can also be represented by K(v2/2g) where the coefficient K (also
known as the resistance coefficient or head loss coefficient) is specific
to the valve or fitting.

The K factor depends upon the specific design of the valve or fitting
and must be obtained from the manufacturer of the valve or fitting.
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However, for approximate calculations, charts are available for some
of the more commonly used valves and fittings. Typical K factors for
valves and fittings are listed in Table 5.11. It must be noted that the
preceding analysis of representing the head loss through a valve or
fitting using a K factor is applicable only for turbulent flows. No such
data are available for laminar flow of compressed air.

From Table 5.11 it can be seen that a 6-in gate valve has a K factor of
0.12, while a 20-in gate valve has a K factor of 0.10. However, both sizes
of gate valves have the same equivalent length–to–diameter ratio of 8.
The head loss through the 6-in valve can be estimated to be 0.12(v2/2g),
and that in the 20-in valve is 0.10(v2/2g). The velocities in the two cases
will be different due to the difference in diameters.

Suppose the compressed-air piping that consisted of the 6-in gate
valve and the 20-in gate valve previously described had a volume flow
rate of 2300 SCFM. The velocity of flow through the 6- and 20-inch
valves will be calculated as follows:

Flow velocity = flow rate (SCFM)

60 × pipe area (ft2)

The velocity in the 6-in valve will be approximately

V6 = 2300
0.7854 × 0.5 × 0.5 × 60

= 195.23 ft/s

Similarly, the velocity in the 20-in valve will be approximately

V20 = 2300
0.7854 × 1.625 × 1.625 × 60

= 18.48 ft/s

In the preceding, the 20-in valve is assumed to have an inside diameter
of 19.5-in or 1.625 ft.

Therefore,

Head loss in 6-in gate valve = 0.12(195.23)2

64.4
= 71.02 ft

and

Head loss in 20-in gate valve = 0.10(18.48)2

64.4
= 0.53 ft

The head loss in the 20-in valve is insignificant compared to that in the
6-in valve, although the K value for the 20-in valve is 0.10 compared
to 0.12 for the 6-in valve. The reason for the large difference in the
head loss in the 20-in valve is because of the flow velocity. Care must be
taken to use the right pipe size when computing the head loss based on
Eq. (5.54).



TABLE 5.11 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

292
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5.6 Flow of Air through Nozzles

In this section we will discuss the flow of compressed air through a
nozzle making an assumption that the process follows a frictionless
adiabatic flow. Such a process is termed isentropic where the entropy of
the air remains the same throughout the process. In reality, there is al-
ways friction. However, for simplicity we will assume that the friction is
negligible and therefore the process is isentropic. We will first consider
an example of compressed air from a storage tank being released to the
atmosphere through a pipe nozzle. Next we will analyze compressed
air flowing through a pipeline with a restriction or reduced diameter at
some point along the pipeline. We are interested in calculating the flow
rate of air through a nozzle when a certain pressure difference exists
between the upstream end of the system and the nozzle at the down-
stream end.

Consider a tank containing air at pressure P1 and temperature T1. A
nozzle connected to this tank is opened in order to let the air flow out of
the tank to the atmosphere as shown in Fig. 5.3. We will designate the
pressure and temperature at the nozzle to be P2 and T2, respectively, as
shown in the figure.

If we assume that the airflow through the nozzle is quite rapid, there
is no time for any heat to be transferred between the air and the sur-
roundings. Hence we can consider this process of airflow through the
nozzle as an adiabatic process. The air in the tank is at rest (velocity
= 0), and we are using the subscript 1 to represent the condition
of the air in the tank and subscript 2 for the condition of the air in the
nozzle.

Applying the adiabatic process equation P/ρk = constant between the
air in the tank at point 1 and the air in the nozzle at point 2, we get

P1

P2
=
(

ρ1

ρ2

)k

(5.55)

Tank

P1, T1, r1

Velocity V1 = 0
Area A2

P2, T2, r2

Velocity V2

Figure 5.3 Discharge of air from tank through nozzle.
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where P1, ρ1 = pressure and density, respectively, of air in tank
P2, ρ2 = pressure and density, respectively, of air at nozzle

k = ratio of specific heats of air (usually 1.4), dimensionless

The mass flow rate of air through the nozzle can be calculated if the
flow velocity, the nozzle area, and the density of air at the nozzle are
known:

M = ρ2v2 A2 (5.56)

where M = mass flow rate of air, lb/s
ρ2 = Density of air at nozzle, lb/ft3

v2 = flow velocity of air at nozzle, ft/s
A2 = cross-sectional area at nozzle, ft2

From thermodynamic analysis of the flow of air from the tank through
the nozzle, it can be shown that the flow velocity of air in the nozzle is

v2 =
√√√√2gP1

ρ1

k
k − 1

[
1 −
(

P2

P1

)(k−1)/k
]

(5.57)

Thus, given the pressures P1 and P2 and the density of air in the tank,
the velocity of flow of air at the nozzle can be calculated from Eq. (5.57).

Having calculated the velocity v2 at the nozzle, the mass flow rate of
air through the nozzle can be calculated using Eq. (5.56) and substitut-
ing the value of velocity v2 as follows:

M = A2

√√√√ 2gk
k − 1

P1ρ1

[(
P2

P1

)2/k

−
(

P2

P1

)(k+1)/k
]

(5.58)

By examining Eq. (5.57) for the velocity of flow through the nozzle
we can conclude the following. As the pressure drop P1 − P2 between
the tank and the nozzle increases, the pressure ratio P2/P1 decreases.
Hence, the velocity in the nozzle increases until it reaches the sonic
velocity. The sonic velocity is the velocity of sound in a fluid, in this
case, air. When this happens, the air flows at a Mach number = 1.0. The
Mach number is simply the ratio of the flow velocity to the velocity of
sound. The pressure ratio P2/P1 when the velocity in the nozzle reaches
the sonic velocity is termed the critical pressure ratio. This ratio is
a function of the specific heat ratio k and is given by the following
equation:

Critical pressure ratio = P2

P1
=
(

2
k + 1

)k/(k−1)

(5.59)
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From Eq. (5.58) after substituting the value of the critical ratio P2/P1
from Eq. (5.59), we can calculate the mass flow rate through the nozzle
at the critical pressure ratio. This will represent the maximum possible
flow through the nozzle. If the pressure drop P1−P2 is increased further,
by either increasing P1 or reducing P2, the velocity in the nozzle will
remain sonic and no further increase in flow rate is possible. This is
termed choked flow. The mass flow rate through the nozzle at the critical
pressure ratio is calculated from the following equation, by substituting
the critical pressure ratio P2/P1 in Eq. (5.58):

M = A2 P1√
T1

√
gk
R

(
2

k + 1

)(k+1)/(k−1)

(5.60)

where M = mass flow rate of air, lb/s
A2 = cross-sectional area at nozzle, ft2

P1 = pressure in tank, psia
T1 = absolute temperature of air in tank, ◦R
g = acceleration due to gravity
k = ratio of specific heats of air (usually 1.4), dimensionless
R = gas constant for air

In Eq. (5.60) we have introduced the temperature T1 and gas constant
R using the perfect gas equation (5.1). A similar analysis is presented
next for compressed air flowing through a pipeline that has a restricted
pipe size at a certain location in the pipeline.

5.6.1 Flow through a restriction

A convergent nozzle in a pipeline is a section of the pipe where the
flow of air starts off initially in a larger-diameter section and is then
made to flow through a smaller-diameter section. This is illustrated in
Fig. 5.4.

Consider airflow through a pipe starting at a particular cross-
sectional area A1 at section 1 and becoming a smaller cross-sectional
area A2 at section 2 as shown in the figure. Let P1, ρ1, and T1 represent
the pressure, density, and temperature, respectively, at section 1 and
the velocity of flow at section 1 be v1. The corresponding values in sec-
tion 2 of the pipe are denoted by P2, ρ2, T2, and v2. The mass flow rate
for such a piping system can be calculated from the following equation:

M = A2√
1 − (P2/P1)2/k (A2/A1)2

√√√√ 2gk
k − 1

P1ρ1

[(
P2

P1

)2/k

−
(

P2

P1

)(k+1)/k
]

(5.61)
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1 2

P1, T1, r1 P2, T2, r2

Area A1

Area A2

Velocity V2Velocity V1

Figure 5.4 Airflow through a restriction.

where M = mass flow rate, lb/s
A1 = upstream pipe cross-sectional area, ft2

A2 = nozzle throat area, ft2

k = ratio of specific heats of air (usually 1.4), dimensionless
g = acceleration due to gravity, ft/s2

ρ1 = density of air at upstream location, lb/ft3

P1 = upstream pressure, psia
P2 = downstream pressure, psia

It may be seen from Eq. (5.61) that as A1 increases such that the ratio
A2/A1 is very small, it approximates the condition of a storage tank and
nozzle described earlier. In this case Eq. (5.61) reduces to Eq. (5.58).

As airflow approaches the smaller-diameter nozzle (see Fig. 5.4), the
velocity increases and may equal the sonic velocity. At sonic velocity
the Mach number (air speed/sound speed) is 1.0. When this happens,
the ratio of the pressure in nozzle P2 to the upstream pressure P1 is
defined as the critical pressure ratio. This ratio is a function of the
specific heat ratio k of air. This is similar to Eq. (5.59) for the discharge
of air from a tank through a nozzle.

If the airflow through the nozzle has not reached sonic velocity, the
flow is termed subsonic. In this case the pressure ratio P2/P1 will be a
larger number than the critical pressure ratio calculated from Eq. (5.59).

If the pressure drop P1 − P2 increases such that the critical pressure
ratio is reached, the flow through the nozzle will be sonic. The flow rate
equation then becomes, after setting P2/P1 equal to the critical pressure
ratio from Eq. (5.59),

M = A2 P1√
T1

√
gk
R

(
2

k + 1

)(k+1)/(k−1)

(5.62)
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A further increase in pressure drop causes the flow through the nozzle
to remain sonic and the pressure at the exit of the nozzle will increase.
Even though the pressure drop has increased, there will be no change
in the mass flow rate. This is known as choked flow, as discussed earlier
under discharge of air from a tank through a nozzle.

Example 5.18 What is the critical pressure ratio for the flow of compressed
air through a nozzle, assuming isentropic flow?

Solution When the airflow takes place under adiabatic conditions, with no
heat transfer between the air and the surroundings and friction is neglected,
it is said to be isentropic flow. The critical pressure ratio for air with the
specific heat ratio k = 1.4 can be calculated from Eq. (5.59) as follows:

Critical pressure ratio = P2

P1
=
(

2
k + 1

)k/(k−1)

=
(

2
1.4 + 1

)1.4/0.4

= 0.5283

Thus the critical pressure ratio for compressed air flowing through a nozzle
under isentropic conditions is 0.5283.

Example 5.19 Compressed air flows through a nozzle, and the upstream and
downstream pressures were recorded as 2.75 and 1.75 MPa, respectively.
Both pressures are in absolute values. Is the flow through the nozzle sub-
sonic or sonic? What is the flow rate through the nozzle, if the nozzle size is
100 mm and the upstream pipe size is 200 mm? Assume the density of air is
0.065 kN/m3 and the gas constant is 29.3.

Solution First we will calculate the critical pressure ratio:

P2

P1
=
(

2
k + 1

)k/(k−1)

=
(

2
1.4 + 1

)1.4/0.4

= 0.5283

Next we will compare this with the ratio of given pressures.

Pressure ratio = 1.75
2.75

= 0.6364

Since the pressure ratio is higher than the critical pressure ratio, we conclude
that the flow is subsonic.

We will use Eq. (5.61) to calculate the mass flow rate. The cross-sectional
area of the nozzle is

A2 = 0.7854 × 0.1 × 0.1 = 0.007854 m2

The cross-sectional area of the upstream end of the pipe is

A1 = 0.7854 × 0.2 × 0.2 = 0.0314 m2
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Therefore

A2

A1
= 0.007854

0.0314
= 0.25

(k + 1)
k

= 1.4 + 1
1.4

= 1.7143

2
k

= 2
1.4

= 1.4286

k
k − 1

= 1.4
0.4

= 3.5

Substituting the preceding ratios in Eq. (5.61), we get for mass flow rate,

M = 0.007854√
1 − (0.6364)1.4286(0.25)2√
2 × 9.81 × 3.5 × 2.75 × 103 × 0.065 [(0.6364)1.4286 − (0.6364)1.7143]

= 0.223 kN/s

Example 5.20 Consider air flowing through a 300-mm inside diameter pipe
at 20◦C, where the upstream pressure is 600 kPa and the downstream pres-
sure 200 m away is 300 kPa. All pressures are in absolute value. Assume
the pipe roughness to be 0.05 mm. Use a gas constant R = 29.3. Calculate
the volume flow rate and mass flow rate.

Solution Assume a friction factor f = 0.01. Using the isothermal flow equa-
tion (5.14), we get

6002 − 3002 = M 2 × 29.3(273 + 20)
9.81(0.7854 × 0.3 × 0.3)2

(
0.01 × 200

0.3
+ 2 loge

600
300

)

Solving for the mass flow rate:

M = 0.438 kN/s

Using the perfect gas law from Eq. (5.1),

Density ρ = 600
29.3 × 293

= 0.0699 kN/m3

From the mass flow rate equation (5.13),

Velocity of flow v = 0.438
(0.7854 × 0.3 × 0.3)(0.0699)

= 88.65 m/s

Calculate the Reynolds number from Eq. (5.18):

Re = 0.0699 × 0.3 × 88.65
9.81 × (1.81 × 10−5 × 10−3)

= 1.05 × 107
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where the viscosity of air µ = 1.81 × 10−5 (N · s)/m2 at 20◦C from Table 5.2.
The pipe relative roughness is

e
d

= 0.05
300

= 1.667 × 10−4

Thus, from the Moody diagram at the calculated Reynolds number, the fric-
tion factor is found to be

f = 0.0134

Recalculating the flow rate M using this value of f we get

M = 0.387 kN/s

Recalculating the velocity by proportions

V = 0.387
0.438

× 88.65 = 78.33 m/s

The revised Reynolds number then becomes by proportions

Re = 1.05 × 107 × 78.33
88.65

= 9.28 × 106

Then from the Moody diagram at this Reynolds number, the friction factor
is found to be

f = 0.01337

which is quite close to what we had before. Thus the calculations are complete,
and the flow rate is

M = 0.387 kN/s

The volume flow rate is equal to the mass flow rate divided by density:

Volume rate Q = 0.387
0.0699

= 5.536 m3/s

Example 5.21 Air flows at 50◦F from a large storage tank through a conver-
gent nozzle with an exit diameter of 1 in. The air discharges to the atmosphere
(14.7 psia). The tank pressure is 400 psig. What is the airflow rate through
the nozzle?

Solution The critical pressure ratio, from Eq. (5.59), is

P2

P1
=
(

2
1.4 + 1

)1.4/0.4

= 0.5283

Actual pressure ratio = 14.7
400 + 14.7

= 0.035

Since the actual pressure ratio is less than the critical value, the flow through
the nozzle is sonic. The flow rate through the nozzle is found using Eq. (5.63).
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First we calculate the nozzle area:

A2 = 0.7854

(
1

12

)2

= 0.00545 ft2

Then,

M = 0.00545 × 414.7 × 144√
460 + 50

√
32.2 × 1.4

53.3

(
2

1.4 + 1

)2.4/0.4

= 7.67 lb/s

Note that to ensure a consistent set of units, the pressure (400 + 14.7) psia
must be multiplied by 144 to convert to lb/ft2.

Example 5.22 Air flows through a 4-in-diameter pipeline with a 2-in diam-
eter restriction. The upstream pressure and temperature are 150 psig and
100◦F, respectively. Calculate the flow rate of air if the pressure in the re-
striction is 75 psig. Assume an atmospheric pressure of 14.7 psia.

Solution To calculate the flow rate of air through a restriction using
Eq. (5.61), we begin by solving the critical pressure ratio, cross-sectional
areas and area ratio.

P2

P1
= 75 + 14.7

150 + 14.7
= 0.5446

A2 = 0.7854

(
2

12

)2

= 0.02182 ft2

A1 = 0.7854

(
4

12

)2

= 0.08727 ft2

A2

A1
= 0.02182

0.08727
= 0.25

Next, the density of air at the inlet is calculated using Eq. (5.1):

ρ1 = P1

RT1
= (150 + 14.7) × 144

53.3 × (460 + 100)
= 0.7946 lb/ft3

Now the mass flow rate can be calculated easily by substituting in Eq. (5.61):

M = 0.02182√
1 − (0.5446)2/1.4(0.25)2√
2 × 32.2 × 1.4

0.4
(164.7 × 0.7946 × 144) [(0.5446)2/1.4 − (0.5446)2.4/1.4]

Solving we get M = 11.79 lb/s.



Chapter

6
Oil Systems Piping

Introduction

Oil systems piping includes those pipelines that transport oil and
petroleum products from refineries and tank farms to storage facil-
ities and end-user locations. We will discuss calculations that are re-
quired for sizing crude oil and petroleum products (diesel, gasoline, etc.)
pipelines. Since oil is generally considered incompressible and therefore
its volume does not change appreciably with pressure, its analysis is
similar to that of other incompressible fluids such as water. We will be-
gin our discussion with an exploration of the properties of crude oil and
petroleum products and how they affect pipeline transportation. We
will also cover pumping requirements such as the type of equipment
and horsepower needed to transport these products from the various
sources to their destinations. We will discuss short piping systems such
as oil gathering lines as well as long-distance trunk lines. Throughout
this chapter we will use the term petroleum products to refer to crude
oil as well as refined petroleum products such as gasoline, kerosene,
and diesel fuels.

6.1 Density, Specific Weight,
and Specific Gravity

The density of a liquid is defined as its mass per unit volume. The
specific weight is defined as weight per unit volume. Sometimes these
two terms are used interchangeably. Density is expressed as slug/ft3 and
specific weight as lb/ft3 in English, or U.S. Customary (USCS), units.
For example, a typical crude oil may have a density of 1.65 slug/ft3and
a specific weight of 53.0 lb/ft3. In comparison water has a density of
1.94 slug/ft3and a specific weight of 62.4 lb/ft3. Both the density and

301
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specific weight of petroleum products change with temperature. These
two properties decrease as the temperature is increased, and vice versa.

The volume of a petroleum product is measured in gallons or bar-
rels in USCS units and in cubic meters (m3) or liters (L) in Système
International (SI) units. One barrel of a petroleum product is equal
to 42 U.S. gallons. Volume flow rates in oil pipelines are generally re-
ported in gal/min, barrels per hour (bbl/h), or bbl/day in USCS units
and in m3/h or L/s in SI units. As indicated before, since liquids are
incompressible, pressure has little effect on their volume or density.

Specific gravity is a measure of how heavy a liquid is compared to
water at a particular temperature. Thus considering some standard
temperature such as 60◦F, if the density of petroleum product is 6 lb/gal
and that of water is 8.33 lb/gal, we can say that the specific gravity Sg
of the petroleum product is

Sg = 6
8.33

= 0.72

Note that this comparison must use densities measured at the same
temperature; otherwise it is meaningless. In USCS units, the standard
temperature and pressure are taken as 60◦F and 14.7 psi. In SI units
the corresponding values are 15◦C and 1 bar or 101 kPa. Typical spe-
cific gravities of common crude oils, diesel, gasoline, etc., are listed in
Table 6.1.

In the petroleum industry a commonly used term is the API gravity,
named after the American Petroleum Institute (API). The API gravity
of a petroleum product is measured in the laboratory using the ASTM
D1298 method. It is a measure of how heavy a liquid is compared to
water and therefore has a correlation with specific gravity. However,
the API scale of gravity is based on a temperature of 60◦F and an API
gravity of 10 for water. Liquids lighter than water have an API gravity
greater than 10. Those liquids that are heavier than water will have

TABLE 6.1 Specific Gravities of Petroleum Products

Specific Gravity API Gravity
Liquid at 60◦F at 60◦F

Propane 0.5118 N/A
Butane 0.5908 N/A
Gasoline 0.7272 63.0
Kerosene 0.7796 50.0
Diesel 0.8398 37.0
Light crude 0.8348 38.0
Heavy crude 0.8927 27.0
Very heavy crude 0.9218 22.0
Water 1.0000 10.0

N/A = not applicable.
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an API gravity of less than 10. In comparison the specific gravity of a
liquid lighter than water may be 0.85 compared to water with a specific
gravity of 1.0. Similarly, brine, a heavier liquid, has a specific gravity
of 1.26. It can thus be seen that the API gravity numbers increase as
the product gets lighter than water whereas specific gravity numbers
decrease. The API gravity is always measured at 60◦F. It is incorrect to
state that the API of a liquid is 37◦API at 70◦F. The phrase “37◦API”
automatically implies the temperature of measurement is 60◦F.

The specific gravity of a liquid and its API gravity are related by the
following two equations:

Sg = 141.5
131.5 + API

(6.1)

API = 141.5
Sg

− 131.5 (6.2)

Again, it must be remembered that in both Eqs. (6.1) and (6.2) the
specific gravity Sg is the value at 60◦F since by definition the API is
always at 60◦F. Thus, given the value of API gravity of a petroleum
product we can easily calculate the corresponding specific gravity at
60◦F using these equations.

Example 6.1

(a) A sample of crude oil when tested in a lab showed an API gravity of 35.
What is the specific gravity of this crude oil?

(b) Calculate the API gravity of gasoline, if its specific gravity is 0.736 at
60◦F.

Solution

(a) Using Eq. (6.1),

Sg = 141.5
131.5 + 35

= 0.8498 at 60◦F

(b) Using Eq. (6.2),

API = 141.5
0.736

− 131.5 = 60.76

It is understood that the above API value is at 60◦F.

The specific gravity of a petroleum product decreases with an increase
in temperature. Therefore, if the specific gravity of crude oil is 0.895 at
60◦F, when the oil is heated to 100◦F, the specific gravity will drop to
some lower value, such as 0.825. The API gravity, on the other hand,
still remains at the same value as before, since it is always referred to
at 60◦F.
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Figure 6.1 Variation of specific gravity with temperature for various petroleum liquids.

Let Sg1 and Sg2 represent the specific gravity at two different temper-
atures T1 and T2 . We find that an approximately linear relationship ex-
ists between specific gravity and temperature within the normal range
of temperatures encountered in oil pipelines. Thus a probable relation-
ship between the specific gravity and temperature may be expressed as

Sg1 − Sg2 = a(T2 − T1) + b (6.3)

where a and b are constants.
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It is more common to calculate the specific gravity of a petroleum
product at any temperature from the specific gravity at the standard
temperature of 60◦F. We can then rewrite Eq. (6.3) in terms of the un-
known value of specific gravity Sgt at some given temperature T as
follows:

Sgt = Sg60 + a × (60 − T) (6.4)

The constant a in Eq. (6.4) depends on the particular liquid and repre-
sents the slope of the specific gravity versus temperature line for that
product. Figure 6.1 shows the variation of specific gravity with temper-
ature for various petroleum liquids.

Example 6.2 The specific gravity of kerosene at 60◦F is 0.815. Calculate its
specific gravity at 75◦F, given that the constant a in Eq. (6.4) is 0.0001.

Solution Using Eq. (6.4) we calculate

Sg = 0.815 + 0.0001 × (60 − 75) = 0.8135

Therefore, the specific gravity of kerosene at 75◦F is 0.8135.

6.2 Specific Gravity of Blended Products

The specific gravity of a mixture of two or more petroleum products can
be calculated fairly easily using the weighted-average method. Since
weight is the product of volume and specific weight and the total weight
of the mixture is equal to the sum of the component weights, we can
write the following equation for the specific gravity of a blend of two or
more products, assuming a homogenous mixture.

Sgblend = (Sg1 × pct1) + (Sg2 × pct2) + · · ·
100

(6.5)

where Sg1 and Sg2 are the specific gravities, respectively, of the liquids
with percentage volumes of pct1 and pct2 and Sgblend is the specific
gravity of the mixture.

Example 6.3 A mixture consists of 20 percent of light crude of 35 API gravity
and 80 percent of heavy crude of 25 API gravity. Calculate the specific gravity
and API gravity of the mixture.

Solution To use the specific gravity blending Eq. (6.5) we must convert API
gravity to specific gravity,

Specific gravity of light crude oil Sg1 = 141.5
131.5 + 35

= 0.8498

Specific gravity of heavy crude oil Sg2 = 141.5
131.5 + 25

= 0.9042
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Using Eq. (6.5), the specific gravity of the mixture is calculated as follows:

Sgblend = (0.8498 × 20) + (0.9042 × 80)
100

= 0.8933

The corresponding API gravity of the mixture, using Eq. (6.2), is

APIblend = 141.5
0.8933

− 131.5 = 26.9

6.3 Viscosity

Viscosity is a measure of a liquid’s resistance to flow. Consider petroleum
product flowing through a pipeline. Each layer of liquid flowing through
the pipe exerts a certain amount of frictional resistance to the adjacent
layer. This is illustrated in Fig. 6.2, where a velocity gradient is shown
to exist across the pipe diameter.

According to Newton, the frictional shear stress between adjacent
layers of the liquid is related to the flowing velocity across a section of
the pipe as

Shear stress = µ × velocity gradient

or

τ = µ
dv
dy

The velocity gradient is defined as the rate of change of liquid velocity
along a pipe diameter. The proportionality constant µ in the preceding
equation is referred to as the absolute, or dynamic viscosity. In SI units
µ is expressed in poise [(dynes · s)/cm2 or g/(cm · s)] or centipoise (cP). In
USCS units absolute viscosity is expressed as (lb · s)/ft2 or slug/(ft · s).
However, centipoise is also used in calculations involving USCS units.

The viscosity of petroleum product, like the specific gravity, decreases
with an increase in temperature, and vice versa. Typical viscosities of
common petroleum products are listed in Table 6.2.

Maximum
velocity

v
y

Laminar flow

S
he

ar
 s

tr
es

s

Velocity gradient
dv
dy

t

Figure 6.2 Viscosity and Newton’s law.
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TABLE 6.2 Viscosities of Petroleum Products

Product Viscosity, cSt at 60◦F

Regular gasoline
Summer grade 0.70
Interseasonal grade 0.70
Winter grade 0.70

Premium gasoline
Summer grade 0.70
Interseasonal grade 0.70
Winter grade 0.70

No. 1 fuel oil 2.57
No. 2 fuel oil 3.90
Kerosene 2.17
Jet fuel JP-4 1.40
Jet fuel JP-5 2.17

The absolute viscosity µ was defined earlier. Another term known as
the kinematic viscosity of a liquid is defined as the absolute viscosity
divided by the density. It is generally represented by the symbol ν.
Therefore,

Kinematic viscosity ν = absolute viscosity µ

density ρ

In USCS units kinematic viscosity is measured in ft2/s. In SI units,
kinematic viscosity is expressed as m2/s, stokes, or centistokes (cSt).
However, centistoke units are also used in calculations involving USCS
units. One stoke equals 1 cm2/s. In SI units, absolute viscosity and
kinematic viscosity are related simply by specific gravity as follows:

Kinematic viscosity (cSt) = absolute viscosity (cP)
specific gravity

In the petroleum industry kinematic viscosity is also expressed in
terms of seconds Saybolt Universal (SSU) or seconds Saybolt Furol
(SSF). These do not actually represent the physical concept of viscosity
but rather a relative measure of how difficult or how easily the liquid
flows. In fact both SSU and SSF represent the time taken for a fixed
volume [usually 60 milliliters (mL)] of liquid to flow through a specified
orifice as measured in a lab. Thus the viscosity of Alaskan North Slope
(ANS) crude may be reported as 200 SSU at 60◦F. This simply means
that in a laboratory a 60-mL sample of ANS crude at 60◦F took 200
seconds (s) to flow through a specified orifice. In comparison lighter
crude may take only 80 seconds to flow through the same orifice at the
same temperature. Therefore the lighter crude has a viscosity of 80 SSU.

The kinematic viscosity of a liquid may thus be expressed in cSt, SSU,
or SSF. The equations to convert between these units are given here.
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To convert viscosity from SSU to centistokes:

Centistokes =




0.226 × SSU − 195
SSU

for 32 ≤ SSU ≤ 100 (6.6)

0.220 × SSU − 135
SSU

for SSU > 100 (6.7)

To convert viscosity from SSF to centistokes:

Centistokes =




2.24 × SSF − 184
SSF

for 25 ≤ SSF ≤ 40 (6.8)

2.16 × SSF − 60
SSF

for SSF > 40 (6.9)

To convert viscosity from centistokes to SSU, we have to solve for SSU
from Eqs. (6.6) or (6.7). It can be seen that this is not very straightfor-
ward. We have to solve a quadratic equation in the unknown quantity
SSU, as follows:

0.226(SSU)2 − c(SSU) − 195 = 0 for 32 ≤ SSU ≤ 100 (6.10)

0.220(SSU)2 − c(SSU) − 135 = 0 for SSU > 100 (6.11)

In both Eqs. (6.10) and (6.11) the viscosity in centistokes is represented
by the variable c.

For example, if the value of viscosity is 10 cSt and we want to convert
it to SSU, we need to first guess the answer so we can choose which one of
Eqs. (6.10) and (6.11) we should use. The SSU value is generally about
5 times the cSt value. So a viscosity of 10 cSt will be approximately
50 SSU. Therefore we must use Eq. (6.10) since that is for SSU values
between 32 and 100. So the solution for the conversion of 10 cSt to SSU
will be found from

0.226(SSU)2 − 10(SSU) − 195 = 0

An example will illustrate the method.

Example 6.4

(a) The kinematic viscosity of Alaskan North Slope (ANS) crude oil at 60◦F
is 200 SSU. Express this viscosity in cSt. The specific gravity of ANS at 60◦F
is 0.895.

(b) If a light crude oil has a kinematic viscosity of 5.9 cSt, what is this
viscosity in SSU?

(c) A heavy fuel oil has a viscosity of 350 SSF. Convert this viscosity to
kinematic viscosity in centistokes. If the specific gravity of the fuel oil is
0.95, what is the absolute viscosity in cP?
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Solution

(a) From Eq. (6.7) we convert SSU to cSt,

Centistokes = 0.220 × 200 − 135
200

= 43.33 cSt

(b) First we guess the SSU as 5×cSt = 30 SSU. Then using Eq. (6.6) we get

5.9 = 0.226(SSU) − 195
SSU

Simplifying,

0.226(SSU)2 − 5.9(SSU) − 195 = 0

Solving the quadratic equation for SSU, we get

SSU = 5.9 ±
√

(5.9)2 + 4 × 195 × 0.226
2 × 0.226

= 5.9 ± 14.53
0.452

or, taking the positive value of the solution,

SSU = 45.20

(c) Using Eq. (6.9) to convert SSF to centistokes,

Centistokes = 2.16(350) − 60
350

= 756 cSt

The viscosity of a liquid decreases as the temperature increases, simi-
lar to the specific gravity. However, even in the normal range of tempera-
ture, unlike specific gravity, the viscosity variation with temperature is
nonlinear. Several correlations have been proposed to calculate viscos-
ity variation with temperature. The ASTM D341 method uses a log-log
correlation that can be used to plot the viscosity versus temperature on
a special graph paper. The temperatures and viscosities are plotted on
a graph paper with logarithmic scales on each axis.

Sometimes, the viscosity ν in centistokes of a petroleum product
and its absolute temperature T may be represented by the following
equation:

loge ν = A− B(T ) (6.12)

where Aand B are constants that depend on the petroleum product and
T is the absolute temperature in ◦R (◦F + 460) or K (◦C + 273).

Based on relationship (6.12), a graph of loge ν plotted against temper-
ature T will be a straight line. The slope of the line will be represented
by the constant B, and the intercept on the vertical axis would be the
constant A. In fact, A would represent the log (viscosity) at the temper-
ature T = 0.
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If we are given two sets of viscosity values corresponding to two dif-
ferent temperatures, from lab data we could substitute those values in
Eq. (6.12) and find the constants A and B for the particular petroleum
product. Having calculated A and B, we will then be able to calculate
the viscosity of the product at any other temperature using Eq. (6.12).
We will explain this method using an example.

Example 6.5 A petroleum oil has the following viscosities at the two
temperatures:

Viscosity at 60◦F = 43 cSt

Viscosity at 100◦F = 10 cSt

We are required to find the viscosity versus temperature correlation and
calculate the viscosity of this oil at 80◦F.

Solution Using Eq. (6.12), substituting the given pairs of temperature-
viscosity data, we get two equations to solve for A and B as follows:

A− B (60 + 460) = loge 43

A− B (100 + 460) = loge 10

Solving these equations, we get the following values for the constants A
and B:

A = 22.72 B = 0.0365

We can now calculate the viscosity of this liquid at any temperature from
Eq. (6.12). To calculate the viscosity at 80◦F, substitute the temperature in
the equation as follows:

loge ν = 22.72 − 0.0365(80 + 460)

Solving for viscosity, we get

Viscosity at 80◦F = 20.35 cSt

In addition to the simple logarithmic relationship previously described
for viscosity versus temperature, other empirical correlations have been
put forth by several researchers. One of the more popular formulas is
the ASTM method of calculating the viscosities of petroleum products.
Using this approach, also known as the ASTM D341 method, a graph
paper with logarithmic scales is used to plot the temperature versus
viscosity of a liquid at two known temperatures. From two pairs of data
plotted on the log-log paper, a straight line is drawn connecting them.
The viscosity at any intermediate temperature can then be interpolated.
Sometimes, viscosity may also be extrapolated from this chart, beyond
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Figure 6.3 ASTM D341—Viscosity temperature chart.

the temperature range used. The ASTM viscosity versus temperature
chart is shown in Fig. 6.3.

For viscosity variations with temperature, using the ASTM method,
the following analytical method may be used. Here the relationship
between viscosity and temperature is given by a log log equation as
follows:

log log Z = A− B log T (6.13)

where log is the logarithm to base 10 and Z is a parameter that depends
on the kinematic viscosity of the liquid ν in centistokes and T is the
absolute temperature in ◦R or K. As before, the constants A and B
depend on the specific petroleum product.

The parameter Z depends on the liquid viscosity as follows:

Z = ν + 0.7 + C − D (6.14)

where C and D are further parameters that depend on the viscosity as
follows:

C = exp (−1.14883 − 2.65868ν) (6.15)

D = exp(−0.0038138 − 12.5645ν) (6.16)
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where exp(x) represents the value of ex where e is the base of natural
logarithms and numerically e = 2.71828.

If we are given two sets of temperature-viscosity data, we can sub-
stitute those values in Eqs. (6.14) to (6.16) and calculate the pair of
values for the parameters C, D, and Z. Next we can substitute the two
sets of temperature and Z values in Eq. (6.13) to calculate the values
of the constants A and B. Once we know A and B we can calculate the
viscosity at any other temperature using Eq. (6.13). We will illustrate
this method using an example.

Example 6.6 A certain petroleum product has temperature versus viscosity
data obtained from a lab as follows:

Temperature, ◦F 60 180

Viscosity, cSt 750 25

(a) Determine the viscosity versus temperature relationship for this prod-
uct based on the ASTM equations (6.14) to (6.16).

(b) Calculate the viscosity of this liquid at 110◦F.

Solution

(a) First calculate the values of C, D, and Z at 60◦F using Eqs. (6.14)
through (6.16):

C1 = exp (−1.14883 − 2.65868 × 750) = 0

D1 = exp (−0.0038138 − 12.5645 × 750) = 0

Z1 = 750 + 0.7 = 750.7

Next we repeat these calculations using the 180◦F data. The values of C, D,
and Z at 180◦F are

C2 = exp (−1.14883 − 2.65868 × 25) = 0

D2 = exp (−0.0038138 − 12.5645 × 25) = 0

Z2 = 25 + 0.7 = 25.7

Next, use the two sets of Z values at the two temperatures in Eq. (6.13) to
produce two equations in A and B as follows:

log log 750.7 = A− B log (60 + 460)

log log 25.7 = A− B log (180 + 460)

Simplifying, these equations become,

0.4587 = A− 2.716B
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and

0.1492 = A− 2.8062B

The values of A and B can now be found by solving the preceding two simul-
taneous equations, to yield

A = 9.78 B = 3.43

Therefore, the viscosity versus temperature relationship for this product is

log log Z = A− B log T

where Z is a parameter that depends on viscosity in cSt, T is the absolute
temperature in ◦F, and the logarithms are to base 10.

(b) At a temperature of 110◦F using the equation generated in part (a), we
get

log log Z = A− B log(110 + 460)

Substituting the values of A and B, we have

log log Z = 9.78 − 3.43 × 2.7559 = 0.3273

Solving for Z we get

Z = 133.26

The viscosity at 110◦F is then found from Eq. (6.14) as

Viscosity = 133.26 − 0.7 = 132.56 cSt

Example 6.7 A crude oil has a dynamic viscosity of 30 cP at 20◦C. Calcu-
late its kinematic viscosity in SI units. The density is 0.85 gram per cubic
centimeter (g/cm3).

Solution Since the density in g/cm3 is numerically the same as specific
gravity,

Kinematic viscosity (cSt) = absolute viscosity (cP)
specific gravity

= 30.0
0.85

= 35.29 cSt

Example 6.8 The viscosity of a typical crude oil was measured at two differ-
ent temperatures as follows:

Temperature, ◦F 60 100

Viscosity, cSt 35 15

Using the ASTM method of correlation and the log log equations (6.14) to
(6.16), calculate the viscosity of this oil at 75◦F.
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Solution First calculate the values of C, D, and Z at 60◦F using Eqs. (6.14)
through (6.16):

C1 = exp (−1.14883 − 2.65868 × 35) = 0

D1 = exp (−0.0038138 − 12.5645 × 35) = 0

Z1 = 35 + 0.7 = 35.7

Next we repeat these calculations using the 100◦F data. The values of C, D,
and Z at 100◦F are

C2 = exp (−1.14883 − 2.65868 × 15) = 0

D2 = exp (−0.0038138 − 12.5645 × 15) = 0

Z2 = 15 + 0.7 = 15.7

Next, use the two sets of Z values at the two temperatures in Eq. (6.13) to
produce two equations in A and B as follows:

log log 35.7 = A− B log (60 + 460)

log log 15.7 = A− B log (100 + 460)

Solving for A and B we get

A = 9.7561 and B = 3.5217

The viscosity of the oil at 75◦F using Eq. (6.13) is

log log Z = 9.7561 − 3.5217 × log (75 + 460)

Solving for Z we get

Z = 25.406

Therefore the viscosity at 75◦F using Eq. (6.14) is

Viscosity = Z − 0.7 = 24.71 cSt

6.4 Viscosity of Blended Products

The viscosity of a mixture of two or more petroleum products can be
calculated using one of two methods. Viscosity, unlike specific gravity,
is a nonlinear property. Therefore we cannot use a weighted-average
method to calculate the viscosity of a mixture of two or more liquids.
For example, 20 percent of a liquid with 10 cSt viscosity when blended
with 80 percent of a liquid of 20 cSt viscosity will not result in the
following weight-averaged viscosity:

Viscosity = (10 × 20) + (20 × 80)
100

= 18 cSt
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This viscosity of mixture is incorrect. We will now show how to calcu-
late the viscosity of the blend of two or more liquids using an empirical
method. The viscosity of a mixture of petroleum products can be calcu-
lated using the following formula:

√
Vb = Q1 + Q2 + · · ·

(Q1/
√

V1) + (Q2/
√

V2) + · · · (6.17)

where Vb = viscosity of blend, SSU
Q1, Q2, etc. = volumes of each liquid component
V1, V2, etc. = viscosity of each liquid component, SSU

Note that in Eq. (6.17) for calculating the viscosity of a mixture or a
blend of multiple liquids, all viscosities must be in SSU. If the viscosities
of the liquids are given in cSt, we must first convert the viscosities from
cSt to SSU before using the equation to calculate the blended viscosity.
Also the minimum viscosity that can be used is 32 SSU, equivalent to
1.0 cSt which happens to be the viscosity of water.

Another method for calculating the viscosity of a mixture of products
is using the so-called blending index. It has been used in the petroleum
pipeline industry for many years. Using this method involves calculat-
ing a parameter called the blending index for each liquid based on its
viscosity. Next, from the component blending index, the blending index
of the mixture is calculated using the weighted average of the compo-
sition of the mixture. Finally, the viscosity of the mixture is calculated
from the blending index of the mixture. The calculation method is as
follows:

H = 40.073 − 46.414 log log (ν + A) (6.18)

A =
{

0.931(1.72)ν for 0.2 < ν < 1.5 (6.19)
0.6 for ν ≥ 1.5 (6.20)

Hm = H1(pct1) + H2(pct2) + · · ·
100

(6.21)

where H, H1, H2, etc. = blending index of the liquids
Hm = blending index of the mixture

A = constant in blending index equation
ν = viscosity, cSt

pct1, pct2, etc. . . . = percentage of liquids 1,2, etc., in the mixture
log = logarithm to base 10

Another method to calculate the blended viscosities of two or more
petroleum products is the ASTM D341-77 method which employs a
graphical approach. Two products at a time are considered and can be
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extended to more products, taking the blended properties of the first
two products and combining with the third, etc. In this method, a spe-
cial logarithmic graph paper with viscosity scales on the left and right
sides of the paper and the percentage of the two products listed on the
horizontal axis is used. This is shown in Fig. 6.4. This chart is also
available in many handbooks such as the Hydraulic Institute’s Engi-
neering Data Book. Using this method requires that the viscosities of
all products be in SSU and at the same temperature.

For more than two liquids, the blended viscosity of two product at
a time is calculated and the process is then repeated for additional
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products, combining the third product with the mixture of the first two
products, and so on. Therefore if three products are to be blended in the
ratios of 10, 30, and 60 percent, we would first calculate the viscosity
of the blend of the first two liquids considering 10 parts of liquid A
blended with 30 parts of liquid B. Therefore we would calculate the
blend viscosity based on one-fourth of liquid A and three-fourths of
liquid B. Next, we would calculate the blend of this mixture combined
with liquid C in the proportions of 40 and 60 percent, respectively.

Example 6.9 Calculate the blended viscosity of a liquid consisting of a mix-
ture of 15 percent of liquid A with 85 percent of liquid B. The liquids A and
B have a viscosity of 12 and 23 cSt, respectively, at 60◦F.

Solution For liquid A, the viscosity of 12 cSt is converted to SSU as follows.
Since 12 cSt is estimated to be approximately 12 × 5 = 60 SSU, we use
Eq. (6.6):

Centistokes = 0.226 × SSU − 195
SSU

for 32 ≤ SSU ≤ 100

Substituting the 12 cSt in the preceding equation and rearranging, we get

νA
2 − 12

0.226
νA − 195

0.226
= 0

Solving this quadratic equation;

νA = 66.14 SSU

Next the viscosity of liquid B (23 cSt) is converted to SSU using Eq. (6.7) as
follows:

νB
2 − 23

0.22
νB − 135

0.22
= 0

Solving we get

νB = 110.12 SSU

To calculate the blended viscosity we use Eq. (6.17):

√
νblend = 15 + 85

(15/
√

66.14) + (85/
√

110.12)
= 10.06

Therefore the viscosity of the mixture is

νblend = 101.12 SSU

Converting this viscosity to cSt using Eq. (6.7),

Centistokes = 0.220 × SSU − 135
SSU

for SSU > 100

= 0.22 × 101.12 − 135
101.12

= 20.91

Thus the viscosity of the mixture is 20.91 cSt.
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6.5 Bulk Modulus

The bulk modulus of a liquid indicates the compressibility of the liquid.
Even though most petroleum liquids are incompressible for all practical
purposes, this property becomes significant in some instances of liquid
flow through pipelines. Bulk modulus is generally defined as the pres-
sure required to produce a unit change in volume. If the volume is V
and a pressure of �P causes a volume change of �V, the bulk modulus
becomes

K = V�P
�V

(6.22)

where the ratio �V/V represents the change in volume divided by the
original volume. In other words, it is the fractional change in volume
generated by the pressure change �P. If the ratio �V/V becomes equal
to 1.0, then numerically, the bulk modulus equals the value of �P from
Eq. (6.22). For most petroleum products the bulk modulus K is in the
range of 200,000 to 400,000 psi (29 to 58 GPa in SI units). There are two
distinct values of bulk modulus defined in practice. The isothermal bulk
modulus is measured at a constant temperature, while the adiabatic
bulk modulus is based on adiabatic conditions (no heat transfer).

The bulk modulus is used in flow measurements of petroleum prod-
ucts and in line pack calculations of long-distance pipelines. The fol-
lowing equations are used to calculate the bulk modulus of a petroleum
product, based on the API gravity, pressure, and temperature. Adiabatic
bulk modulus Ka is calculated from

Ka = A+ BP − C(T )1/2 − D(API) − E(API)2 + FT(API) (6.23)

where A = 1.286 × 106

B = 13.55
C = 4.122 × 104

D = 4.53 × 103

E = 10.59
F = 3.228
P = pressure, psig
T = temperature, ◦R

API = API gravity of liquid

The isothermal bulk modulus Ki is calculated from

Ki = A+ BP − C(T )1/2 + D(T )3/2 − E(API)3/2 (6.24)

where A = 2.619 × 106

B = 9.203
C = 1.417 × 105
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D = 73.05
E = 341.0
P = pressure, psig
T = temperature, ◦R

API = API gravity of liquid

Example 6.10 A typical crude oil has an API gravity of 35◦. If the pressure
is 1200 psig and the temperature of the crude is 75◦F, calculate the bulk
modulus.

Solution From Eq. (6.23), the adiabatic bulk modulus is

Ka = A+ B (P) − C(T )1/2 − D(API) − E(API)2 + F(T )(API)

Therefore,

Ka = 1.286 × 106 + 13.55 × 1200 − 4.122 × 104 × (75 + 460)1/2 − 4.53

×103 × 35 − 10.59 × (35)2 + 3.228 × (75 + 460)(35)

or

Ka = 237,760 psi

From Eq. (6.24), the isothermal bulk modulus is

Ki = A+ B(P) − C(T )1/2 + D(T )3/2 − E(API)3/2

Therefore,

Ki = 2.619 × 106 + 9.203 × (1200) − 1.417 × 105 × (75 + 460)1/2 + 73.05

×(75 + 460)3/2 − 341.0 × (35)3/2

or

Ki = 186,868

In summary,

Adiabatic bulk modulus = 237,760 psi

Isothermal bulk modulus = 186,868 psi

6.6 Vapor Pressure

Vapor pressure is an important property of petroleum liquids when
dealing with storage tanks and centrifugal pumps. Depending upon
the location of petroleum product storage tanks, local air quality regu-
lations require certain types of seals around floating roof tanks. These
seal designs depend upon the vapor pressure of the liquid in the storage
tank. Also, careful analysis of centrifugal pump suction piping used for
higher vapor pressure liquids is required in order to prevent cavitation
damage to pump impellers at low suction pressures.
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Figure 6.5 Vapor pressure chart for various petroleum products.

The vapor pressure may be defined as the pressure at a particular
temperature when the liquid and its vapors are in equilibrium, un-
der boiling conditions. When pumping petroleum products through a
pipeline, the pressure at any point along the pipeline must be main-
tained above the vapor pressure of the liquid at the pumping temper-
ature. This will ensure that the petroleum product will remain in the
liquid phase throughout. Otherwise liquid may vaporize at some points
and two-phase flow may occur that will cause damage to pumping equip-
ment.

Vapor pressure is measured in the laboratory at a standard tempera-
ture of 100◦F and is referred to as the Reid vapor pressure. ASTM speci-
fications outline the laboratory method of determining this value. Once
we know the Reid vapor pressure, we can calculate the vapor pressure at
the operating temperature, such as 60◦F or 70◦F . Charts are available
to determine the actual vapor pressure of a petroleum product at stor-
age temperature from a given value of Reid vapor pressure. Figure 6.5
shows a sample vapor pressure chart for various petroleum products.

6.7 Pressure

Pressure within a body of fluid is defined as the force per unit area.
In USCS units, pressure is measured in lb/in2 (psi) and in SI units it
is measured in N/m2 or pascals (Pa). Other units for pressure include
lb/ft2, kPa, MPa, GPa, kg/cm2, and bar.
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The pressure at any point within a liquid is the same in all directions.
The actual value of pressure at a point changes with the location of the
point within the liquid. Consider a storage tank with the liquid surface
exposed to the atmosphere. At all points along the surface of the liquid
the pressure is equal to the atmospheric pressure (usually 14.7 psi at
sea level or 1 bar in SI units). As we move vertically down through
the liquid, the pressure at any point within the liquid is equal to the
atmospheric pressure plus the intensity of pressure due to the depth
below the free surface. This is defined as the absolute pressure since
it includes the atmospheric pressure. If we neglect the atmospheric
pressure, the pressure within the liquid is termed the gauge pressure.
Since the atmospheric pressure is present everywhere, it is customary
to ignore this and to refer to pressure in gauge pressure.

Returning to the example of the pressure within a storage tank, if
the location is at a depth H below the free surface of the liquid, the
pressure is equal to the column of liquid of height h acting over a unit
cross-sectional area. If the specific weight of the liquid is γ lb/ft3 and if
we consider a cylindrical volume of cross-sectional area A ft2 and height
h ft the pressure at a depth of h is calculated as follows:

Pressure P = h × A× γ

A
= γ H lb/ft2

Converting to the USCS unit of psi,

P = γ h
144

psi

This is the gauge pressure. The absolute pressure would be (γ h/144) +
Patm where Patm is the atmospheric pressure.

More generally we can state that the absolute pressure is

Pabs = Pgauge + Patm

The unit for absolute pressure is designated as psia, and the unit for
gauge pressure is psig. Since the pressure for most petroleum prod-
uct applications is measured by gauges, this unit is assumed. Unless
otherwise specified, psi means gauge pressure.

Consider a numerical example based on the preceding. At a depth
of 50 ft below the free surface of a petroleum (specific gravity = 0.85)
storage tank the pressure in the liquid is calculated as follows:

Pressure = weight of 50-ft column of liquid acting on an area 1 in2

= 50 ×
(

0.85 × 62.4
144

)
= 18.4 psig

we have assumed 62.4 lb/ft3 as the specific weight of water.
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Liquid pressure may also be expressed as head pressure, in which
case it is expressed in feet of liquid head (or meters in SI units). There-
fore, a pressure of 1000 psi in crude oil of specific gravity 0.895 is said
to be equivalent to a pressure head of

h = 1000 × 144
62.4 × 0.895

= 2578.4 ft

In a more general form, the pressure P in psi and liquid head h in feet
for a specific gravity of Sg are related by

P = h × Sg
2.31

(6.25)

In SI units, pressure P in kPa and head h in meters are related by the
following equation:

P = h × Sg
0.102

(6.26)

Example 6.11 Calculate the pressure in psi at a depth of 40 ft in a crude
oil tank assuming 56.0 lb/ft3 for the specific weight of crude oil. What is the
equivalent pressure in kPa? If the atmospheric pressure is 14.7 psi, calculate
the absolute pressure at that depth.

Solution Using Eq. (6.25),

Pressure = 56.0/62.4 × 40
2.31

= 15.54 psig

Thus,

Pressure at depth 40 ft = 15.54 psig

Absolute pressure = 15.54 + 14.7 = 30.24 psia

In SI units we can calculate the pressures as follows. Since 1 kPa =
0.145 psi,

Pressure at depth 40 ft = 15.54 psig
0.145 psi/kPa

= 107.2 Pa (gauge)

6.8 Velocity

The speed at which a petroleum product flows through a pipeline, also
referred to as velocity, is an important parameter in pipeline pressure
drop calculations. The velocity of flow depends on the pipe diameter and
flow rate. If the flow rate is constant throughout the pipeline (steady
flow) and the pipe diameter is uniform, the velocity at every cross section
along the pipe will be a constant value. However, there is a variation in
velocity along the pipe cross section. The velocity at the pipe wall will
be zero, increasing to a maximum at the centerline of the pipe. This is
illustrated in Fig. 6.6.
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Figure 6.6 Velocity variation—laminar and
turbulent.

We can define an average velocity of flow at any cross section of the
pipe as follows:

Velocity = flow rate
area of flow

If the flow rate is in ft3/s and the pipe cross-sectional area is in ft2, the
velocity from the preceding equation is in ft/s.

Consider liquid flowing through a circular pipe of internal diameter
D at a flow rate of Q. Then the average flow velocity is

v = Q
π D2/4

(6.27)

Employing commonly used units of flow rate Q in ft3/s and pipe diameter
in inches, the velocity in ft/s is as follows:

v = 144Q
π D2/4

Simplifying to

v = 183.3461
Q
D2 (6.28)

where the flow rate Q is in ft3/s and the pipe inside diameter is in inches.
In petroleum transportation, flow rates are usually expressed in bbl/h,

bbl/day, or gal/min. Therefore Eq. (6.28) for velocity can be modified in
terms of more conventional pipeline units as follows. For flow rate in
bbl/h:

v = 0.2859
Q
D2 (6.29)

where v = velocity, ft/s
Q = flow rate, bbl/h
D = pipe inside diameter, in
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For flow rate in bbl/day:

v = 0.0119
Q
D2 (6.30)

where v = velocity, ft/s
Q = flow rate, bbl/day
D = pipe inside diameter, in

For flow rate in gal/min:

v = 0.4085
Q
D2 (6.31)

where v = velocity, ft/s
Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the velocity equation is as follows:

v = 353.6777
Q
D2 (6.32)

where v = velocity, m/s
Q = flow rate, m3/h
D = pipe inside diameter, mm

Example 6.12 Diesel flows through an NPS 16 (15.5-in inside diameter)
pipeline at the rate of 4000 gal/min. Calculate the average velocity for steady-
state flow. (Note: The designation NPS 16 means nominal pipe size of 16 in.)

Solution From Eq. (6.31) the average flow velocity is

v = 0.4085
4000
15.52

= 6.80 ft/s

Example 6.13 Gasoline flows through a DN 400 outside diameter (10-mm
wall thickness) pipeline at 200 L/s. Calculate the average velocity for steady
flow.

Solution The designation DN 400 in SI units corresponds to NPS 16 in USCS
units. DN 400 means metric pipe size of 400-mm outside diameter. First
convert the flow rate in L/s to m3/h.

Flow rate = 200 L/s = 200 × 60 × 60 × 10−3 m3/h = 720 m3/h

From Eq. (6.32) the average flow velocity is

v = 353.6777
720
3802

= 1.764 m/s

Next Page
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The variation of flow velocity along the cross section of a pipe as de-
picted in Fig. 6.6 depends on the type of flow. In laminar flow, the velocity
variation is parabolic. As the flow rate becomes turbulent, the veloc-
ity profile approximates a more trapezoidal shape as shown. Laminar
and turbulent flows are discussed after we introduce the concept of the
Reynolds number.

6.9 Reynolds Number

The Reynolds number of flow is a dimensionless parameter that de-
pends on the pipe diameter liquid flow rate, liquid viscosity, and density.
It is defined as follows:

R = vDρ

µ
(6.33)

or

R = vD
ν

(6.34)

where R = Reynolds number, dimensionless
v = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = mass density of liquid, slug/ft3

µ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s

In terms of more commonly used units in the oil industry, we have the
following versions of the Reynolds number equation:

R = 3162.5
Q
Dν

(6.35)

where R = Reynolds number, dimensionless
Q = flow rate, gal/min
D = inside diameter of pipe, in
ν = kinematic viscosity, cSt

In petroleum transportation units, the Reynolds number is calculated
using the following equations:

R = 2213.76
Q
Dν

(6.36)

R = 92.24
BPD
Dν

(6.37)

Previous Page
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where R = Reynolds number, dimensionless
Q = flow rate, bbl/h

BPD = flow rate, bbl/day
D = inside diameter of pipe, in
ν = kinematic viscosity, cSt

In SI units, the Reynolds number is expressed as follows

R = 353,678
Q

νD
(6.38)

where R = Reynolds number, dimensionless
Q = flow rate, m3/h
D = inside diameter of pipe, mm
ν = kinematic viscosity, cSt

Example 6.14 A crude oil of specific gravity 0.85 and viscosity 10 cSt flows
through an NPS 20 (0.375-in wall thickness) pipeline at 5000 gal/min. Cal-
culate the average velocity and the Reynolds number of flow.

Solution The NPS 20 (0.375-in wall thickness) pipe has an inside diameter =
20.0−2×0.375 = 19.25 in. From Eq. (6.31) the average velocity is calculated
first:

v = 0.4085
5000

19.252
= 5.51 ft/s

From Eq. (6.35) the Reynolds number is therefore

R = 3162.5
5000

19.25 × 10.0
= 82,143

Example 6.15 A petroleum product with a specific gravity of 0.815 and vis-
cosity of 15 cSt flows through a DN 400 (10-mm wall thickness) pipeline at
800 m3/h. Calculate the average flow velocity and the Reynolds number of
flow.

Solution The DN 400 (10-mm wall thickness) pipe has an inside diameter =
400 − 2 × 10 = 380 mm. From Eq. (6.32) the average velocity is therefore

v = 353.6777
800
3802

= 1.96 m/s

Next, from Eq. (6.38) the Reynolds number is

R = 353,678
800

380 × 15.0
= 49,639

6.10 Types of Flow

Flow through a pipeline is classified as laminar flow, turbulent flow, or
critical flow depending on the magnitude of the Reynolds number of flow.
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If the Reynolds number is less than 2100, the flow is said to be laminar.
When the Reynolds number is greater than 4000, the flow is considered
to be turbulent. Critical flow occurs when the Reynolds number is in
the range of 2100 to 4000. Laminar flow is characterized by smooth
flow in which no eddies or turbulence are visible. The flow is also said
to occur in laminations. If dye was injected into a transparent pipeline,
laminar flow would be manifested in the form of smooth streamlines
of dye. Turbulent flow occurs at higher velocities and is accompanied
by eddies and other disturbances in the liquid. More energy is lost in
friction in the critical flow and turbulent flow regions as compared to
the laminar flow region.

The three flow regimes characterized by the Reynolds number of flow
are

Laminar flow : R ≤ 2100
Critical flow : 2100 < R ≤ 4000
Turbulent flow : R > 4000

In the critical flow regime, where the Reynolds number is between
2100 and 4000, the flow is undefined and unstable, as far as pressure
drop calculations are concerned. In the absence of better data, it is
customary to use the turbulent flow equation to calculate pressure drop
in the critical flow regime as well.

6.11 Pressure Drop Due to Friction

As a liquid flows through a pipeline, energy is lost due to resistance
between the flowing liquid layers as well as due to the friction between
the liquid and the pipe wall. One of the objectives of pipeline calcula-
tion is to determine the amount of energy and hence the pressure lost
due to friction as the liquid flows from the source to the destination.
First we will introduce the equation for conservation of energy in liquid
flow in a pipeline. After that we will cover the approach to calculating
the frictional pressure drop or head loss calculations. We will begin by
discussing Bernoulli’s equation for the various forms of liquid energy
in a flowing pipeline.

6.11.1 Bernoulli’s equation

Bernoulli’s equation is another way of stating the principle of conser-
vation of energy applied to liquid flow through a pipeline. At each point
along the pipeline the total energy of the liquid is computed by tak-
ing into consideration the liquid energy due to pressure, velocity, and
elevation combined with any energy input, energy output, and energy
losses. The total energy of the liquid contained in the pipeline at any
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Figure 6.7 Total energy of liquid in pipe flow.

point is a constant. This is also known as the principle of conservation
of energy.

Consider a liquid flow through a pipeline from point A to point B as
shown in Fig. 6.7. The elevation of point A is ZA and the elevation at B
is ZB above some common datum, such as mean sea level. The pressure
at point A is PA and that at B is PB. It is assumed that the pipe diameter
at A and B are different, and hence the flow velocity at A and B will
be represented by VA and VB, respectively. A particle of the liquid of
unit weight at point A in the pipeline possesses a total energy E which
consists of three components:

Potential energy = ZA

Pressure energy = PA

γ

Kinetic energy = vA
2

2g

where γ is the specific weight of liquid.
Therefore the total energy E is

E = ZA + PA

γ
+ vA

2

2g
(6.39)

Since each term in Eq. (6.39) has dimensions of length, we refer to the
total energy at point A as HA in feet of liquid head. Therefore, rewriting
the total energy in feet of liquid head at point A, we obtain

HA = ZA + PA

γ
+ vA

2

2g
(6.40)
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Similarly, the same unit weight of liquid at point B has a total energy
per unit weight equal to HB given by

HB = ZB + PB

γ
+ vB

2

2g
(6.41)

By the principle of conservation of energy

HA = HB (6.42)

Therefore,

ZA + PA

γ
+ vA

2

2g
= ZB + PB

γ
+ vB

2

2g
(6.43)

In Eq. (6.43), referred to as Bernoulli’s equation, we have not consid-
ered any energy added to the liquid, energy taken out of the liquid, or
energy losses due to friction. Therefore, modifying Eq. (6.43) to take
into account the addition of energy (such as from a pump at A) and
accounting for frictional head losses hf , we get the more common form
of Bernoulli’s equation as follows:

ZA + PA

γ
+ vA

2

2g
+ Hp = ZB + PB

γ
+ vB

2

2g
+ hf (6.44)

where HP is the equivalent head added to the liquid by the pump at
A and hf represents the total frictional head losses between points A
and B.

We will next discuss how the head loss due to friction hf in Bernoulli’s
equation is calculated for various conditions of flow of petroleum prod-
ucts of water flow in pipelines. We begin with the classical pressure
drop equation known as the Darcy-Weisbach equation, or simply the
Darcy equation.

6.11.2 Darcy equation

As a petroleum product flows through a pipeline from point A to point B
the pressure decreases due to frictional loss between the flowing liquid
and the pipe. The extent of pressure loss due to friction, designated in
feet of liquid, depends on various factors. These factors include the liq-
uid flow rate, liquid specific gravity and viscosity, pipe inside diameter,
pipe length, and internal condition of the pipe (rough, smooth, etc.). The
Darcy equation may be used to calculate the pressure drop in a pipeline
as follows:

h = f
L
D

v 2

2g
(6.45)
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where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = inside pipe diameter, ft
v = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

Note that the Darcy equation gives the frictional pressure loss in
feet of liquid head, which must be converted to pressure loss in psi
using Eq. (6.25). The term v2/2g in the Darcy equation is called the
velocity head, and it represents the kinetic energy of the liquid. The
term velocity head will be used in subsequent sections of this chapter
when discussing frictional head loss through pipe fittings and valves.

The friction factor f in the Darcy equation is the only unknown on the
right-hand side of Eq. (6.45). This friction factor is a nondimensional
number between 0.0 and 0.1 that depends on the internal roughness of
the pipe, the pipe diameter, and the Reynolds number of flow.

In laminar flow, the friction factor f depends only on the Reynolds
number and is calculated from

f = 64
R

(6.46)

where f is the friction factor for laminar flow and R is the Reynolds
number for laminar flow (R < 2100) (dimensionless).

Therefore, if a particular flow has a Reynolds number of 1780 we can
conclude that in this laminar flow condition the friction factor f to be
used in the Darcy equation is

f = 64
1780

= 0.036

Some pipeline hydraulics texts may refer to another friction factor
called the Fanning friction factor. This is numerically equal to one-
fourth the Darcy friction factor. In this example the Fanning friction
factor can be calculated as

0.036
4

= 0.009

To avoid any confusion, throughout this chapter we will use only the
Darcy friction factor as defined in Eq. (6.45).

In practical situations involving petroleum product pipelines it is in-
convenient to use the Darcy equation in the form described in Eq. (6.45).
We must convert the equation in terms of commonly used petroleum



Oil Systems Piping 331

pipeline units. One form of the Darcy equation in pipeline units is as
follows:

h = 0.1863
f Lv2

D
(6.47)

where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = pipe inside diameter, in
v = average flow velocity, ft/s

Another form of the Darcy equation with frictional pressure drop ex-
pressed in psi/mi and using a flow rate instead of velocity is as
follows:

Pm = const
f Q2Sg

D5 (6.48)

where Pm = frictional pressure loss, psi/mi
f = Darcy friction factor, dimensionless

Q = flow rate, bbl/h
D = pipe inside diameter, in

Sg = liquid specific gravity
const = factor that depends on flow units

=



34.87 for Q in bbl/h
0.0605 for Q in bbl/day
71.16 for Q in gal/min

In SI units, the Darcy equation may be written as

h = 50.94
f Lv2

D
(6.49)

where h = frictional pressure loss, m of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
v = average flow velocity, m/s

Another version of the Darcy equation in SI units is as follows:

Pkm = (6.2475 × 1010)
(

f Q2Sg
D5

)
(6.50)
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where Pkm = pressure drop due to friction, kPa/km
Q = liquid flow rate, m3/h
f = Darcy friction factor, dimensionless

Sg = liquid specific gravity
D = pipe inside diameter, mm

6.11.3 Colebrook-White equation

We have seen that in laminar flow the friction factor f is easily calcu-
lated from the Reynolds number as shown in Eq. (6.46). In turbulent
flow, the calculation of friction factor f is more complex. It depends on
the pipe inside diameter, the pipe roughness, and the Reynolds number.
Based on work by Moody, Colebrook and White, and others, the follow-
ing empirical equation, known as the Colebrook-White equation, has
been proposed for calculating the friction factor in turbulent flow:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

R
√

f

)
(6.51)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in
R = Reynolds number, dimensionless

The absolute pipe roughness, also known as internal pipe roughness,
may range from 0.0 to 0.01 depending on the internal condition of the
pipe. It is listed for common piping systems in Table 6.3. The ratio e/D
is termed the relative roughness and is dimensionless. Equation (6.51)
is also sometimes called simply the Colebrook equation.

In SI units, we can use the same form of the Colebrook equation. The
absolute pipe roughness e and the pipe diameter D are both expressed
in millimeters. All other terms in the equation are dimensionless.

TABLE 6.3 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0
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It can be seen from the Colebrook-White equation that the calcula-
tion of the friction factor f is not straightforward since it appears on
both sides of the equation. This is known as an implicit equation in f ,
compared to an explicit equation. An explicit equation in f will have the
unknown quantity f on one side of the equation. In the present case, a
trial-and-error approach is used to solve for the friction factor. First an
initial value for f is assumed (for example, f = 0.01) and substituted
in the right-hand side of the Colebrook equation. This will result in
a new calculated value of f , which is used as the next approximation
and f recalculated based on this second approximation. The process
is continued until successive values of f calculated by such iterations
is within a small value such as 0.001. Usually three or four iterations
will yield a satisfactory solution. There are other explicit equations for
the friction factor proposed by many researchers, such as Churchill and
Swamee-Jain that are easier to use than the Colebrook equation.

6.11.4 Moody diagram

A graphical method of determining the friction factor for turbulent
flow is available using the Moody diagram shown in Fig. 6.8. First the
Reynolds number is calculated based upon liquid properties, flow rate,
and pipe diameter. This Reynolds number is used to locate the ordinate
on the horizontal axis of the Moody diagram. A vertical line is drawn up
to the curve representing the relative roughness e/D of the pipe. The
friction factor is then read off of the vertical axis to the left. From the
Moody diagram it is seen that the turbulent region is further divided
into two regions: the “transition” zone and the “complete turbulence in
rough pipes” zone. The lower boundary is designated as “smooth pipes.”
The transition zone extends up to the dashed line, beyond which is
known as the zone of complete turbulence in rough pipes. In this zone,
the friction factor depends very little on the Reynolds number and more
on the relative roughness.

The transmission factor is a term that is used in conjunction with
pressure drop and flow rate in pipelines. The transmission factor, a di-
mensionless number, is proportional to the flow rate, whereas the fric-
tion factor is inversely proportional to the flow rate. With a higher trans-
mission factor, the flow rate is increased, whereas with a higher friction
factor, flow rate decreases. The transmission factor F is inversely re-
lated to the Darcy friction factor f as follows:

F = 2√
f

(6.52)

Examining the Moody diagram we see that the friction factor f ranges
from 0.008 to 0.10. Therefore, from Eq. (6.52) we can conclude that
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the transmission factor F will range between 6 and 22. Having intro-
duced the transmission factor F we can now rewrite the Colebrook-
White equation in terms of the transmission factor as

F = −4 log10

(
e

3.7D
+ 1.255F

R

)
for turbulent flow R > 4000 (6.53)

As we did before with the friction factor f , the transmission factor
F must also be calculated from Eq. (6.53) by successive iteration. We
assume an initial value for F (for example, F = 10.0) and calculate a
new value of F by substituting this initial value in the right-hand side
of Eq. (6.53). This will result in a second approximation for F, which is
then used to recalculate a better value of F. By successive iteration, a
satisfactory value of F can be calculated.

The U.S. Bureau of Mines proposed a modified version of the
Colebrook-White equation. This is expressed in terms of the transmis-
sion factor.

F = −4 log10

(
e

3.7D
+ 1.4125

F
R

)
for turbulent flow R > 4000

(6.54)
By comparing the modified version in Eq. (6.54) with the original
Colebrook-White equation (6.53), we see that the modified Colebrook-
White equation uses the constant 1.4125 instead of 1.255. This mod-
ification causes a more conservative value of the transmission factor.
In other words the modified Colebrook-White equation yields a higher
pressure drop for the same flow rate compared to the original Colebrook-
White equation.

Example 6.16 A petroleum oil with 0.85 specific gravity and 10 cSt viscosity
flows through an NPS 16 (0.250-in wall thickness) pipeline at a flow rate of
4000 bbl/h. The absolute roughness of the pipe may be assumed to be 0.002 in.
Calculate the Darcy friction factor and pressure loss due to friction in a mile
of pipe length using the Colebrook-White equation. What is the transmission
factor?

Solution The inside diameter of an NPS 16 (0.250-in wall thickness) pipe is

16.00 − 2 × 0.250 = 15.50 in

Next we will calculate the Reynolds number R to determine the flow regime
(laminar or turbulent). The Reynolds number from Eq. (6.36) is

R = 2213.76
4000

15.5 × 10.0
= 57,129

Since R > 4000, the flow is turbulent and we can use the Colebrook-White
equation to calculate the friction factor. We can also use the Moody diagram
to read the friction factor based on R and the pipe relative roughness e/D.
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From the Colebrook-White equation (6.51), the friction factor f is

1√
f

= −2 log10

(
0.002

3.7 × 15.5
+ 2.51

57,129
√

f

)

This equation must be solved for f by trial and error.
First assume that f = 0.02. Substituting in the preceding equation, we

get a better approximation for f as follows:

1√
f

= −2 log10

(
0.002

3.7 × 15.5
+ 2.51

57,129
√

0.02

)
= 0.0209

Recalculating using this value

1√
f

= −2 log10

(
0.002

3.7 × 15.5
+ 2.51

57,129
√

0.0209

)
= 0.0208

And finally

1√
f

= −2 log10

(
0.002

3.7 × 15.5
+ 2.51

57,129
√

0.0208

)
= 0.0208

Thus f = 0.0208 is the solution. The transmission factor is

F = 2√
f

= 13.87

Next calculate the average flow velocity needed for the Darcy equation for
head loss:

Average flow velocity V = 0.2859 × 4000
(15.5)2

= 4.76 ft/s from Eq. (6.29)

The head loss due to friction can now be calculated using the Darcy equa-
tion (6.47), considering a mile of pipe:

h = 0.1863

(
0.0208 × 5280 × 4.762

15.5

)
= 29.908 ft of liquid head per mile of pipe

Converting liquid head to pressure in psi using Eq. (6.25) we get

Pressure drop Pm = 29.908 × 0.85
2.31

= 11.01 psi/mi

We could have also calculated the pressure drop per mile directly in psi/mi
using the version of the Darcy equation shown in Eq. (6.48).

Pm = 34.87 × 0.0208 × (4000)2 × 0.85
15.55

Therefore,

Pm = 11.03 psi/mi
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The slight difference between the two values for Pm is due to rounding
off in unit conversions. If we used the Moody diagram to find the friction
factor, we would use the Reynolds number of 57,129 and the relative
roughness e/D = 0.002/15.5 = 0.000129 and read the value of the
friction factor f = 0.021 approximately. After that, the pressure drop
calculation will still be the same as described previously.

Example 6.17 A DN 500 (10-mm wall thickness) steel pipe is used to trans-
port gasoline from a refinery to a storage tank 15 km away. Neglecting any
difference in elevations, calculate the friction factor and pressure loss due to
friction (kPa/km) at a flow rate of 990 m3/h. Assume an internal pipe rough-
ness of 0.05 mm. A delivery pressure of 4 kPa must be maintained at the
delivery point, and the storage tank is at an elevation of 200 m above that of
the refinery. Calculate the pump pressure required at the refinery to trans-
port the given volume of gasoline to the storage tank location. Assume the
specific gravity of gasoline is 0.736 and the viscosity is 0.6 cSt.

Solution The DN 500 (10-mm wall thickness) pipe has an inside diameter of

D = 500 − 2 × 10 = 480 mm

First calculate the Reynolds number from Eq. (6.38):

R = 353,678Q
νD

= 353,678 × 990
0.6 × 480

= 1,215,768

Therefore the flow is turbulent and we can use the Colebrook-White equation
or the Moody diagram to determine the friction factor.

Relative roughness
e
D

= 0.05
480

= 0.0001

Using the preceding values for the relative roughness and Reynolds number,
from the Moody diagram we get f = 0.013. The pressure drop due to friction
can now be calculated using the Darcy equation (6.50):

Pkm = (6.2475 × 1010)

(
0.013 × 9902 × 0.736

4805

)
= 22.99 kPa/km

The pressure required at the pumping facility is calculated by adding
the pressure drop due to friction to the delivery pressure required and the
static elevation head between the pumping facility and storage tank. The
static head difference is 200 m. This is converted to pressure in kPa, using
Eq. (6.26),

Pressure drop due to friction in 15 km of pipe = 15 × 22.99 = 344.85 kPa

Pressure due to elevation head = 200 × 0.736
0.102

= 1443.14 kPa

Minimum pressure required at delivery point = 4 kPa
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Therefore adding all three numbers, the total pressure required at the
refinery is

Pt = Pf + Pelev + Pdel

where Pt = total pressure required at pump
Pf = frictional pressure drop

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage tank

Therefore,

Pt = 344.85 + 1443.14 + 4.0 = 1792 kPa

Thus the pump pressure required at the refinery is 1792 kPa.

6.11.5 Hazen-Williams equation

The Hazen-Williams equation has been used for the calculation of pres-
sure drop in water pipelines and water distribution networks. This
equation has also been successfully applied to the calculation of pres-
sure drop in refined petroleum product pipelines, such as gasoline and
diesel pipelines. Using the Hazen-Williams method a coefficient C,
known as the Hazen-Williams C factor, is used to account for the inter-
nal pipe roughness or efficiency. Unlike the Moody diagram or Colebrook-
White equation, the Hazen-Williams equation does not use the Reynolds
number or viscosity of the liquid to calculate the pressure drop. The
Hazen-Williams C factor is a number that is based on experience with a
particular product and pipeline. For example, one product pipeline com-
pany may use C = 125 for diesel and C = 150 for gasoline. The higher
the C factor, the higher will be the flow rate through the pipeline and
the lower the pressure drop due to friction. It may be thought of as an
opposite of the friction factor. The Hazen-Williams equation is not used
for crude oil and heavier liquids. The Colebrook-White equation gives
a better correlation with field data when applied to crude oil pipelines
and heated oil pipelines.

The Hazen-Williams equation is generally expressed as follows

h = 4.73 L(Q/C)1.852

D4.87 (6.55)

where h = frictional head loss, ft of liquid head
L = length of pipe, ft
D = pipe inside diameter, ft
Q = flow rate, ft3/s
C = Hazen-Williams C factor, dimensionless
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TABLE 6.4 Hazen-Williams C Factor

Pipe material C factor

Smooth pipes (all metals) 130–140
Cast iron (old) 100
Iron (worn/pitted) 60–80
Polyvinyl chloride (PVC) 150
Brick 100
Smooth wood 120
Smooth masonry 120
Vitrified clay 110

The values of the C factor for various applications are listed in Table 6.4.
However, it must be noted that when applied to refined petroleum prod-
uct pipelines these factors have to be adjusted based on experience,
since these factors were originally intended for water pipelines.

On examining the Hazen-Williams equation, it can be seen that the
head loss due to friction is calculated in feet of liquid head, similar
to the Darcy equation. The value of the head loss h can be converted
to psi using the head-to-psi conversion equation (6.25). Although us-
ing the Hazen-Williams equation appears to be simpler than using the
Colebrook-White and Darcy equations to calculate the pressure drop,
the unknown term C can cause uncertainties in the pressure drop cal-
culation.

Usually, the C factor is determined based on experience with the par-
ticular liquid and the piping system. When designing a new petroleum
product pipeline, using the Hazen-Williams equation, we must care-
fully select the C factor since considerable variation in pressure drop
can occur by choosing a particular value of C compared to another.
Because of the inverse proportionality effect of C on the head loss, us-
ing C = 120 instead of C = 100 will result in [1 − (100/120)1.852] or
29 percent less pressure drop. Therefore, it is important that the C
value be chosen judiciously.

The Hazen-Williams equation (6.55) is not convenient to use when
dealing with petroleum pipelines due to the units employed in the
original form. Therefore, more acceptable forms of the Hazen-Williams
equation have been used in practice. These modified versions of the
equation use flow rates in gal/min, bbl/h, and bbl/day with pressure
drops expressed in psi/mi and diameter in inches in USCS units. In the
following formulas the presented Hazen-Williams equations have been
rearranged to calculate the flow rate from a given pressure drop. The
versions of the equations to calculate the pressure drop from a given
flow rate are also shown.

A modified version of the Hazen-Williams equation in pipeline units is

Q = (6.755 × 10−3)CD2.63(h)0.54 (6.56)
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where Q = flow rate, gal/min
h = friction loss, ft of liquid per 1000 ft of pipe
D = inside diameter of pipe, in
C = Hazen-Williams C factor, dimensionless

Other variants in petroleum pipeline units are as follows:

Q = (6.175 × 10−3)CD2.63
(

Pm

Sg

)0.54

(6.57)

Pm = 12,352
(

Q
C

)1.852 Sg
D4.87 (6.58)

and

Pf = 2339
(

Q
C

)1.852 Sg
D4.87 (6.59)

where Q = flow rate, bbl/h
D = pipe inside diameter, in

Pm = frictional pressure drop, psi/mi
Pf = frictional pressure drop, psi per 1000 ft of pipe length
Sg = liquid specific gravity
C = Hazen-Williams C factor, dimensionless

In SI units, the Hazen-Williams equation is expressed as follows:

Q = (9.0379 × 10−8)CD2.63
(

Pkm

Sg

)0.54

(6.60)

and

Pkm = (1.1101 × 1013)
(

Q
C

)1.852 Sg
D4.87 (6.61)

where Q = flow rate, m3/h
D = pipe inside diameter, mm

Pkm = frictional pressure drop, kPa/km
Sg = liquid specific gravity (water = 1.00)
C = Hazen-Williams C factor, dimensionless

Example 6.18 Gasoline (specific gravity = 0.74 and viscosity = 0.7 cSt) flows
through an NPS 16 (0.250-in wall thickness) pipeline at 4000 gal/min. Using
the Hazen-Williams equation with a C factor of 150, calculate the pressure
loss due to friction in a mile of pipe.
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Solution The flow rate is

Q = 4000 gal/min = 4000 × 60
42

bbl/h = 5714.29 bbl/h

The NPS 16 (0.25-in wall thickness) pipeline has an inside diameter =
16 − 2 × 0.25 = 15.5 in

Pm = 12,352

(
5714.29

150

)1.852 0.74
15.54.87

psi/mi from Eq. (6.58)

Thus the pressure loss due to friction per mile of pipe is 12.35 psi/mi.

Example 6.19 A DN 400 (8-mm wall thickness) steel pipe is used to trans-
port jet fuel (specific gravity = 0.82 and viscosity = 2.0 cSt) from a pump-
ing facility to a storage tank 10 km away. Neglecting differences in eleva-
tions, calculate the pressure loss due to friction in bar/km at a flow rate of
700 m3/h. Use the Hazen-Williams equation with a C factor of 130. If a de-
livery pressure of 3.5 bar must be maintained at the delivery point and the
storage tank is at an elevation of 100 m above that of the pumping facility,
calculate the pressure required at the pumping facility at the given flow rate.

Solution The inside diameter = 400 − 2 × 8 = 384 mm. Using the Hazen-
Williams equation (6.61) we get

Pkm = (1.1101 × 1013)

(
700
130

)1.852

× 0.82
(384)4.87

= 53.40 kPa/km

Pressure loss due to friction = 53.4 kPa/km = 0.534 bar/km

Total pressure drop in
10 km of pipe length = 0.534 × 10 = 5.34 bar

The pressure required at the pumping facility is calculated by adding the
pressure drop due to friction to the delivery pressure required and the static
elevation head between the pumping facility and storage tank.

Pt = Pf + Pelev + Pdel (6.62)

where Pt = total pressure required at pump
Pf = friction pressure

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage tank

Pt = 5.34 + 100 × 1.0/0.102
100

+ 3.5 = 18.64 bar

Therefore the pressure required at the pumping facility is 18.64 bar, or
1864 kPa.
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6.11.6 Miller equation

The Miller equation, or the Benjamin Miller formula, is used for calcu-
lating pressure drop in crude oil pipelines. Unlike the Colebrook-White
equation this formula does not use the pipe roughness. It can be used to
calculate the flow rate for a given pipe size and liquid properties, given
the pressure drop due to friction. One form of the Miller equation is as
follows:

Q = 4.06M
(

D5 Pm

Sg

)0.5

(6.63)

where the parameter M is defined as

M = log10

(
D3SgPm

ν2

)
+ 4.35 (6.64)

and

where Q = flow rate, bbl/day
D = pipe inside diameter, in

Pm = pressure drop, psi/mi
Sg = liquid specific gravity
ν = liquid viscosity, cP

Rearranging the equation to solve for pressure drop, we get

Pm = 0.0607(Q/M)2Sg
D5 (6.65)

where the symbols are as defined before.
In SI Units, the Miller equation has the following form:

Q = (3.996 × 10−6)M
(

D5 Pm

Sg

)0.5

(6.66)

where the parameter M is calculated from

M = log10

(
D3SgPm

ν2

)
− 0.4965 (6.67)

and

where Q = flow rate, m3/h
D = pipe internal diameter, mm

Pm = frictional pressure drop, kPa/km
Sg = liquid specific gravity
ν = liquid viscosity, cP

Reviewing the Miller equation, we see that to calculate the pres-
sure drop Pm given a flow rate Q is not a straightforward process. The
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intermediate parameter M depends on the unknown pressure drop Pm.
We have to solve the problem by successive iteration. We assume an ini-
tial value of the pressure drop Pm (say 5 psi/mi) and calculate a starting
value for M. Using this value of M in Eq. (6.65), we calculate the second
approximation for pressure drop Pm . Next using this newfound value of
Pm we recalculate the new value of M and the process is continued until
successive values of the pressure drop Pm are within some tolerance
such as 0.001 psi/mi.

Example 6.20 An NPS 18 (0.375-in wall thickness) crude oil pipeline flows
at the rate of 5000 bbl/h. Calculate the pressure drop per mile using the Miller
equation. Assume the specific gravity of crude oil is 0.892 at 60◦F and the
viscosity is 20 cSt at 60◦F. Compare the results using the Colebrook equation
with a pipe roughness of 0.002.

Solution Since the Miller equation requires viscosity in centipoise, calculate
that first:

Liquid viscosity (cP) = viscosity (cSt) × specific gravity

= 20 × 0.892 = 17.84 cP

The inside diameter of the pipe is

D = 18 − 2 × 0.375 = 17.25 in

Assume an initial value for the pressure drop of 10 psi/mi. Next calculate the
parameter M from Eq. (6.64).

M = log10

(
17.253 × 0.892 × 10

17.842

)
+ 4.35 = 6.5079

Substituting this value of M in Eq. (6.65) we calculate the pressure drop as

Pm = 0.0607 ×
(

5000 × 24
6.5079

)2

× 0.892
17.255

= 12.05 psi/mi

Using this value of Pm a new value for M is calculated:

M = log10

(
17.253 × 0.892 × 12.05

17.842

)
+ 4.35 = 6.5889

Recalculate the pressure drop with this value of M:

Pm = 0.0607 ×
(

5000 × 24
6.5889

)2

× 0.892
17.255

= 11.76 psi/mi

Continuing the iterations a couple of times more, we get the final answer for
Pm = 11.79. Thus the pressure drop per mile is 11.79 psi/mi.
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Next, for comparison, we calculate the pressure drop using the Colebrook
equation.

Relative roughness
e
D

= 0.002
17.25

= 0.0001

Calculate the Reynolds number from Eq. (6.36):

R = 2213.76 × 5000
17.25 × 20

= 32,083

Using the Colebrook equation (6.51) we get the friction factor f as follows:

1√
f

= −2 log10

(
0.0001

3.7
+ 2.51

32,083
√

f

)

Solving for f by successive iteration, we get f = 0.0234. Using the Darcy
equation (6.48) for pressure drop,

Pm = 34.87 × 0.0234 × 50002 × 0.892
(17.25)5

= 11.91 psi/mi

Therefore the pressure drop per mile using the Colebrook equation is
11.91 psi/mi. This compares with a pressure drop of 11.79 psi/mi using the
Miller formula.

6.11.7 Shell-MIT equation

The Shell-MIT equation, also known as the MIT equation, was ini-
tially used by the Shell pipeline company for modeling the flow of high-
viscosity heated crude oil pipelines. This equation for pressure drop
uses a modified Reynolds number Rm, which is a multiple of the normal
Reynolds number. From Rm a friction factor is calculated depending on
whether the flow is laminar or turbulent. The calculation method is as
follows. The Reynolds number of flow is first calculated from

R = 92.24Q
Dν

(6.68)

From the preceding, a modified Reynolds number is defined as

Rm = R
7742

(6.69)

where R = Reynolds number, dimensionless
Rm = modified Reynolds number, dimensionless
Q = flow rate, bbl/day
D = pipe inside diameter, in
ν = liquid kinematic viscosity, cSt
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Next, a friction factor is calculated from one of the following equations:

f =




0.00207
Rm

for laminar flow (6.70)

0.0018 + 0.00662
(

1
Rm

)0.355

for turbulent flow (6.71)

The laminar flow limit is the same as before: Reynolds number R < 2100
approximately.

The friction factor f in Eqs. (6.70) and (6.71) is not the Darcy fric-
tion factor we have used so far with the Colebrook equation. Therefore
we cannot directly use it in the Darcy equation (6.45) to calculate the
pressure drop.

The pressure drop due to friction with the Shell-MIT equation is then
calculated as follows:

Pm = 0.241( f SgQ2)
D5 (6.72)

where Pm = pressure drop due to friction, psi/mi
f = Shell-MIT equation friction factor, dimensionless

Sg = liquid specific gravity
Q = liquid flow rate, bbl/day
D = pipe inside diameter, in

With flow rate in bbl/h, the pressure drop due to friction is calculated
using the following modified version of the Darcy equation:

Pm = 138.82 ( f SgQ2)
D5 (6.73)

where Pm = pressure drop due to friction, psi/mi
f = Shell-MIT equation friction factor, dimensionless

Sg = liquid specific gravity
Q = liquid flow rate, bbl/h
D = pipe inside diameter, in

In SI units the MIT equation is expressed as follows:

Pm = (6.2191 × 1010)
f SgQ2

D5 (6.74)

where Pm = frictional pressure drop, kPa/km
f = Shell-MIT equation friction factor, dimensionless

Sg = liquid specific gravity
Q = liquid flow rate, m3/h
D = pipe inside diameter, mm
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Example 6.21 A 400-mm outside diameter (8-mm wall thickness) crude oil
pipeline is used for shipping a heavy crude oil between two storage termi-
nals at a flow rate of 600 m3/h at 80◦C. Calculate, using the MIT equation,
the frictional pressure drop assuming the crude oil has a specific gravity of
0.895 and a viscosity of 100 cSt at 80◦C. Compare the result using the Moody
diagram method.

Solution The inside diameter of pipe D = 400 − 2 × 8 = 384 mm. From
Eq. (6.38), the Reynolds number is first calculated:

R = 353,678 × 600
100 × 384

= 5526

Since R > 2100, the flow is in the turbulent zone. Calculate the Shell-MIT
modified Reynolds number using Eq. (6.69).

Rm = 5526
7742

= 0.7138

Calculate the friction factor from Eq. (6.71).

Friction factor = 0.0018 + 0.00662

(
1

0.7138

)0.355

= 0.0093

Finally, we calculate the pressure drop from Eq. (6.74) as follows:

Pm = (6.2191 × 1010)
0.0093 × 0.895 × 600 × 600

(384)5

= 22.23 kPa/km

6.11.8 Other pressure drop equations

Two other equations for friction factor calculations are the Churchill
equation and the Swamee-Jain equation. These equations are expli-
cit equations in friction factor calculation, unlike the Colebrook-White
equation, which requires solution by trial and error.

Churchill equation. This equation for the friction factor was proposed
by Stuart Churchill and published in Chemical Engineering magazine
in November 1977. It is as follows:

f =
[(

8
R

)12

+ 1
(A+ B)3/2

]1/12

(6.75)

where

A = 2.457 loge

[
1

(7/R)0.9 + (0.27e/D)

]16

(6.76)

B =
(

37,530
R

)16

(6.77)

Next Page
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The Churchill equation for the friction factor yields results that com-
pare closely with that obtained using the Colebrook-White equation or
the Moody diagram.

Swamee-Jain equation. This is another explicit equation for calculating
the friction factor. It was first presented by P. K. Swamee and A. K. Jain
in 1976 in Journal of the Hydraulics Division of ASCE. This equation
is the easiest of all equations for calculating the friction factor. The
Swamee-Jain equation is as follows:

f = 0.25
[log10(e/3.7D + 5.74/R 0.9)]2 (6.78)

Similar to the Churchill equation friction factor, the Swamee-Jain equa-
tion correlates fairly well with the friction factor calculated using the
Colebrook-White equation or the Moody diagram.

6.12 Minor Losses

So far, we have calculated the pressure drop per unit length in straight
pipe. We also calculated the total pressure drop considering several
miles of pipe from a pump station to a storage tank. Minor losses in a
petroleum product pipeline are classified as those pressure drops that
are associated with piping components such as valves and fittings. Fit-
tings include elbows and tees. In addition there are pressure losses
associated with pipe diameter enlargement and reduction. A pipe noz-
zle exiting from a storage tank will have entrance and exit losses. All
these pressure drops are called minor losses, as they are relatively small
compared to friction loss in a straight length of pipe.

Generally, minor losses are included in calculations by using the
equivalent length of the valve or fitting or using a resistance factor or
K factor multiplied by the velocity head v2/2g. The term minor losses
can be applied only where the pipeline lengths and hence the friction
losses are relatively large compared to the pressure drops in the fittings
and valves. In a situation such as plant piping and tank farm piping
the pressure drop in the straight length of pipe may be of the same
order of magnitude as that due to valves and fittings. In such cases the
term minor losses is really a misnomer. Regardless, the pressure losses
through valves, fittings, etc., can be accounted for approximately using
the equivalent length or K times the velocity head method. It must
be noted that this way of calculating the minor losses is valid only in
turbulent flow. No data are available for laminar flow.

6.12.1 Valves and fittings

If Table 6.5 shows the equivalent lengths of commonly used valves and
fittings in a petroleum pipeline system. It can be seen from this table

Previous Page
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TABLE 6.5 Equivalent Lengths of
Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

that a gate valve has an L/D ratio of 8 compared to straight pipe.
Therefore, a 20-in-diameter gate valve may be replaced with a 20×8 =
160-in-long piece of pipe that will match the frictional pressure drop
through the valve.

Example 6.22 A piping system is 2000 ft of NPS 20 pipe that has two
20-in gate valves, three 20-in ball valves, one swing check valve, and four
90◦ standard elbows. Using the equivalent length concept, calculate the to-
tal pipe length that will include all straight pipe and valves and fittings.

Solution Using Table 6.5, we can convert all valves and fittings in terms of
20-in pipe as follows:

Two 20-in gate valves = 2 × 20 × 8 = 320 in of 20-in pipe

Three 20-in ball valves = 3 × 20 × 3 = 180 in of 20-in pipe

One 20-in swing check valve = 1 × 20 × 50 = 1000 in of 20-in pipe

Four 90◦ elbows = 4 × 20 × 30 = 2400 in of 20-in pipe

Total for all valves and fittings = 4220 in of 20-in pipe

= 351.67 ft of 20-in pipe

Adding the 2000 ft of straight pipe, the total equivalent length of straight
pipe and all fittings is

Le = 2000 + 351.67 = 2351.67 ft



Oil Systems Piping 349

The pressure drop due to friction in the preceding piping system can
now be calculated based on 2351.67 ft of pipe. It can be seen in this
example that the valves and fittings represent roughly 15 percent of
the total pipeline length. In plant piping this percentage may be higher
than that in a long-distance petroleum pipeline. Hence, the reason for
the term minor losses.

Another approach to accounting for minor losses is using the resis-
tance coefficient or K factor. The K factor and the velocity head approach
to calculating pressure drop through valves and fittings can be analyzed
as follows using the Darcy equation. From the Darcy equation (6.45),
the pressure drop in a straight length of pipe is given by

h = f
L
D

v2

2g

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and the preceding equation then
becomes

h = K
v2

2g
(6.79)

In Eq. (6.79), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head v2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(v2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 6.6. It can be seen that the K factor depends on the
nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.

From Table 6.6, it can be seen that a 6-in gate valve has a K factor of
0.12, while a 20-in gate valve has a K factor of 0.10. However, both sizes
of gate valves have the same equivalent length–to–diameter ratio of 8.
The head loss through the 6-in valve can be estimated to be 0.12 (v2/2g)
and that in the 20-in valve is 0.10 (v2/2g). The velocities in both cases
will be different due to the difference in diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

v6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 20-in valve will be ap-
proximately

v6 = 0.4085
1000
19.52 = 1.07 ft/s



TABLE 6.6 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

350
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Therefore,

Head loss in 6-in gate valve = 0.12 (10.89)2

64.4
= 0.22 ft

and

Head loss in 20-in gate valve = 0.10 (1.07)2

64.4
= 0.002 ft

These head losses appear small since we have used a relatively low flow
rate in the 20-in valve. In reality the flow rate in the 20-in valve may be
as high as 6000 gal/min and the corresponding head loss will be 0.072 ft.

6.12.2 Pipe enlargement and reduction

Pipe enlargements and reductions contribute to head loss that can be
included in minor losses. For sudden enlargement of pipes, the following
head loss equation may be used:

hf = (v1 − v2)2

2g
(6.80)

where v1 and v2 are the velocities of the liquid in the two pipe sizes D1
and D2, respectively. Writing Eq. (6.80) in terms of pipe cross-sectional
areas A1 and A2,

hf =
(

1 − A1

A2

)2 v1
2

2g
(6.81)

for sudden enlargement. This is illustrated in Fig. 6.9.

D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 6.9 Sudden pipe enlargement and pipe reduction.
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D1

D1
D2

D2

Figure 6.10 Gradual pipe enlargement and pipe reduction.

For sudden contraction or reduction in pipe size as shown in Fig. 6.9,
the head loss is calculated from

hf =
(

1
Cc

− 1
)

v2
2

2g
(6.82)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 6.9.

Gradual enlargement and reduction of pipe size, as shown in Fig. 6.10,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc(v1 − v2)2

2g
(6.83)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C
oe

ffi
ci

en
t

0 0.5 1 1.5 2 3 3.5 42.5

Diameter ratio
D2

60°

40°

30°

20°

15°
10°
2°

D1

Figure 6.11 Gradual pipe expansion head loss coefficient.
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where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 6.11.

6.12.3 Pipe entrance and exit losses

The K factors for computing the head loss associated with pipe entrance
and exit are as follows:

K =



0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

6.13 Complex Piping Systems

So far we have discussed straight length of pipe with valves and fittings.
Complex piping systems include pipes of different diameters in series
and parallel configuration.

6.13.1 Series piping

Series piping in its simplest form consists of two or more different pipe
sizes connected end to end as illustrated in Fig. 6.12. Pressure drop
calculations in series piping may be handled in one of two ways. The
first approach would be to calculate the pressure drop in each pipe
size and add them together to obtain the total pressure drop. Another
approach is to consider one of the pipe diameters as the base size
and convert other pipe sizes into equivalent lengths of the base pipe
size. The resultant equivalent lengths are added together to form one
long piece of pipe of constant diameter equal to the base diameter se-
lected. The pressure drop can now be calculated for this single-diameter
pipeline. Of course, all valves and fittings will also be converted to
their respective equivalent pipe lengths using the L/D ratios from
Table 6.6.

Consider three sections of pipe joined together in series. Using sub-
scripts 1, 2, and 3 and denoting the pipe length as L, inside diameter
as D, flow rate as Q, and velocity as V, we can calculate the equiva-
lent length of each pipe section in terms of a base diameter. This base

L1

D1 D2 D3

L2 L3

Figure 6.12 Series piping.
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diameter will be selected as the diameter of the first pipe section D1.
Since equivalent length is based on the same pressure drop in the equiv-
alent pipe as the original pipe diameter, we will calculate the equivalent
length of section 2 by finding that length of diameter D1 that will match
the pressure drop in a length L2 of pipe diameter D2. Using the Darcy
equation and converting velocities in terms of flow rate from Eq. (6.31),
we can write

Head loss = f (L/D)(0.4085Q/D2)2

2g

For simplicity, assuming the same friction factor,

Le

D1
5 = L2

D2
5

Therefore, the equivalent length of section 2 based on diameter D1 is

Le = L2

(
D1

D2

)5

Similarly, the equivalent length of section 3 based on diameter D1 is

Le = L3

(
D1

D3

)5

The total equivalent length of all three pipe sections based on diameter
D1 is therefore

Lt = L1 + L2

(
D1

D2

)5

+ L3

(
D1

D3

)5

The total pressure drop in the three sections of pipe can now be calcu-
lated based on a single pipe of diameter D1 and length Lt.

Example 6.23 Three pipes with 14-, 16-, and 18-in diameters, respectively,
are connected in series with pipe reducers, fittings, and valves as follows:

14-in pipeline, 0.250-in wall thickness, 2000 ft long

16-in pipeline, 0.375-in wall thickness, 3000 ft long

18-in pipeline, 0.375-in wall thickness, 5000 ft long

One 16 × 14 in reducer

One 18 × 16 in reducer

Two 14-in 90◦ elbows

Four 16-in 90◦ elbows

Six 18-in 90◦ elbows

One 14-in gate valve
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One 16-in ball valve

One 18-in gate valve

(a) Use the Hazen-Williams equation with a C factor of 140 to calculate the
total pressure drop in the series piping system at a flow rate of 3500 gal/min.
The product transported is gasoline with a specific gravity of 0.74. Flow starts
in the 14-in piping and ends in the 18-in piping.

(b) If the flow rate is increased to 6000 gal/min, estimate the new total
pressure drop in the piping system, keeping everything else the same.

Solution

(a) Since we are going to use the Hazen-Williams equation, the pipes in
series analysis will be based on the pressure loss being inversely proportional
to D4.87, where D is the inside diameter of pipe, per Eq. (6.55).

We will first calculate the total equivalent lengths of all 14-in pipe, fittings,
and valves in terms of the 14-in-diameter pipe.

Straight pipe: 14 in, 2000 ft = 2000 ft of 14-in pipe

Two 14-in 90◦ elbows = 2 × 30 × 14
12

= 70 ft of 14-in pipe

One 14-in gate valve = 1 × 8 × 14
12

= 9.33 ft of 14-in pipe

Therefore, the total equivalent length of 14-in pipe, fittings, and valves =
2079.33 ft of 14-in pipe.

Similarly we get the total equivalent length of 16-in pipe, fittings, and
valve as follows:

Straight pipe: 16-in, 3000 ft = 3000 ft of 16-in pipe

Four 16-in 90◦ elbows = 4 × 30 × 16
12

= 160 ft of 16-in pipe

One 16-in ball valve = 1 × 3 × 16
12

= 4 ft of 16-in pipe

Therefore, the total equivalent length of 16-in pipe, fittings, and valve =
3164 ft of 16-in pipe.

Finally, we calculate the total equivalent length of 18-in pipe, fittings, and
valve as follows:

Straight pipe: 18-in, 5000 ft = 5000 ft of 18-in pipe

Six 18-in 90◦ elbows = 6 × 30 × 18
12

= 270 ft of 18-in pipe

One 18-in gate valve = 1 × 8 × 18
12

= 12 ft of 18-in pipe

Therefore, the total equivalent length of 18-in pipe, fittings, and valve =
5282 ft of 18-in pipe.
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Next we convert all the preceding pipe lengths to the equivalent 14-in pipe
based on the fact that the pressure loss is inversely proportional to D4.87,
where D is the inside diameter of pipe.

2079.33 ft of 14-in pipe = 2079.33 ft of 14-in pipe

3164 ft of 16-in pipe = 3164 ×
(

13.5
15.25

)4.87

= 1748 ft of 14-in pipe

5282 ft of 18-in pipe = 5282 ×
(

13.5
17.25

)4.87

= 1601 ft of 14-in pipe

Therefore adding all the preceding lengths we get

Total equivalent length in terms of 14-in pipe = 5429 ft of 14-in pipe

We still have to account for the 16 × 14 in and 18 × 16 in reducers. The
reducers can be considered as sudden enlargements for the approximate cal-
culation of the head loss, using the K factor and velocity head method. For
sudden enlargements, the resistance coefficient K is found from

K =
[

1 −
(

d1

d2

)2
]2

where d1 is the smaller diameter and d2 is the larger diameter.
For the 16 × 14 in reducer,

K =
[

1 −
(

13.5
15.25

)2
]2

= 0.0468

and for the 18 × 16 in reducer,

K =
[

1 −
(

15.25
17.25

)2
]2

= 0.0477

The head loss through the reducers will then be calculated based on K(V 2/2g).
Flow velocities in the three different pipe sizes at 3500 gal/min will be

calculated using Eq. (6.31):

Velocity in 14-in pipe: V14 = 0.4085 × 3500
(13.5)2

= 7.85 ft/s

Velocity in 16-in pipe: V16 = 0.4085 × 3500
(15.25)2

= 6.15 ft/s

Velocity in 18-in pipe: V18 = 0.4085 × 3500
(17.25)2

= 4.81 ft/s
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The head loss through the 16 × 14 in reducer is

h1 = 0.0468
7.852

64.4
= 0.0448 ft

and the head loss through the 18 × 16 in reducer is

h1 = 0.0477
6.152

64.4
= 0.028 ft

These head losses are insignificant and hence can be neglected in comparison
with the head loss in straight length of pipe. Therefore, the total head loss in
the entire piping system will be based on a total equivalent length of 5429 ft
of 14-in pipe.

Using the Hazen-Williams equation (6.59) the pressure drop at 3500
gal/min (equal to 3500/0.7 bbl/h) is

Pf = 2339

(
5000
140

)1.852 0.74
(13.5)4.87

= 4.07 psi per 1000 ft of pipe

Therefore, for the 5429 ft of equivalent 14-in pipe, the total pressure drop is

Pf = 4.07
5429
1000

= 22.1 psi

(b) When the flow rate is increased to 6000 gal/min, we can use proportions
to estimate the new total pressure drop in the piping as follows:

Pf =
(

6000
3500

)1.852

× 4.07 = 11.04 psi per 1000 ft of pipe

Therefore, the total pressure drop in 5429 ft of 14-in. pipe is

Pf = 11.04 × 5429
1000

= 59.94 psi

Example 6.24 Two pipes with 400- and 600-mm diameters, respectively, are
connected in series with pipe reducers, fittings, and valves as follows:

400-mm pipeline, 6-mm wall thickness, 600 m long

600-mm pipeline, 10-mm wall thickness, 1500 m long

One 600 × 400 mm reducer

Two 400-mm 90◦ elbows

Four 600-mm 90◦ elbows

One 400-mm gate valve

One 600-mm gate valve

Use the Hazen-Williams equation with a C factor of 120 to calculate the total
pressure drop in the series oil piping system at a flow rate of 250 L/s. Liquid
specific gravity is 0.82 and viscosity is 2.5 cSt.
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Solution The total equivalent length on 400-mm-diameter pipe is the sum of
the following:

Straight pipe length = 600 m

Two 90◦ elbows = 2 × 30 × 400
1000

= 24 m

One gate valve = 1 × 8 × 400
1000

= 3.2 m

Thus,

Total equivalent length on 400-mm-diameter pipe = 627.2 m

The total equivalent length on 600-mm-diameter pipe is the sum of the
following:

Straight pipe length = 1500 m

Four 90◦ elbows = 4 × 30 × 600
1000

= 72 m

One gate valve = 1 × 8 × 600
1000

= 4.8 m

Thus,

Total equivalent length on 600-mm-diameter pipe = 1576.8 m

Reducers will be neglected since they have insignificant head loss. Convert
all pipe to 400-mm equivalent diameter.

1576.8 m of 600-mm pipe = 1576.8

(
388
580

)4.87

= 222.6 m of 400-mm pipe

Total equivalent length on 400-mm-diameter pipe = 627.2+222.6 = 849.8 m

Q = 250 × 10−3 × 3600 = 900 m3/h

The pressure drop from Eq. (6.61) is

Pm = 1.1101 × 1013
(

900
120

)1.852

× 0.82
(388)4.87

= 93.79 kPa/km

Total pressure drop = 93.79 × 849.8
1000

= 79.7 kPa

6.13.2 Parallel piping

Liquid pipelines in parallel configured such that the multiple pipes
are connected so that the liquid flow splits into the multiple pipes at
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A B E F

C

D Figure 6.13 Parallel piping.

the beginning and the separate flow streams subsequently rejoin down-
stream into another single pipe as depicted in Fig. 6.13.

Figure 6.13 shows a parallel piping system in the horizontal plane
with no change in pipe elevations. Liquid flows through a single pipe
AB, and at the junction B the flow splits into two pipe branches BCE
and BDE. At the downstream end at junction E, the flows rejoin to the
initial flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, shown in Fig. 6.13, two main principles of paral-
lel piping must be followed. These are flow conservation at any junction
point and common pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE.

Thus,

Q = QBCE + QBDE (6.84)

where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = incoming flow at junction B

The other requirement in parallel pipes concerns the pressure drop
in each branch piping. Based on this the pressure drop due to fric-
tion in branch BCE must exactly equal that in branch BDE. This is
because both branches have a common starting point (B) and a com-
mon ending point (E). Since the pressure at each of these two points
is a unique value, we can conclude that the pressure drop in branch
pipe BCE and that in branch pipe BDE are both equal to PB − PE,
where PB and PE represent the pressure at the junction points B and E,
respectively.

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 6.13, if pipe AB has a diameter of 14 in and branches BCE and
BDE have diameters of 10 and 12 in, respectively, we can find some
equivalent diameter pipe of the same length as one of the branches
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that will have the same pressure drop between points B and C as the
two branches. An approximate equivalent diameter can be calculated
using the Darcy equation.

The pressure loss in branch BCE (10-in diameter) can be calculated
as

h1 = f (L1/D1)v1
2

2g
(6.85)

where the subscript 1 is used for branch BCE and subscript 2 for branch
BDE.

Similarly, for branch BDE

h2 = f (L2/D2)v2
2

2g
(6.86)

For simplicity we have assumed the same friction factors for both
branches. Since h1 and h2 are equal for parallel pipes, and representing
the velocities v1 and v2 in terms of the respective flow rates Q1 and Q2,
using Eq. (6.85) we have the following equations:

f (L1/D1)v1
2

2g
= f (L2/D2)v2

2

2g

v1 = 0.4085
Q1

D1
2

v2 = 0.4085
Q2

D2
2

In these equations we are assuming flow rates in gal/min and diameters
in inches.

Simplifying the equations, we get

L1

D1

(
Q1

D1
2

)2

= L2

D2

(
Q2

D2
2

)2

or

Q1

Q2
=
(

L2

L1

)0.5(D1

D2

)2.5

(6.87)

Also by conservation of flow

Q1 + Q2 = Q (6.88)

Using Eqs. (6.87) and (6.88), we can calculate the flow through each
branch in terms of the inlet flow Q. The equivalent pipe will be
designated as De in diameter and Le in length. Since the equivalent
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pipe will have the same pressure drop as each of the two branches, we
can write

Le

De

(
Qe

De
2

)2

= L1

D1

(
Q1

D1
2

)2

(6.89)

where Qe is the same as the inlet flow Q since both branches have
been replaced with a single pipe. In Eq. (6.89), there are two unknowns
Le and De. Another equation is needed to solve for both variables. For
simplicity, we can set Le to be equal to one of the lengths L1 or L2.
With this assumption, we can solve for the equivalent diameter De as
follows.

De = D1

(
Q
Q1

)0.4

(6.90)

Example 6.25 A gasoline pipeline consists of a 2000-ft section of NPS 12 pipe
(0.250-in wall thickness) starting at point A and terminating at point B. At
point B, two pieces of pipe (4000 ft long each and NPS 10 pipe with 0.250-
in wall thickness) are connected in parallel and rejoin at a point D. From
D, 3000 ft of NPS 14 pipe (0.250-in wall thickness) extends to point E. Us-
ing the equivalent diameter method calculate the pressures and flow rate
throughout the system when transporting gasoline (specific gravity = 0.74
and viscosity = 0.6 cSt) at 2500 gal/min. Compare the results by calculating
the pressures and flow rates in each branch.

Solution Since the pipe loops between B and D are each NPS 10 and 4000 ft
long, the flow will be equally split between the two branches. Each branch
pipe will carry 1250 gal/min.

The equivalent diameter for section BD is found from Eq. (6.90):

De = D1

(
Q
Q1

)0.4

= 10.25 × (2)0.4 = 13.525 in

Therefore we can replace the two 4000-ft NPS 10 pipes between B and D
with a single pipe that is 4000 ft long and has a 13.525-in inside diameter.

The Reynolds number for this pipe at 2500 gal/min is found from Eq. (6.35):

R = 3162.5 × 2500
13.525 × 0.6

= 974,276

Considering that the pipe roughness is 0.002 in for all pipes:

Relative roughness
e
D

= 0.002
13.525

= 0.0001

From the Moody diagram, the friction factor f = 0.0138. The pressure drop
in section BD is [using Eq. (6.48)]

Pm = 71.16
0.0138 × (2500)2 × 0.74

(13.525)5
= 10.04 psi/mi
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Therefore,

Total pressure drop in BD = 10.04 × 4000
5280

= 7.61 psi

For section AB we have,

R = 3162.5 × 2500
12.25 × 0.6

= 1,075,680

Relative roughness
e
D

= 0.002
12.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0148. The pressure drop
in section AB is [using Eq. (6.48)]

Pm = 71.16
0.0148 × (2500)2 × 0.74

(12.25)5
= 17.66 psi/mi

Therefore,

Total pressure drop in AB = 17.66 × 2000
5280

= 6.69 psi

Finally, for section DE we have,

R = 3162.5 × 2500
13.5 × 0.6

= 976,080

Relative roughness
e
D

= 0.002
13.5

= 0.0001

From the Moody diagram, the friction factor f = 0.0138. The pressure drop
in section DE is [using Eq. (6.48)]

Pm = 71.16
0.0138 × (2500)2 × 0.74

(13.5)5
= 10.13 psi/mi

Therefore,

Total pressure drop in DE = 10.13 × 3000
5280

= 5.76 psi

Finally,

Total pressure drop in entire piping system = 6.69 + 7.61 + 5.76

= 20.06 psi

Next for comparison we will analyze the branch pressure drops considering
each branch separately flowing at 1250 gal/min.

R = 3162.5 × 1250
10.25 × 0.6

= 642,785

Relative roughness
e
D

= 0.002
10.25

= 0.0002
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From the Moody diagram, the friction factor f = 0.015. The pressure drop
in section BD is [using Eq. (6.48)]

Pm = 71.16
0.015 × (1250)2 × 0.74

(10.25)5
= 10.65 psi/mi

This compares with the pressure drop of 10.04 psi/mi we calculated using an
equivalent diameter of 13.525. It can be seen that the difference between the
two pressure drops is approximately 6 percent.

Example 6.26 A 5000-m-long crude oil pipeline is composed of three sections
A, B, and C. Section A has a 200-m inside diameter and is 1500 m long. Section
C has a 400-mm inside diameter and is 2000 m long. The middle section B
consists of two parallel pipes each 1500 m long. One of the parallel pipes
has a 150-mm inside diameter and the other has a 200-mm inside diameter.
Calculate the pressures and flow rates in this piping system at a flow rate
of 500 m3/h. The specific gravity of the liquid is 0.87, the viscosity is 10 cSt,
and the pipe roughness is 0.05 mm.

Solution For the center section B, the flow rates will be distributed between
the two branches according to Eq. (6.87):

Q1

Q2
=
(

L2

L1

)0.5( D1

D2

)2.5

= 1 ×
(

200
150

)2.5

= 2.053

Also

Q1 + Q2 = Q = 500

Solving for Q1 and Q2, we get

Q1 = 336.23 m3/h and Q2 = 163.77 m3/h

Therefore the flow rates in section B are 336.23 m3/h through 200-mm-
diameter pipe and 163.77 m3/h through 150-mm-diameter pipe.

Section A consists of 200-mm-diameter pipe that flows at 500 m3/h. The
Reynolds number from Eq. (6.38) is

R = 353,678 × 500
10 × 200

= 88,420

Therefore flow is turbulent.

Relative roughness = e
D

= 0.05
200

= 0.0003 in

From the Moody diagram the friction factor f = 0.0195. The pressure drop
from Eq. (6.50) is

Pm = 6.2475 × 1010 × 0.0195 × (500)2 × 0.87
(200)5

= 828.04 kPa/km
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Therefore the total pressure drop in section A is

�Pa = 1.5 × 828.04 = 1242 kPa

Section B consists of 200-mm-diameter pipe that flows at 336.23 m3/h (one
branch). The Reynolds number from Eq. (6.38) is

R = 353,678 × 336.23
10 × 200

= 59,459

Therefore flow is turbulent.

Relative roughness = e
D

= 0.05
200

= 0.0003 in

From the Moody diagram the friction factor f = 0.0205. The pressure drop
from Eq. (6.50) is

Pm = (6.2475 × 1010) × 0.0205 × (336.23)2 × 0.87
(200)5

= 393.64 kPa/km

Therefore the total pressure drop in section B is

�Pb = 1.5 × 393.64 = 590.46 kPa

Finally section C consists of 400-mm-diameter pipe that flows at 500 m3/h.
The Reynolds number from Eq. (6.38) is

R = 353,678 × 500
10 × 400

= 44,210

Therefore flow is turbulent.

Relative roughness = e
D

= 0.05
400

= 0.0001 in

From the Moody diagram the friction factor f = 0.022. The pressure drop
from Eq. (6.50) is

Pm = (6.2475 × 1010) × 0.022 × (500)2 × 0.87
(400)5

= 29.19 kPa/km

Therefore the total pressure drop in section C is

�Pc = 2.0 × 29.19 = 58.38 kPa

Total pressure drop in entire pipeline system = 1242 + 590.46 + 58.38 =
1891 kPa.

6.14 Total Pressure Required

So far we have examined the frictional pressure drop in petroleum sys-
tems piping consisting of pipe, fittings, valves, etc. We also calculated
the total pressure required to pump oil through a pipeline up to a de-
livery station at an elevated point. The total pressure required at the
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beginning of a pipeline, for a specified flow rate, consists of three distinct
components:

1. Frictional pressure drop

2. Elevation head

3. Delivery pressure

Pt = Pf + Pelev + Pdel (6.91)

The first item is simply the total frictional head loss in all straight pipe,
fittings, valves, etc. The second item accounts for the pipeline elevation
difference between the origin of the pipeline and the delivery termi-
nus. If the origin of the pipeline is at a lower elevation than that of the
pipeline terminus or delivery point, a certain amount of positive pres-
sure is required to compensate for the elevation difference. On the other
hand, if the delivery point were at a lower elevation than the beginning
of the pipeline, gravity will assist the flow, and the pressure required
at the beginning of the pipeline will be reduced by this elevation differ-
ence. The third component, delivery pressure at the terminus, simply
ensures that a certain minimum pressure is maintained at the delivery
point, such as a storage tank.

For example, if an oil pipeline requires 800 psi to compensate for
frictional losses and the minimum delivery pressure required is 25 psi,
the total pressure required at the beginning of the pipeline is calculated
as follows. If there were no elevation difference between the beginning
of the pipeline and the delivery point, the elevation head (component 2)
is zero. Therefore, the total pressure Pt required is

Pt = 800 + 0 + 25 = 825 psi

Next consider elevation changes. If the elevation at the beginning is
100 ft and the elevation at the delivery point is 600 ft, then

Pt = 800 + (600 − 100) × 0.82
2.31

+ 25 = 1002.49 psi

The middle term in this equation represents the static elevation head
difference converted to psi. Finally, if the elevation at the beginning is
600 ft and the elevation at the delivery point is 100 ft, then

Pt = 800 + (100 − 600) × 0.82
2.31

+ 25 = 647.51 psi

It can be seen from the preceding that the 500-ft advantage in
elevation in the final case reduces the total pressure required by
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approximately 178 psi compared to the situation where there was no
elevation difference between the beginning of the pipeline and delivery
point (825 psi versus 647.51 psi).

6.14.1 Effect of elevation

The preceding discussion illustrated a liquid pipeline that had a flat
elevation profile compared to an uphill pipeline and a downhill pipeline.
There are situations where the ground elevation may have drastic peaks
and valleys that require careful consideration of the pipeline topogra-
phy. In some instances, the total pressure required to transport a given
volume of liquid through a long pipeline may depend more on the ground
elevation profile than on the actual frictional pressure drop. In the pre-
ceding we calculated the total pressure required for a flat pipeline as
825 psi and an uphill pipeline to be 1002 psi. In the uphill case the
static elevation difference contributed to 17 percent of the total pres-
sure required. Thus the frictional component was much higher than
the elevation component. We will examine a case where the elevation
differences in a long pipeline dictate the total pressure required more
than the frictional head loss.

Example 6.27 A 20-in, 500-mi-long (0.375-in wall thickness) oil pipeline has
a ground elevation profile as shown in Fig. 6.14. The elevation at Corona is
600 ft and at Red Mesa is 2350 ft. Calculate the total pressure required at the
Corona pump station to transport 200,000 bbl/day of oil (specific gravity =
0.895 and viscosity = 35 cSt) to the Red Mesa storage tanks, with a minimum
delivery pressure of 50 psi at Red Mesa.

Use the Colebrook equation for calculation of the friction factor. If the
pipeline operating pressure cannot exceed 1400 psi, how many pumping sta-
tions besides Corona will be required to transport the given flow rate? Use a
pipe roughness of 0.002 in.

Hydraulic pressure gradient = 200,000 bbl/day

Pipeline elevation profile

C

A BFlow

Corona
Elev. = 600 ft

Red Mesa
Elev. = 2350 ft

500-mil-long, 20-in pipeline

50 psi

Figure 6.14 Corona to Red Mesa pipeline.
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Solution First, calculate the Reynolds number from Eq. (6.37):

R = 92.24 × 200,000
19.25 × 35

= 27,381

Therefore the flow is turbulent.

Relative pipe roughness = e
D

= 0.002
19.25

= 0.0001

Next, calculate the friction factor f using the Colebrook equation (6.51).

1√
f

= −2 log10

(
0.0001

3.7
+ 2.51

27,381
√

f

)

Solving for f by trial and error, f = 0.0199. We can now find the pressure
loss due to friction using Eq. (6.48) as follows:

Pm = 0.0605 × 0.0199 × (200,000)2 × 0.895
(19.25)5

= 16.31 psi/mi

The total pressure required at Corona is calculated by adding the pressure
drop due to friction to the delivery pressure required at Red Mesa and the
static elevation head between Corona and Red Mesa.

Pt = Pf + Pelev + Pdel from Eq. (6.91)

= (16.31 × 500) + (2350 − 600) × 0.895
2.31

+ 50

= 8155 + 678 + 50 = 8883 psi

Since a total pressure of 8883 psi at Corona far exceeds the maximum oper-
ating pressure of 1400 psi, it is clear that we need additional intermediate
booster pump stations besides Corona. The approximate number of pump
stations required without exceeding the pipeline pressure of 1400 psi is

Number of pump stations = 8883
1400

= 6.35, or 7 pump stations

Therefore, we will need six additional booster pump stations besides Corona.
With seven pump stations the average pressure per pump station will be

Average pump station discharge pressure = 8883
7

= 1269 psi

6.14.2 Tight line operation

When there are drastic elevation differences in a long pipeline, some-
times the last section of the pipeline toward the delivery terminus may
operate in an open-channel flow. This means that the pipeline section
will not be full of liquid and there will be a vapor space above the liquid.

Next Page
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Pipeline pressure gradient

Pipeline elevation profile
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DPeak

A B

Pump station
Flow

Delivery terminus
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Figure 6.15 Tight line operation.

Such situations are acceptable in ordinary petroleum liquid (gasoline,
diesel, and crude oil) pipelines compared to high vapor pressure liq-
uids such as liquefied petroleum gas (LPG) and propane. To prevent
such open-channel flow or slack line conditions, we must pack the line
by providing adequate back pressure at the delivery terminus as illus-
trated in Fig. 6.15.

6.15 Hydraulic Gradient

The graphical representation of the pressures along the pipeline, as
shown in Fig. 6.16, is the hydraulic gradient. Since elevation is mea-
sured in feet, the pipeline pressures are converted to feet of head of liq-
uid and plotted against the distance along the pipeline superimposed on
the elevation profile. If we assume a beginning elevation of 100 ft, a de-
livery terminus elevation of 500 ft, a total pressure of 1000 psi required
at the beginning, and a delivery pressure of 25 psi at the terminus, we
can plot the hydraulic pressure gradient graphically by the following
method.

C
F

D

E

A B

Pipeline elevation profile

Pressure

Pipeline pressure gradient

Pump station Delivery terminus

Figure 6.16 Hydraulic gradient.

Previous Page
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At the beginning of the pipeline the point C representing the total
pressure will be plotted at a height of

100 ft + 1000 × 2.31
0.85

= 2818 ft

where the liquid specific gravity is 0.85. Similarly, at the delivery termi-
nus the point D representing the total head at delivery will be plotted
at a height of

500 + 25 × 2.31
0.85

= 568 ft

The line connecting the points C and D represents the variation of the
total head in the pipeline and is termed the hydraulic gradient. At any
intermediate point such as E along the pipeline the pipeline pressure
will be the difference between the total head represented by point F on
the hydraulic gradient and the actual elevation of the pipeline at E.

If the total head at F is 1850 ft and the pipeline elevation at E is
250 ft, the actual pipeline pressure at E is

(1850 − 250) ft = 1600 × 0.85
2.31

= 589 psi

It can be seen that the hydraulic gradient clears all peaks along the
pipeline. If the elevation at E were 2000 ft, we would have a negative
pressure in the pipeline at E equivalent to

(1850 − 2000) ft or −150 ft = −150 × 0.85
2.31

= −55 psi

Since a negative pressure is not acceptable, the total pressure at the
beginning of the pipeline will have to be higher by 55 psi.

Revised total head at A = 2818 + 150 = 2968 ft

This will result in zero gauge pressure in the pipeline at peak E. The
actual pressure in the pipeline will therefore be equal to the atmo-
spheric pressure at that location. Since we would like to always main-
tain some positive pressure above the atmospheric pressure, in this
case the total head at A will be slightly higher than 2968 ft. Assuming
a 10-psi positive pressure is desired at the highest peak such as E (2000
ft elevation), the revised total pressure at A would be

Total pressure at A = 1000 + 55 + 10 = 1065 psi

Therefore,

Total head at C = 100 + 1065 × 2.31
0.85

= 2994 ft
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The difference between 2994 ft and 2968 ft is 26 ft, which is approxi-
mately 10 psi.

6.16 Pumping Horsepower

In the previous sections we calculated the total pressure required at
the beginning of the pipeline to transport a given volume of liquid over
a certain distance. We will now calculate the pumping horsepower (HP)
required to accomplish this.

Consider Example 6.27 in which we calculated the total pressure re-
quired to pump 200,000 bbl/day of oil from Corona to Red Mesa through
a 500-mi-long, 20-in pipeline. We calculated the total pressure required
to be 8883 psi. Since the maximum allowable working pressure in the
pipeline was limited to 1400 psi, we concluded that six additional pump
stations besides Corona were required. With a total of seven pump sta-
tions, each pump station would be discharging at a pressure of approx-
imately 1269 psi.

At the Corona pump station oil would enter the pump at some min-
imum pressure, say 50 psi, and the pumps would boost the pressure
to the required discharge pressure of 1269 psi. Effectively, the pumps
would add the energy equivalent of (1269 − 50) or 1219 psi at a flow
rate of 200,000 bbl/day (5833.33 gal/min). The water horsepower (WHP)
required is calculated as

WHP = (1219 × 2.31/0.895) × 5833.33 × 0.895
3960

= 4148 HP

In general the WHP, also known as hydraulic horsepower (HHP), based
on 100 percent pump efficiency, is calculated from the following equa-
tion:

WHP = ft of head × gal/min × liquid specific gravity
3960

Assuming a pump efficiency of 80 percent, the pump brake horsepower
(BHP) required at Corona is

BHP = 4148
0.8

= 5185 HP

The general formula for calculating the BHP of a pump is

BHP = ft of head × gal/min × liquid specific gravity
3960 × effy

(6.92)

where effy is the pump efficiency expressed as a decimal value.
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If the pump is driven by an electric motor with a motor efficiency of
95 percent, the drive motor HP required will be

Motor HP = 5185
0.95

= 5458 HP

The nearest standard size motor of 6000 HP would be adequate for this
application. Of course, this assumes that the entire pumping require-
ment at the Corona pump station is handled by a single pump-motor
unit. In reality, to provide for operational flexibility and maintenance
two or more pumps will be configured in series or parallel to provide the
necessary pressure at the specified flow rate. Let us assume that two
pumps are configured in parallel to provide the necessary head pres-
sure of 1219 psi (3146 ft) at the Corona pump station. Each pump will
be designed for one-half the total flow rate, or 2917 gal/min, and a pres-
sure of 3146 ft. If the pumps selected had an efficiency of 80 percent,
we could calculate the BHP required for each pump as follows:

BHP = 3146 × 2917 × 0.895
3960 × 0.80

from Eq. (6.92)

= 2593 HP

Alternatively, if the pumps were configured in series instead of parallel,
each pump would be designed for the full flow rate of 5833.33 gal/min
but at half the total head required or 1573 ft. The BHP required per
pump will still be the same as for the parallel configuration. Pumps are
discussed in more detail in Sec. 6.17.

6.17 Pumps

Pumps are installed on petroleum products pipelines to provide the
necessary pressure at the beginning of the pipeline to compensate for
pipe friction and any elevation head and provide the necessary delivery
pressure at the pipeline terminus. Pumps used on petroleum pipelines
are either positive displacement (PD) type or centrifugal pumps.

PD pumps generally have higher efficiency, higher maintenance cost,
and a fixed volume flow rate at any pressure within allowable limits.
Centrifugal pumps on the other hand are more flexible in terms of flow
rates but have lower efficiency and lower operating and maintenance
cost. The majority of liquid pipelines today are driven by centrifugal
pumps.

Since pumps are designed to produce pressure at a given flow rate,
an important characteristic of a pump is its performance curve. The
performance curve is a graphic representation of how the pressure gen-
erated by a pump varies with its flow rate. Other parameters, such as



372 Chapter Six

efficiency and horsepower, are also considered as part of a pump per-
formance curve.

6.17.1 Positive displacement pumps

Positive displacement (PD) pumps include piston pumps, gear pumps,
and screw pumps. These are used generally in applications where a
constant volume of liquid must be pumped against a fixed or variable
pressure.

PD pumps can effectively generate any amount of pressure at the
fixed flow rate, which depends on its geometry, as long as equipment
pressure limits are not exceeded. Since a PD pump can generate any
pressure required, we must ensure that proper pressure control devices
are installed to prevent rupture of the piping on the discharge side of the
PD pump. As indicated earlier, PD pumps have less flexibility with flow
rates and higher maintenance cost. Because of these reasons, PD pumps
are not popular in long-distance and distribution liquid pipelines. Cen-
trifugal pumps are preferred due to their flexibility and low operating
cost.

6.17.2 Centrifugal pumps

Centrifugal pumps consist of one or more rotating impellers contained
in a casing. The centrifugal force of rotation generates the pressure in
the liquid as it goes from the suction side to the discharge side of the
pump. Centrifugal pumps have a wide range of operating flow rates
with fairly good efficiency. The operating and maintenance cost of a
centrifugal pump is lower than that of a PD pump. The performance
curves of a centrifugal pump consist of head versus capacity, efficiency
versus capacity, and BHP versus capacity. The term capacity is used
synonymously with flow rate in connection with centrifugal pumps. Also
the term head is used in preference to pressure when dealing with
centrifugal pumps. Figure 6.17 shows a typical performance curve for
a centrifugal pump.

Generally, the head-capacity curve of a centrifugal pump is a drooping
curve. The highest head is generated at zero flow rate (shutoff head)
and the head decreases with an increase in the flow rate as shown in
Fig. 6.17. The efficiency increases with flow rate up to the best efficiency
point (BEP) after which the efficiency drops off. The BHP calculated
using Eq. (6.92) also generally increases with flow rate but may taper off
or start decreasing at some point depending on the head-capacity curve.

The head generated by a centrifugal pump depends on the diameter
of the pump impeller and the speed at which the impeller runs. The
affinity laws of centrifugal pumps may be used to determine pump per-
formance at different impeller diameters and pump speeds. These laws
can be mathematically stated as follows:
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Figure 6.17 Performance curve for centrifugal pump.

For impeller diameter change:

Flow rate:
Q1

Q2
= D1

D2
(6.93)

Head:
H1

H2
=
(

D1

D2

)2

(6.94)

BHP:
BHP1

BHP2
=
(

D1

D2

)3

(6.95)

For impeller speed change:

Flow rate:
Q1

Q2
= N1

N2
(6.96)

Head:
H1

H2
=
(

N1

N2

)2

(6.97)

BHP:
BHP1

BHP2
=
(

N1

N2

)3

(6.98)

where subscript 1 refers to initial conditions and subscript 2 to final
conditions. It must be noted that the affinity laws for impeller diameter
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change are accurate only for small changes in diameter. However, the
affinity laws for impeller speed change are accurate for a wide range of
impeller speeds.

Using the affinity laws, if the performance of a centrifugal pump is
known at a particular diameter, the corresponding performance at a
slightly smaller diameter or slightly larger diameter can be calculated
very easily. Similarly, if the pump performance for a 10-in impeller at
3500 revolutions per minute (r/min) impeller speed is known, we can
easily calculate the performance of the same pump at 4000 r/min.

Example 6.28 The performance of a centrifugal pump with a 10-in impeller
is as shown in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 2355 0
1600 2340 57.5
2400 2280 72.0
3200 2115 79.0
3800 1920 80.0
4000 1845 79.8
4800 1545 76.0

(a) Determine the revised pump performance with a reduced impeller size
of 9 in.

(b) If the given performance is based on an impeller speed of 3560 r/min,
calculate the revised performance at an impeller speed of 3000 r/min.

Solution

(a) The ratio of impeller diameters is 9
10 = 0.9. Therefore, the Q values will

be multiplied by 0.9 and the H values will be multiplied by 0.9 × 0.9 = 0.81.
Revised performance data are given in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 1907 0
1440 1895 57.5
2160 1847 72.0
2880 1713 79.0
3420 1555 80.0
3600 1495 79.8
4320 1252 76.0

(b) When speed is changed from 3560 to 3300 r/min, the speed ratio =
3000/3560 = 0.8427. Therefore, Q values will be multiplied by 0.8427 and H
values will be multiplied by (0.8247)2 = 0.7101. Therefore, the revised pump
performance is as shown in the following table.
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Capacity Q, gal/min Head H, ft Efficiency E, %

0 1672 0
1348 1662 57.5
2022 1619 72.0
2697 1502 79.0
3202 1363 80.0
3371 1310 79.8
4045 1097 76.0

Example 6.29 For the same pump performance described in Example 6.28,
calculate the impeller trim necessary to produce a head of 2000 ft at a flow
rate of 3200 gal/min. If this pump had a variable-speed drive and the given
performance was based on an impeller speed of 3560 r/min, what speed would
be required to achieve the same design point of 2000 ft of head at a flow rate
of 3200 gal/min?

Solution Using the affinity laws, the diameter required to produce 2000 ft of
head at 3200 gal/min is as follows:(

D
10

)2

= 2000
2115

D = 10 × 0.9724 = 9.72 in

The speed ratio can be calculated from(
N

3560

)2

= 2000
2115

Solving for speed,

N = 3560 × 0.9724 = 3462 r/min

Strictly speaking, this approach is only approximate since the affinity
laws have to be applied along iso-efficiency curves. We must create the new
H-Q curves at the reduced impeller diameter (or speed) to ensure that at
3200 gal/min the head generated is 2000 ft. If not, adjustment must be made
to the impeller diameter (or speed). This is left as an exercise for the reader.

6.17.3 Net positive suction head

An important parameter related to the operation of centrifugal pumps
is the net positive suction head (NPSH). This represents the absolute
minimum pressure at the suction of the pump impeller at the specified
flow rate to prevent pump cavitation. Below this value the pump im-
peller may be damaged and render the pump useless. The calculation
of NPSH available for a particular pump and piping configuration re-
quires knowledge of the pipe size on the suction side of the pump, the
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elevation of the liquid source and the pump impeller, along with the
atmospheric pressure and vapor pressure of the liquid being pumped.
This will be illustrated using an example.

Example 6.30 Figure 6.18 shows a centrifugal pump installation where liq-
uid is pumped out of a storage tank which is located at an elevation of 25 ft
above that of the centerline of the pump. The piping from the storage tank
to the pump suction consists of straight pipe, valves, and fittings. Calculate
the NPSH available at a flow rate of 3200 gal/min. The liquid being pumped
has a specific gravity of 0.825 and a viscosity of 15 cSt. If flow rate increases
to 5000 gal/min, what is the new NPSH available?

Solution The NPSH available is calculated as follows:

NPSH = (Pa − Pv)
2.31
Sg

+ H + E1 − E2 − hf (6.99)

where Pa = atmospheric pressure, psi
Pv = liquid vapor pressure at flowing temperature, psia
Sg = liquid specific gravity
H = liquid head in tank, ft

E1 = elevation of tank bottom, ft
E2 = elevation of pump suction, ft
hf = friction loss in suction piping from tank to pump suction, ft

All terms in Eq. (6.99) are known except the head loss hf . This item must
be calculated considering the flow rate, pipe size, and liquid properties. The
Reynolds number at 3200 gal/min in the 16-in pipe, using Eq. (6.35), is

R = 3162.5 × 3200
15.5 × 15

= 43,527

The friction factor will be found from the Moody diagram. Assume the pipe
absolute roughness is 0.002 in. Then

Relative roughness
e
D

= 0.002
15.5

= 0.0001

Pa Tank head = 25 ft

Elevation = 110 ft

Elevation = 105 ft

3200 gal/min Total suction piping = 600 ft long, 16 in. diameter,
0.250 in wall thickness.

Liquid vapor pressure Pv = 5 psi
Specific gravity Sg = 0.825
Viscosity = 15 cSt

Figure 6.18 NPSH calculations.
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From the Moody diagram f = 0.0215. The flow velocity from Eq. (6.31) is

v = 0.4085 × 3200
(15.5)2

= 5.44 ft/s

The pressure loss in the suction piping from the tank to the pump will be
calculated using the Darcy equation (6.47):

hf = 0.1863 fLv2

D

= 0.1863 × 0.0215 × 600 × (5.44)2

15.5
= 4.59 ft

Substituting these values in Eq. (6.99), we obtain

NPSH = (14.73 − 5) × 2.31
0.825

+ 25 + 110 − 105 − 4.59

= 27.24 + 25 + 110 − 105 − 4.59 = 52.65

The required NPSH for the pump must be less than this value. If the flow
rate increases to 5000 gal/min and the liquid level in turn drops to 1 ft, the
revised NPSH available is calculated as follows. With flow rate increasing
from 3200 to 5000 gal/min, the head loss due to friction hf is approximately,

hf =
(

5000
3200

)2

× 4.59 = 11.2 ft

Therefore,

NPSH = 27.24 + 1 + 110 − 105 − 11.2 = 22.04 ft

It can be seen that the NPSH available dropped off dramatically with the
reduction in liquid level in the tank and the increased friction loss in the
suction piping at the higher flow rate.

The required NPSH for the pump (based on vendor data) must be lower
than the available NPSH calculations just obtained. If the pump data show
30 ft NPSH is required at 5000 gal/min, the preceding calculation indicates
that the pump will cavitate since the NPSH available is only 22.04 ft.

6.17.4 Specific speed

An important parameter related to centrifugal pumps is the specific
speed. The specific speed of a centrifugal pump is defined as the speed
at which a geometrically similar pump must be run such that it will
produce a head of 1 ft at a flow rate of 1 gal/min. Mathematically, the
specific speed is defined as follows:

NS = NQ1/2

H3/4 (6.100)
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where NS = specific speed
N = impeller speed, r/min
Q = flow rate, gal/min
H = head, ft

It must be noted that in Eq. (6.100) for specific speed, the capacity Q
and head H must be measured at the best efficiency point (BEP) for the
maximum impeller diameter of the pump. For a multistage pump the
value of the head H must be calculated per stage. It can be seen from
Eq. (6.100) that low specific speed is attributed to high head pumps and
high specific speed for pumps with low head.

Similar to the specific speed, another term known as suction specific
speed is also applied to centrifugal pumps. It is defined as follows:

NSS = NQ1/2

(NPSHR)3/4 (6.101)

where NSS = suction specific speed
N = impeller speed, r/min
Q = flow rate, gal/min

NPSHR = NPSH required at best efficiency point

With single or double suction pumps the full capacity Q is used in
Eq. (6.101) for specific speed. For double suction pumps one-half the
value of Q is used in calculating the suction specific speed.

Example 6.31 Calculate the specific speed of a four-stage double suction
centrifugal pump with a 12-in-diameter impeller that runs at 3500 r/min
and generates a head of 2300 ft at a flow rate of 3500 gal/min at the BEP.
Calculate the suction specific speed of this pump, if the NPSH required is
23 ft.

Solution From Eq. (6.100), the specific speed is

NS = NQ1/2

H3/4

= 3500 (3500)1/2

(2300/4)3/4
= 1763

The suction specific speed is calculated using Eq. (6.101).

NSS = NQ1/2

NPSHR3/4

= 3500 (3500/2)1/2

(23)3/4
= 13,941
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6.17.5 Effect of viscosity and gravity on
pump performance

Generally pump vendors provide centrifugal pump performance based
on water as the pumped liquid. Thus the head versus capacity, effi-
ciency versus capacity, and BHP versus capacity curves for a typical
centrifugal pump as shown in Fig. 6.17 is really the performance when
pumping water. When pumping a petroleum product, the head gener-
ated at a particular flow will be slightly less than that with water. The
degree of departure from the water curve depends on the viscosity of
the petroleum product. For example, when pumping gasoline, jet fuel,
or diesel, the head generated will practically be the same as that ob-
tained with water, since these three liquids do not have appreciably
high viscosity compared to water.

Generally, if the viscosity is greater than 10 cSt (50 SSU), the per-
formance with the petroleum product will degrade compared to the
water performance. Thus when pumping ANS crude with a viscosity of
200 SSU at 60◦F, the head-capacity curve will be located below that for
water as shown in Fig. 6.19. The Hydraulic Institute chart can be used to
correct the water performance curve of a centrifugal pump when pump-
ing high-viscosity liquid. It must be noted that with a high-viscosity

Water head Water effciency %

Viscous efficiency

Viscous head

Viscous BHP

BEP

Water BHP
Q

Flow rate (capacity)

BHP

Efficiency %

Head

Figure 6.19 Head-capacity curves.
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liquid, the pump efficiency degrades faster than the pump head. This
can be seen in the comparative performance curve for water and high-
viscosity liquid shown in Fig. 6.19.

Several software programs are available to calculate the performance
of a centrifugal pump when pumping a high-viscosity liquid. These pro-
grams use the Hydraulic Institute chart method to correct the head, effi-
ciency, and BHP from the water performance data. One such program is
PUMPCALC published by SYSTEK Technologies, Inc. (www.systek.us).
Appendix C includes a sample printout and graphic of a viscosity cor-
rected pump performance curve using PUMPCALC.

Positive displacement pumps such as screw pumps and gear pumps
tend to perform better with high-viscosity liquids. In fact the higher the
viscosity of the pumped liquid, the less would be the slip in these types
of pumps. For example, if a screw pump is rated at 5000 gal/min, the
volume flow rate will be closer to this number with a 2000-SSU viscosity
liquid compared to a 500-SSU viscosity liquid. In contrast centrifugal
pump performance degrades from water to 500 SSU viscosity to the
lowest performance with the 2000-SSU viscosity liquid.

The BHP required by the pump is a function of the liquid specific
gravity, flow rate, head, and pump efficiency [from Eq. (6.92)]. We can
therefore conclude that the BHP required increases with higher specific
gravity liquids. Thus water (specific gravity = 1.0) may require a BHP
of 1500 HP at a particular flow rate. The same pump pumping diesel
(specific gravity = 0.85) at the same flow rate and head will require less
BHP according to the pump curve. Actually, due to the higher viscosity
of diesel (approximately 5.0 cSt compared to that of water at 1.0 cSt) the
head required to pump the same volume of diesel will be higher than
that of water. From this standpoint the BHP required with diesel will
be higher than water. However, when reviewing the pump performance
curve, the BHP required is directly proportional to the specific gravity
and hence the BHP curve, for diesel will be below that of water. The
BHP curve for gasoline will be lower than diesel since gasoline has a
specific gravity of 0.74.

6.18 Valves and Fittings

Oil pipelines include several appurtenances as part of the pipeline sys-
tem. Valves, fittings, and other devices are used in a pipeline system to
accomplish certain features of pipeline operations. Valves may be used
to communicate between the pipeline and storage facilities as well as
between pumping equipment and storage tanks. There are many differ-
ent types of valves, each performing a specific function. Gate valves and
ball valves are used in the main pipeline as well as within pump sta-
tions and tank farms. Pressure relief valves are used to protect piping
systems and facilities from overpressure due to upsets in operational
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conditions. Pressure regulators and control valves are used to reduce
pressures in certain sections of piping systems as well as when deliv-
ering petroleum product to third-party pipelines that may be designed
for lower operating pressures. Check valves are found in pump stations
and tank farms to prevent backflow as well as separating the suction
piping from the discharge side of a pump installation. On long-distance
pipelines with multiple pump stations, the pigging process necessitates
a complex series of piping and valves to ensure that the pig passes
through the pump station piping without getting stuck.

All valves and fittings such as elbows and tees contribute to the fric-
tional pressure loss in a pipeline system. Earlier we referred to some
of these head losses as minor losses. As described earlier each valve
and fitting is converted to an equivalent length of straight pipe for the
purpose of calculating the head loss in the pipeline system.

A control valve functions as a pressure-reducing device and is de-
signed to maintain a specified pressure at the downstream side as
shown in Fig. 6.20. If P1 is the upstream pressure and P2 the down-
stream pressure, the control valve is designed to handle a given flow
rate Q at these pressures. A coefficient of discharge Cv is typical of the
control valve design and is related to the pressures and flow rates by
the following equation:

Q = Cv A(P1 − P2)1/2 (6.102)

where A is a constant.
Generally, the control valve is selected for a specific application based

on P1, P2, and Q. For example, a particular situation may require 800 psi
upstream pressure, 400 psi downstream pressure, and a flow rate of
3000 gal/min. Based on these numbers, we may calculate a Cv = 550. We
would then select the correct size of a particular vendor’s control valve
that can provide this Cv value at a specified flow rate and pressures.

Upstream pressure P1

Pressure drop ∆P

Downstream pressure P2

Flow Q

Figure 6.20 Control valve.
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For example, a 10-in valve from vendor A may have a Cv of 400, while
a 12-in valve may have a Cv = 600. Therefore, in this case we would
choose a 12-in valve to satisfy our requirement of Cv = 550.

6.19 Pipe Stress Analysis

The pipe used to transport petroleum product must be strong enough to
withstand the internal pressure necessary to move liquid at the desired
flow rate. The wall thickness T necessary to safely withstand an inter-
nal pressure of P depends upon the pipe diameter D and yield strength
of the pipe material and is generally calculated based upon Barlow’s
equation:

Sh = PD
2T

(6.103)

where Sh represents the hoop stress in the circumferential direction in
the pipe material. Another stress, termed the axial stress or longitudi-
nal stress, acts perpendicular to the cross section of the pipe. The axial
stress is one-half the magnitude of the hoop stress. Hence the governing
stress is the hoop stress from Eq. (6.103).

Applying a safety factor and including the yield strength of the pipe
material, Barlow’s equation is modified for use in petroleum piping
calculation as follows:

P = 2T × S× E × F
D

(6.104)

where P = internal pipe design pressure, psig
D = pipe outside diameter, in
T = pipe wall thickness, in
S= specified minimum yield strength (SMYS)

of pipe material, psig
E = seam joint factor = 1.0 for seamless and submerged arc

welded (SAW) pipes (see Table 6.7 for other joint types)
F = design factor, usually 0.72 for liquid pipelines

The design factor is sometimes reduced from the 0.72 value in the case
of offshore platform piping or when certain city regulations require
buried pipelines to be operated at a lower pressure. Equation (6.104) for
calculating the internal design pressure is found in the Code of Federal
Regulations, Title 49, Part 195, published by the U.S. Department of
Transportation (DOT). You will also find reference to this equation in
ASME standard B31.4 for design and transportation of liquid pipelines.

In SI units, the internal design pressure equation is the same as
shown in Eq. 6.104, except the pipe diameter and wall thickness are in



Oil Systems Piping 383

TABLE 6.7 Pipe Design Joint Factors

Pipe specification Pipe category Joint factor E

ASTM A53 Seamless 1.00
Electric resistance welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

ASTM A106 Seamless 1.00
ASTM A134 Electric fusion arc welded 0.80
ASTM A135 Electric Resistance Welded 1.00
ASTM A139 Electric fusion welded 0.80
ASTM A211 Spiral welded pipe 0.80
ASTM A333 Seamless 1.00
ASTM A333 Welded 1.00
ASTM A381 Double submerged arc welded 1.00
ASTM A671 Electric fusion welded 1.00
ASTM A672 Electric fusion welded 1.00
ASTM A691 Electric fusion welded 1.00
API 5L Seamless 1.00

Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

API 5LX Seamless 1.00
Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00

API 5LS Electric resistance welded 1.00
Submerged arc welded 1.00

millimeters. The SMYS of pipe material and the internal design pres-
sures are both expressed in kilopascals.

Petroleum pipelines are constructed of steel pipe conforming to
American Petroleum Institute (API) standards 5L and 5LX specifica-
tions. Some piping may also be constructed of steel pipe conforming
to ASTM and ANSI standards. High-strength steel pipe may be desig-
nated as API 5LX-52, 5LX-60, or 5LX-80. The last two digits of the pipe
specification denote the SMYS of the pipe material. Thus 5LX-52 pipe
has a yield strength of 52,000 psi.

Example 6.32 Calculate the allowable internal design pressure for a
16-inch (0.250-in wall thickness) pipeline constructed of API 5LX-52 steel.
What wall thickness will be required if an internal working pressure of
1400 psi is required?

Solution Using Eq. (6.104),

P = 2 × 0.250 × 52,000 × 0.72 × 1.0
16

= 1170 psi
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For an internal working pressure of 1400 psi, the wall thickness required is

1400 = 2 × T × 52,000 × 0.72 × 1.0
16

Solving for T, we get

Wall thickness T = 0.299 in

The nearest standard pipe wall thickness is 0.312 in.

6.20 Pipeline Economics

In pipeline economics we are interested in determining the most eco-
nomical pipe size and material to be used for transporting a given
volume of a petroleum product from a source to a destination. The cri-
terion would be to minimize the capital investment as well as annual
operating and maintenance cost. In addition to selecting the pipe it-
self to handle the flow rate we must also evaluate the optimum size
of pumping equipment required. By installing a smaller-diameter pipe
we may reduce the pipe material cost and installation cost. However,
the smaller pipe size would result in a larger pressure drop due to
friction and hence a higher horsepower, which would require larger,
more costly pumping equipment. On the other hand, selecting a larger
pipe size would increase the capital cost of the pipeline itself but would
reduce the pump horsepower required and hence the capital cost of
pumping equipment. Larger pumps and motors will also result in in-
creased annual operating and maintenance cost. Therefore, we need to
determine the optimum pipe size and pumping power required based
on some approach that will minimize both capital investment as well as
annual operating costs. The least present value approach, which con-
siders the total capital investment, the annual operating costs over the
life of the pipeline, time value of money, borrowing cost, and income tax
rate, seems to be an appropriate method in this regard.

Example 6.33 A 25-mi-long crude oil pipeline is used to transport
200,000 bbl/day of light crude (specific gravity = 0.850 and viscosity = 15 cSt)
from a pumping station at Parker to a storage tank at Danby. Determine the
optimum pipe size for this application based on the least initial cost. Consider
three different pipe sizes—NPS 16, NPS 20, and NPS 24. Use the Colebrook-
White equation or the Moody diagram for friction factor calculations. Assume
the pipeline is on fairly flat terrain. Use 85 percent pump efficiency, $700 per
ton for pipe material cost, and $1500 per HP for pump station installation
cost. The labor costs for installing the three pipe sizes are $80, $100, and $110
per ft. The pipeline will be designed for an operating pressure of 1400 psi.
The pipe absolute roughness e = 0.002 in.
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Solution Based on a 1400-psi design pressure, the wall thickness of NPS
16 pipe will be calculated first. Assuming API 5LX-52 pipe, the wall thickness
required for a 1400-psi operating pressure is calculated from Eq. (6.104):

T = 1400 × 16
2 × 52,000 × 0.72

= 0.299 in

The nearest standard size is 0.312 in. The Reynolds number is calculated
from Eq. (6.37) as follows:

R = 92.24 × 200,000
15.376 × 15

= 79,986

Therefore, the flow is turbulent.

e
D

= 0.002
15.376

= 0.0001

The friction factor f is found from the Moody diagram as

f = 0.0195

The pressure drop per mile per Eq. (6.48) is

Pm = 0.0605 × 0.0195 × (200,000)2 × 0.85
(15.376)5

= 46.67 psi/mi

Total pressure drop in 25 mi = 25 × 46.67 = 1167 psi

Assuming a 50-psi delivery pressure and a 50-psi pump suction pressure,

Pump head required at Parker = 1167 × 2.31
0.85

= 3172 ft

Pump flow rate = 200,000 × 0.7
24

= 5833.33 gal/min

Pump HP required at Parker = 3172 × 5833.33 × 0.85
3960 × 0.85

= 4673 HP

Therefore a 5000-HP pump unit will be required. Next we will calculate the
total pipe required. The total tonnage of NPS 16 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.312(16 − 0.312) = 52.275

Total pipe tonnage for 25 mi = 25 × 52.275 × 5280
2000

= 3450 tons

Increasing this by 5 percent for contingency and considering a material cost
of $700 per ton,

Total pipe material cost = 700 × 3450 × 1.05 = $2.54 million

Labor cost for installing NPS 16
pipeline = 80 × 25 × 5280 = $10.56 million

Pump station cost = 1500 × 5000 = $7.5 million
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Therefore,

Total capital cost of
NPS 16 pipeline = $2.54 + $10.56 + $7.5 = $20.6 million

Next we calculate the pressure and HP required for the NPS 20 pipeline:

T = 1400 × 20
2 × 52,000 × 0.72

= 0.374 in

The nearest standard size is 0.375 in. The Reynolds number is calculated
from Eq. (6.37) as follows:

R = 92.24 × 200,000
19.25 × 15

= 63,889

Therefore, the flow is turbulent.

e
D

= 0.002
19.25

= 0.0001

The friction factor f is found from the Moody diagram as

f = 0.020

The pressure drop per mile per Eq. (6.48) is

Pm = 0.0605 × 0.020 × (200,000)2 × 0.85
(19.25)5

= 15.56 psi/mi

Total pressure drop in 25 mi = 25 × 15.56 = 389 psi

Assuming a 50-psi delivery pressure and a 50-psi pump suction pressure,

Pump head required at Parker = 389 × 2.31
0.85

= 1057 ft

Pump flow rate = 200,000 × 0.7
24

= 5833.33 gal/min

Pump HP required at Parker = 1057 × 5833.33 × 0.85
3960 × 0.85

= 1557 HP

Therefore a 1750-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

20 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.375 (20 − 0.375) = 78.6

Total pipe tonnage for 25 mi = 25 × 78.6 × 5280
2000

= 5188 tons

Increasing this by 5 percent for contingency and considering a material cost
of $700 per ton,

Total pipe material cost = 700 × 5188 × 1.05 = $3.81 million

Labor cost for installing
NPS 20 pipeline = 100 × 25 × 5280 = $13.2 million

Pump station cost = 1500 × 1750 = $2.63 million
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Therefore,

Total capital cost of
NPS 20 pipeline = $3.81 + $13.2 + $2.63 = $19.64 million

Next we calculate the pressure and HP required for NPS 24 pipeline.

T = 1400 × 24
2 × 52,000 × 0.72

= 0.449 in

The nearest standard size is 0.500 in. The Reynolds number is calculated
from Eq. (6.37) as follows:

R = 92.24 × 200,000
23.0 × 15

= 53,473

Therefore, the flow is turbulent.
e
D

= 0.002
23.0

= 0.0001

The friction factor f is found from the Moody diagram as

f = 0.021

The pressure drop per mile per Eq. (6.48) is

Pm = 0.0605 × 0.021 × (200,000)2 × 0.85
(23.0)5

= 6.71 psi/mi

Total pressure drop
in 25 mi = 25 × 6.71 = 167.8 psi

Assuming a 50-psi delivery pressure and a 50-psi pump suction pressure,

Pump head required at Parker = 167.8 × 2.31
0.85

= 456 ft

Pump flow rate = 200,000 × 0.7
24

= 5833.33 gal/min

Pump HP required at Parker = 456 × 5833.33 × 0.85
3960 × 0.85

= 672 HP

Therefore an 800-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

24 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.5 (24 − 0.5) = 125.5

Total pipe tonnage for 25 mi = 25 × 125.5 × 5280
2000

= 8283 tons

Increasing this by 5 percent for contingency and considering a material cost
of $700 per ton,

Total pipe material cost = 700 × 8283 × 1.05 = $6.09 million

Labor cost for installing
NPS 24 pipeline = 110 × 25 × 5280 = $14.52 million

Pump station cost = 1500 × 800 = $1.2 million
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Therefore,

Total capital cost of
NPS 24 pipeline = $6.09 + $14.52 + $1.2 = $21.81 million

In summary, capital costs of the NPS 16, NPS 20, and NPS 24 pipelines are

NPS 16 = $20.6 million

NPS 20 = $19.64 million

NPS 24 = $21.81 million

Therefore, based on initial cost alone it appears that NPS 20 is the preferred
pipe size.

Example 6.34 A 68-mi-long refined petroleum products pipeline is cons-
tructed of NPS 24 (0.375-in wall thickness) pipe and is used for transporting
10,000 bbl/h of diesel from Hampton pump station to a delivery tank at Derry.
The delivery pressure required at Derry is 30 psi. The elevation at Hampton
is 150 ft and at Derry it is 250 ft. Calculate the pumping horsepower required
at 80 percent pump efficiency. This pipeline system needs to be expanded to
handle increased capacity from 10,000 bbl/h to 20,000 bbl/h. One option would
be to install a parallel NPS 24 (0.375-in wall thickness) pipeline and provide
upgraded pumps at Hampton. Another option would require expanding the
capacity of the existing pipeline by installing an intermediate booster pump
station. Determine the more economical alternative for the expansion. Diesel
has a specific gravity of 0.85 and a viscosity of 5.5 cSt.

Solution First calculate the Reynolds number from Eq. (6.36):

R = 2213.76 × 10,000
23.25 × 5.5

= 173,119

Assuming relative roughness e/D = 0.0001, from the Moody diagram we get
the friction factor as

f = 0.017

Pressure drop is calculated using Eq. (6.48).

Pm = 34.87 × 0.017 × (10,000)2 × 0.85
(23.25)5

= 7.42 psi/mi

The total pressure required is the sum of friction head, elevation head, and
delivery head using Eq. (6.91).

PT = (68 × 7.42) + (250 − 150) × 0.85
2.31

+ 30 = 571.36 psi

Assuming a 50-psi suction pressure, the pump head required at Hampton is

H = (571.36 − 50) × 2.31
0.85

= 1417 ft

Pump flow rate Q = 10,000 bbl/h = 7000 gal/min
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Therefore, the pump HP required using Eq. (6.92) is

BHP = 1417 × 7000 × 0.85
3960 × 0.8

= 2662

When the flow rate increases to 20,000 bbl/h from 10,000 bbl/h, the new
Reynolds number is

R = 2 × 173,119 = 346, 238

Assuming relative roughness e/D = 0.0001, from the Moody diagram we get
the friction factor as

f = 0.0154

The pressure drop is calculated using Eq. (6.48):

Pm = 34.87 × 0.0154 × (20,000)2 × 0.85
(23.25)5

= 26.87 psi/mi

The total pressure required at Hampton is

PT = (68 × 26.87) + (250 − 150) × 0.85
2.31

+ 30 = 1894 psi

Since this pressure is higher than a maximum allowable operating pressure
(MAOP) of 1400 psi, we will need to install an intermediate booster pump
station between Hampton and Derry.

Assuming the total HP required in this case is equally distributed between
the two pump stations, we will calculate the pump HP required at each sta-
tion as follows:

Pump station discharge pressure = 1894 − 50
2

= 922 psi

Pump head = (922 − 50) × 2.31
0.85

= 2370 ft

Pump flow rate = 20,000 bbl/h = 14,000 gal/min

Therefore, the pump HP required from Eq. (6.92) is

BHP = 2370 × 14,000 × 0.85
3960 × 0.8

= 8903

Thus each pump station requires a 9000-HP pump for a total of 18,000 HP.
If we achieve the increased throughput by installing an NPS 24 parallel

pipe, the flow through each 24-in pipe will be 10,000 bbl/h, the same as before
expansion. Therefore, comparison between the two options of installing a par-
allel pipe versus adding an intermediate booster pump station must be based
on the cost comparison of 68 mi of additional NPS 24 pipe versus increased
HP at Hampton and an additional 9000 HP at the new pump station.

Initially, at 10,000 bbl/h, Hampton required 2662, or approximately 3000,
HP installed. In the second phase Hampton must be upgraded to 9000 HP
and a new 9000-HP booster station must be installed.
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Incremental HP required for expansion = 18,000 − 3000 = 15,000 HP

Capital cost of incremental
HP at $1500 per HP = 1500 × 15,000 = $22.5 million

Compared to installing the booster station, looping the existing NPS 24 line
will be calculated on the basis of $700 per ton of pipe material and $100 per
ft labor cost.

Pipe weight per ft = 10.68 × 0.375 × (24 − 0.375) = 94.62 lb/ft

Material cost for 68 mi of pipe = 700 × 94.62 × 5280 × 68
2000

= $11.9 million

Labor cost for installing
68 mi of NPS 24 pipe = 68 × 5280 × 100 = $35.9 million

Total cost of NPS 24 pipe loop = 11.9 + 35.9 = $47.8 million

Therefore, based on capital cost alone, it is more economical to install the
booster pump station.
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7
Gas Systems Piping

Introduction

Gas systems piping consists of pipelines that are used to transport com-
pressible fluids such as natural gas and other hydrocarbons. Examples
include natural gas gathering systems, gas distribution, and transmis-
sion piping. The calculation methods discussed in this chapter are ap-
plicable to any compressible fluid including methane and ethane.

7.1 Gas Properties

7.1.1 Mass

Mass is defined as the quantity of matter. It is measured in slugs (slug)
and pounds (lb) in U.S. Customary System (USCS) units and kilograms
(kg) in Système International (SI) units. A given mass of gas will oc-
cupy a certain volume at a particular temperature and pressure. For
example, a mass of gas may be contained in a volume of 500 cubic feet
(ft3) at a temperature of 60◦F and a pressure of 100 pounds per square
inch (lb/in2 or psi). If the temperature is increased to 100◦F, pressure
remaining the same, the volume will change according to Charles’s law.
Similarly, if the volume remains the same, the pressure will increase
with temperature. The mass always remains constant as long as gas
is neither added nor subtracted from the system. This is referred to as
conservation of mass.

7.1.2 Volume

Volume is defined as the space occupied by a given mass of gas at a spec-
ified temperature and pressure. Since gas expands to fill the container,

391
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it varies with pressure and temperature. Thus a large volume of a given
mass of gas at low pressure and temperature can be compressed to a
small volume at a higher pressure and temperature. Volume is mea-
sured in ft3 in USCS units and cubic meters (m3) in SI units.

7.1.3 Density

The density of gas is defined as mass per unit volume. Thus,

ρ = m
V

(7.1)

where ρ = density of gas
m= mass of gas
V = volume of gas

Density is expressed in slug/ft3or lb/ft3 in USCS units and kg/m3 in
SI units.

7.1.4 Specific gravity

The specific gravity, or simply the gravity, of gas is measured relative
to the density of air at a particular temperature as follows:

Gas gravity = density of gas
density of air

Both densities are measured at the same temperature and pressure. For
example, a sample of natural gas may be referred to as having a specific
gravity of 0.65 (specific gravity of air = 1.00) at 60◦F. This means that
the gas is 65 percent as heavy as air.

The specific gravity of a gas can also be represented as a ratio of its
molecular weight to that of air.

Specific gravity = Mg

Mair

or

G = Mg

28.9625
(7.2)

where G = specific gravity of gas
Mg = molecular weight of gas

Mair = molecular weight of air

In Eq. (7.2) we have used 28.9625 for the apparent molecular weight of
air. Sometimes the molecular weight of air is rounded off to 29.0, and
then the gas gravity becomes Mg/29. If the gas is composed of a mixture
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of several gases, the value of Mg in Eq. (7.2) is called the apparent
molecular weight of the gas mixture.

Generally, a natural gas sample will consist of several components
such as methane and ethane. The gravity of such a mixture can be
calculated using the individual molecular weights of the component
gases.

7.1.5 Viscosity

The viscosity of a fluid is defined as the resistance to flow. The viscosity
of gases is very low compared to that of liquids. (For example, water has
a viscosity of 0.01 poise compared to natural gas which has a viscosity
of 0.00012 poise). However, the viscosity of a gas is an important prop-
erty in the study of gas flow in pipe. The Reynolds number, explained
in Sec. 7.2, is a dimensionless parameter that depends on the gas grav-
ity and viscosity and is used to characterize flow through pipes. Two
types of viscosities are used. Dynamic viscosity µ, also known as the
absolute viscosity, is expressed in lb/(ft · s) in USCS units and poises (P)
in SI units. The kinematic viscosity ν is calculated by dividing the dy-
namic viscosity by the density. Thus the relationship between the two
viscosities is expressed as follows:

Kinematic viscosity ν = dynamic viscosity µ

density
(7.3)

Kinematic viscosity is measured in ft2/s in USCS units and stokes (St) in
SI units. Other units of viscosity include centipoises (cP) and centistokes
(cSt). The viscosity of a pure gas such as air or methane depends only on
its temperature and pressure. The viscosity of a gas mixture consisting
of various gases such as C1, C2, etc., depends on the composition of the
mixture, its temperature, and its pressure. If the viscosity of each com-
ponent gas is known, we can calculate the viscosity of the gas mixture,
knowing the mole percent of each component in the mixture, using the
following formula:

µ =
∑

(µi yi
√

Mi)∑
(yi
√

Mi)
(7.4)

where yi represents the mole fraction of each component gas with molec-
ular weight Mi, and µi is the viscosity of the component. The viscos-
ity of the mixture is µm. Viscosities of common gases at atmospheric
conditions are shown in Fig. 7.1. Equation (7.4) is discussed in detail in
Sec. 7.1.10.

Several correlations and charts for calculating the viscosity of a gas
mixture are also available.
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Figure 7.1 Viscosity of common gasses.

7.1.6 Ideal gases

An ideal gas is one in which the volume occupied by its molecules is
negligible compared to that of the total gas. In addition there is no
attraction or repulsion between the gas molecules and the container.
The molecules of an ideal gas are considered to be perfectly elastic,
and there is no loss in internal energy due to collision between the gas
molecules. Ideal gases follow Boyle’s law and Charles’s law and can be
represented by the ideal gas equation or the perfect gas equation. We
will discuss the behavior of ideal gases first followed by that of real
gases.

The molecular weight M of a gas represents the weight of one molecule
of gas. The given mass mof gas will thus contain m/M number of moles.
Therefore,

n = m
M

(7.5)

For example, the molecular weight of methane is 16.043 and that of
nitrogen is 28.013. Then 100 lb of methane will contain approximately
6 moles of methane.

The ideal gas law states that the pressure, volume, and temperature
of a given quantity of gas are related by the ideal gas equation as follows:

PV = nRT (7.6)
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where P = absolute pressure, psia
V = gas volume, ft3

n = number of lb moles as defined in Eq. (7.5)
R = universal gas constant
T = absolute temperature of gas, ◦R (◦F + 460)

In USCS units R has a value of 10.732 psia ft3/(lb · mol · ◦R). Using
Eq. (7.5) we can restate the ideal gas equation as follows:

PV = mRT
M

(7.7)

where mrepresents the mass and M is the molecular weight of gas. The
ideal gas equation is only valid at pressures near atmospheric pressure.
At high pressures it must be modified to include the effect of compres-
sibility.

Two other equations used with gases are Boyle’s law and Charles’s
law. Boyle’s law states that the pressure of a given quantity of gas
varies inversely as its volume provided the temperature is kept con-
stant. Mathematically, Boyle’s law is expressed as

P1

P2
= V2

V1

or

P1V1 = P2V2 (7.8)

where P1 and V1 are the initial pressure and volume, respectively, at
condition 1 and P2 and V2 refer to condition 2. In other words, PV =
constant.

Charles’s law relates to volume-temperature and pressure-
temperature variations for a given mass of gas. Thus keeping the pres-
sure constant, the volume of gas will vary directly with the absolute
temperature. Similarly, keeping the volume constant, the absolute
pressure will vary directly with the absolute temperatures. These are
represented mathematically as follows:

V1

V2
= T1

T2
for constant pressure (7.9)

P1

P2
= T1

T2
for constant volume (7.10)

Note that in the preceding discussions, the gas temperature is always
expressed in absolute scale. In USCS units, the absolute temperature
is stated as ◦R, equal to ◦F + 460. In SI units the absolute temperature
is expressed in kelvin (K), equal to ◦C + 273.
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Pressures used in the preceding equations must also be in abso-
lute units, such as psi absolute or kilopascals absolute. The absolute
pressure is obtained by adding the atmospheric base pressure (usually
14.7 psia in USCS units or 101 kPa in SI units) to the gauge pressure.

psia = psig + base pressure

kPa (abs) = kPa (gauge) + base pressure

Example 7.1 A certain quantity of gas occupies a volume of 1500 ft3 at
50 psig. If the temperature is kept constant and its pressure is increased
to 100 psig, what is the final volume? Use 14.73 psi for the atmospheric
pressure.

Solution Since the temperature is kept constant, Boyle’s law can be applied.
Using Eq. (7.8) the final volume is calculated as

V2 = P1V1

P2

or

V2 = (50 + 14.73) × 1500
100 + 14.73

= 846.29 ft3

Example 7.2 A certain quantity of gas occupies a volume of 1000 ft3 at
50 psig and 60◦F. If the volume is kept constant and its temperature is in-
creased to 100◦F, what is the final pressure? If the pressure is kept constant
at 50 psig and the temperature is increased to 100◦F, what is the final
volume? Use 14.73 psi for the atmospheric pressure.

Solution Since the volume is kept constant in the first part of the problem,
Charles’s law per Eq. (7.10) can be applied as follows:

50 + 14.73
P2

= 60 + 460
100 + 460

Solving for P2, we get

P2 = 69.71 psia or 54.98 psig

In the second part of the problem, the pressure is kept constant, and there-
fore Charles’s law per Eq. (7.9) can be applied.

V1

V2
= T1

T2

1000
V2

= 60 + 460
100 + 460

Solving for V2, we get

V2 = 1076.92 ft3
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Example 7.3 An ideal gas is contained in a 200-ft3 tank at a pressure of
60 psig and a temperature of 100◦F.

(a) What is the volume of this quantity of gas at standard conditions of
14.73 psia and 60◦F? Assume the atmospheric pressure is 14.6 psia.

(b) If the tank is cooled to 70◦F, what would be the pressure in the tank?

Solution

(a) Using the ideal gas law, we can state

P1V1

T1
= P2V2

T2

where P1 = 60 + 14.6 = 74.6 psia
V1 = 200 ft3

T1 = 100 + 460 = 560◦R
P2 = 14.73
V2 = unknown
T2 = 60 + 460 = 520◦R

Substituting the numerical values into the equation, we obtain

74.6 × 200
560

= 14.73 × V2

520

V2 = 940.55 ft3

(b) When the tank is cooled to 70◦F, the final conditions are

T2 = 70 + 460 = 530◦R

V2 = 200 ft3

P2 = unknown

The initial conditions are

P1 = 60 + 14.6 = 74.6 psia

V1 = 200 ft3

T1 = 100 + 460 = 560◦R

It can be seen that we are keeping the volume of the gas constant and sim-
ply reducing the temperature from 100◦F to 70◦F. Therefore, Charles’s law
applies in this case. Using Eq. (7.10),

P1

P2
= T1

T2

74.6
P2

= 560
530

P2 = 74.6 × 530
560

= 70.60 psia
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So the final pressure will be

70.6 − 14.6 = 56.0 psig

7.1.7 Real gases

The ideal gas equation is applicable only when the pressure of the gas is
very low or near atmospheric pressure. When gas pressures and temper-
atures are higher, the ideal gas equation will not give accurate results.
The calculation errors may be as high as 500 percent. An equation of
state is generally used for calculating the properties of gases at higher
temperatures and pressures.

Real gases behave according to a modified version of the ideal gas law
[Eq. (7.6)]. The modifying factor is known as the compressibility factor
Z. This is also called the gas deviation factor. Z is a dimensionless num-
ber less than 1.0 and varies with temperature, pressure, and physical
properties of the gas.

The real gas equation can be written as follows:

PV = ZnRT (7.11)

where P = absolute pressure, psia
V = gas volume, ft3

Z = gas deviation factor or compressibility factor, dimensionless
T = absolute temperature of gas, ◦R
n = number of lb moles as defined in Eq. (7.5)
R = universal gas constant, 10.732 (psia · ft3)/(lb · mol · ◦R)

The calculation of the compressibility factor will be discussed in
Sec. 7.19.

7.1.8 Natural gas mixtures

The critical temperature of a pure gas is the temperature above which
it cannot be liquefied regardless of the pressure. The critical pressure of
a pure substance is defined as the pressure above which liquid and gas
cannot coexist, regardless of the temperature. With multicomponent
mixtures these properties are referred to as the pseudo critical temper-
ature and pseudo critical pressure. If the composition of the gas mixture
is known, we can calculate the pseudo critical pressure and the pseudo
critical temperature of the gas mixture using the critical pressure and
temperature of the pure components.

The reduced temperature is simply the temperature of the gas divided
by its critical temperature. Similarly, the reduced pressure is simply the
pressure of the gas divided by its critical pressure, both temperature
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and pressure being in absolute units. Similar to the pseudo critical
temperature and pressure, we can calculate the pseudo reduced tem-
perature and the pseudo reduced pressure for a gas mixture.

Example 7.4 Calculate the pseudo critical temperature and the pseudo
critical pressure of a natural gas mixture consisting of 85 percent methane,
10 percent ethane, and 5 percent propane. From Table 7.1 for properties of
gases, we find that the components C1, C2, and C3 have the following critical
properties:

Component Critical Temperature, ◦R Critical Pressure, psia

C1 (methane) 343 666
C2 (ethane) 550 707
C3 (propane) 666 617

Some numbers have been rounded off for simplicity.

Solution From the given mole fractions of components, we use Kay’s rule to
calculate the average pseudo critical temperature and pressure of gas.

Tpc =
∑

yTc (7.12)

Ppc =
∑

yPc (7.13)

where Tc and Pc are the critical temperature and pressure of the pure compo-
nent (C1, C2, etc.) and y represents the mole fraction of the component. The
calculated values Tpc and Ppc are the average pseudo critical temperature
and pressure of the gas mixture.

Using the given mole fractions, the pseudo critical properties are

Tpc = (0.85 × 343) + (0.10 × 550) + (0.05 × 666) = 379.85◦R

and

Ppc = (0.85 × 666) + (0.10 × 707) + (0.05 × 617) = 667.65 psia

Example 7.5 The temperature of the gas in Example 7.4 is 80◦F and the
average pressure is 1000 psig. What are the pseudo reduced temperature
and pressure? The base pressure is 14.7 psia.

Solution

Pseudo reduced temperature Tpr = 80 + 460
379.85

= 1.4216

Pseudo reduced pressure Ppr = 1000 + 14.7
667.65

= 1.5198

Pseudo critical properties from gravity. If the gas composition data are
not available, we can calculate an approximate value of the pseudo
critical temperature and pressure of the gas from the gas gravity as



TABLE 7.1 Properties of Gases
(a) Molecular Weight and Critical Constants

Critical constants
Vapor pressure, Compressibility

Molecular psia Pressure, Temp., Volume, factor,
Compound Formula weight at 100◦F psia ◦F ft3/lb 14.696 psia, 60◦F

Methane CH4 16.0430 (5000) 666.0 −116.66 0.0988 0.998
Ethane C2H6 30.0700 (800) 707.0 90.07 0.0783 0.9919
Propane C3H8 44.0970 188.65 617.0 205.93 0.0727 0.9825
Isobutane C4H10 58.1230 72.581 527.9 274.4 0.0714 0.9711
n-butane C4H10 58.1230 51.706 548.8 305.52 0.0703 0.9667
Iso-pentane C5H12 72.1500 20.443 490.4 368.96 0.0684
n-pentane C5H12 72.1500 15.575 488.1 385.7 0.0695
Neo-pentane C5H12 72.1500 36.72 464.0 321.01 0.0673 0.9582
n-hexane C6H14 86.1770 4.9596 436.9 453.8 0.0688
2-methyl pentane C6H14 86.1770 6.769 436.6 435.76 0.0682
3-methyl pentane C6H14 86.1770 6.103 452.5 448.2 0.0682
Neo hexane C6H14 86.1770 9.859 446.7 419.92 0.0667
2,3-dimethylbutane C6H14 86.1770 7.406 454.0 440.08 0.0665
n-Heptane C7H16 100.2040 1.621 396.8 512.8 0.0682
2-Methylhexane C7H16 100.2040 2.273 396.0 494.44 0.0673
3-Methylhexane C7H16 100.2040 2.13 407.6 503.62 0.0646
3-Ethylpentane C7H16 100.2040 2.012 419.2 513.16 0.0665
2,2-Dimethylpentane C7H16 100.2040 3.494 410.8 476.98 0.0665
2,4-Dimethylpentane C7H16 100.2040 3.294 397.4 475.72 0.0667
3,3-Dimethylpentane C7H16 100.2040 2.775 427.9 505.6 0.0662
Triptane C7H16 100.2040 3.376 427.9 496.24 0.0636
n-octane C8H18 114.2310 0.5371 360.7 564.15 0.0673
Di isobutyl C8H18 114.2310 1.1020 361.1 530.26 0.0676
Iso-octane C8H18 114.2310 1.7090 372.7 519.28 0.0657
n-Nonane C9H20 128.2580 0.17155 330.7 610.72 0.0693
n-Decane C10H22 142.2850 0.06088 304.6 652.1 0.0702
Cyclopentane C5H10 70.1340 9.917 653.8 461.1 0.0594
Methylcyclopentane C6H12 84.1610 4.491 548.8 499.28 0.0607
Cyclohexane C6H12 84.1610 3.267 590.7 536.6 0.0586
Methylcyclohexane C7H14 98.1880 1.609 503.4 570.2 0.0600



Ethylene C2H4 28.0540 (1400) 731.0 48.54 0.0746 0.9936
Propylene C3H6 42.0810 232.8 676.6 198.31 0.0717 0.9844
Butylene C4H8 56.1080 62.55 586.4 296.18 0.0683 0.9699
Cis-2-butene C4H8 56.1080 45.97 615.4 324.31 0.0667 0.9665
Trans-2-butene C4H8 56.1080 49.88 574.9 311.8 0.0679 0.9667
Isobutene C4H8 56.1080 64.95 580.2 292.49 0.0681 0.9700
1-Pentene C5H10 70.1340 19.12 509.5 376.86 0.0674 0.9487
1,2-Butadene C4H8 54.0920 36.53 (656)∗ (354) (0.070) (0.969)
1,3-Butadene C4H8 54.0920 59.46 620.3 306 0.0653 0.9723
Isoprene C5H8 68.1190 16.68 (582)∗ 403 0.066
Acetylene C2H2 26.0380 890.4 95.29 0.0693 0.993
Benzene C6H8 78.1140 3.225 710.4 552.15 0.0531
Toluene C7H8 92.1410 1.033 595.5 605.5 0.0549
Ethyl-benzene C8H10 106.1670 0.3716 523 651.22 0.0564
o-Xylene C8H10 106.1670 0.2643 541.6 674.85 0.0557
m-Xylene C8H10 106.1670 0.3265 512.9 650.95 0.0567
p-Xylene C8H10 106.1670 0.3424 509.2 649.47 0.0572
Styrene C8H8 104.1520 0.2582 587.8 (703) 0.0534
Isopropylbenzene C9H12 120.1940 (0.188) 465.4 676.2 0.0569
Methyl alcohol CH4O 32.0420 4.631 1174 463.01 0.059
Ethyl alcohol C2H6O 46.0690 2.313 891.7 465.31 0.0581
Carbon monoxide CO 28.0100 506.8 −220.51 0.0527 0.9996
Carbon dioxide CO2 44.0100 1071 87.73 0.0342 0.9964
Hydrogen sulfide H2S 34.0820 394.59 1306 212.4 0.0461 0.9846
Sulfur dioxide SO2 64.0650 85.46 1143 315.7 0.0305 0.9802
Ammonia NH3 17.0305 211.9 1647 270.2 0.0681 0.9877
Air N2 + O2 28.9625 546.9 −221.29 0.0517 0.9996
Hydrogen H2 2.0159 187.5 (−400.3) 0.5101 1.0006
Oxygen O2 31.9988 731.4 −181.4 0.0367 0.9992
Nitrogen N2 28.0134 493 −232.48 0.051 0.9997
Chlorine Cl2 70.9054 157.3 1157 290.69 0.028 (0.9875)
Water H2O 18.0153 0.95 3200.1 705.1 0.04975
Helium He 4.0026 32.99 −450.31 0.23 1.0006
Hydrogen chloride HCl 36.4606 906.71 1205 124.75 0.0356 0.9923

∗Values in parentheses are estimates.



TABLE 7.1 Properties of Gases (Continued )
(b) Density and Specific Heat

Density of Liquid, Ideal Gas,
14.696 psia, 60◦F 14.696 psia, 60◦F Specific heat, Btu/lb · ◦F

14.696 psia, 60◦F
Specific gravity Specific gravity ft3/lb ft3/gal

Compound 60◦F/60◦F lb/gal∗ gal/(lb · mol) (air = 1.00) gas liquid Ideal gas Liquid

Methane (0.3)† (2.5) (6.4172) 0.5539 23.654 (59.135) 0.52676
Ethane (0.35542) 2.9632 10.148 1.0382 12.62 37.396 0.40789 0.97225
Propane (0.50694) 4.2265 10.433 1.5226 8.6059 36.373 0.38847 0.61996
Isobutane (0.56284) 4.6925 12.386 2.0068 6.5291 30.638 0.38669 0.57066
n-butane 0.58400 4.8689 11.938 2.0068 6.5291 31.790 0.39500 0.57272
Iso-pentane 0.62441 5.2058 13.86 2.4912 5.2596 27.38 0.38448 0.53331
n-pentane 0.63105 5.2612 13.714 2.4912 5.2596 27.672 0.38831 0.54363
Neo-pentane 0.59665 4.9744 14.504 2.4912 5.2596 26.163 0.39038 0.55021
n-hexane 0.66404 5.5362 15.566 2.9755 4.4035 24.379 0.38631 0.53327
2-methyl pentane 0.65788 5.4849 15.712 2.9755 4.4035 24.153 0.38526 0.52732
3-methyl pentane 0.66909 5.5783 15.449 2.9755 4.4035 24.564 0.37902 0.51876
Neo hexane 0.65408 5.4532 15.803 2.9755 4.4035 24.013 0.38231 0.51367
2,3-dimethylbutane 0.6663 5.5551 15.513 2.9755 4.4035 24.462 0.37762 0.51308
n-Heptane 0.68805 5.7364 17.468 3.4598 3.7872 21.725 0.38449 0.52802
2-Methylhexane 0.68316 5.6956 17.593 3.4598 3.7872 21.57 0.38170 0.52199
3-Methylhexane 0.69165 5.7664 17.377 3.4598 3.7872 21.838 0.37882 0.51019
3-Ethylpentane 0.70284 5.8597 17.101 3.4598 3.7872 22.192 0.38646 0.51410
2,2-Dimethylpentane 0.67842 5.6561 17.716 3.4598 3.7872 21.421 0.38651 0.51617
2,4-Dimethylpentane 0.67721 5.6460 17.748 3.4598 3.7872 21.382 0.39627 0.5244
3,3-Dimethylpentane 0.69690 5.8102 17.246 3.4598 3.7872 22.004 0.38306 0.50194
Triptane 0.69561 5.7994 17.278 3.4598 3.7872 21.963 0.37724 0.4992
n-octane 0.70678 5.8926 19.385 3.9441 3.322 19.575 0.38334 0.52406
Di Isobutyl 0.69804 5.8197 19.628 3.9441 3.322 19.333 0.37571 0.51130
Iso-octane 0.69629 5.8051 19.678 3.9441 3.322 19.285 0.38222 0.49006
n-Nonane 0.72193 6.0189 21.309 4.4284 2.9588 17.808 0.38248 0.52244
n-Decane 0.73417 6.1209 23.246 4.9127 2.6671 16.325 0.38181 0.52103
Cyclopentane 0.75077 6.2593 11.205 2.4215 5.411 33.869 0.27122 0.42182
methylcyclopentane 0.75467 6.2918 13.376 2.9059 4.509 28.37 0.30027 0.44126
Cyclohexane 0.78339 6.5313 12.886 2.9059 4.509 29.449 0.29012 0.43584
Methylcyclohexane 0.77395 6.4526 15.217 3.3902 3.8649 24.939 0.31902 0.44012



Ethylene 0.9686 13.527 0.35789
Propylene 0.52098 4.3435 9.6883 1.4529 9.0179 39.169 0.35683 0.57201
Butylene 0.60035 5.0052 11.210 1.9373 6.7636 33.853 0.35535 0.52581
Cis-2-butene 0.62858 5.2406 10.706 1.9373 6.7636 35.445 0.33275 0.5298
Trans-2-butene 0.61116 5.0954 11.012 1.9373 6.7636 34.463 0.35574 0.54215
Isobutene 0.60153 5.0151 11.188 1.9373 6.7636 33.920 0.36636 0.54839
1-Pentene 0.64538 5.3807 13.034 2.4215 5.411 29.115 0.35944 0.51782
1,2-Butadene 0.65798 5.4857 9.8605 1.8677 7.0156 38.485 0.34347 0.54029
1,3-Butadene 0.62722 5.2293 10.344 1.8677 7.0156 36.687 0.34223 0.53447
Isoprene 0.68614 5.7205 11.908 2.3520 5.571 31.869 0.35072 0.51933
Acetylene 0.8990 14.574 0.39754
Benzene 0.88458 7.3749 10.592 2.6971 4.8581 34.828 0.24295 0.40989
Toluene 0.87191 7.2693 12.675 3.1814 4.1184 29.938 0.26005 0.40095
Ethyl-benzene 0.87168 7.2674 14.609 3.6657 3.5744 25.976 0.27768 0.41139
o-Xylene 0.88467 7.3757 14.394 3.6657 3.5744 26.363 0.28964 0.4162
m-Xylene 0.86894 7.2445 14.655 3.6657 3.5744 25.894 0.27427 0.40545
p-Xylene 0.86570 7.2175 14.71 3.6657 3.5744 25.798 0.2747 0.40255
Styrene 0.91069 7.5926 13.718 3.5961 3.6435 27.664 0.26682 0.41261
Isopropylbenzene 0.86635 7.2229 16.641 4.1500 3.1573 22.805 0.30704 0.42053
Methyl alcohol 0.79620 6.6381 4.827 1.1063 11.843 78.618 0.32429 0.59192
Ethyl alcohol 0.79395 6.6193 6.9598 1.5906 8.2372 54.525 0.33074 0.56381
Carbon monoxide 0.78938 6.5812 4.2561 0.9671 13.548 89.163 0.24847
Carbon dioxide 0.81801 6.8199 6.4532 1.5196 8.6229 58.807 0.19909
Hydrogen sulfide 0.80143 6.6817 5.1008 1.1768 11.134 74.397 0.23838 0.50415
Sulfur dioxide 1.3974 11.650 5.4991 2.2120 5.9235 69.008 0.14802 0.32458
Ammonia 0.61831 5.1550 3.3037 0.5880 22.283 114.87 0.49678 1.12090
Air 0.87475 7.2930 3.9713 1.0000 13.103 95.557 0.2398
Hydrogen 0.071069 0.59252 3.4022 0.06960 188.25 111.54 3.4066
Oxygen 1.14210 9.5221 3.3605 1.1048 11.859 112.93 0.21897
Nitrogen 0.80940 6.7481 4.1513 0.9672 13.546 91.413 0.24833
Chlorine 1.4243 11.875 5.9710 2.4482 5.3519 63.554 0.11375
Water 1.00000 8.3372 2.1608 0.62202 21.065 175.62 0.44469 0.99974
Helium 0.12510 1.0430 3.8376 0.1382 94.814 98.891 1.2404
Hydrogen chloride 0.85128 7.0973 5.1372 1.2589 10.408 73.869 0.19086

∗Weight in vacuum.
†Values in parentheses are estimates.
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follows:

Tpc = 170.491 + 307.344G (7.14)

Ppc = 709.604 − 58.718G (7.15)

where G = gas gravity (air = 1.00)
Tpc = pseudo critical temperature of gas
Ppc = pseudo critical pressure of gas

Example 7.6 Calculate the gas gravity of a natural gas mixture consisting
of 85 percent methane, 10 percent ethane, and 5 percent propane. Using the
gas gravity, calculate the pseudo critical temperature and pressure for this
natural gas.

Solution Using Kay’s rule for the molecular weight of a gas mixture and
Eq. (7.2),

Gas gravity G = (0.85 × 16.04) + (0.10 × 30.07) + (0.05 × 44.10)
29.0

= 0.6499

Using Eqs. (7.14) and (7.15), we get for the pseudo critical properties,

Tpc = 170.491 + 307.344 × (0.6499) = 370.22◦R

Ppc = 709.604 − 58.718 × (0.6499) = 671.44 psia

Comparing these calculated values with the more accurate solution in
Example 7.5, we see that the Tpc is off by 2.5 percent and Ppc is off by 0.6 per-
cent. These discrepancies are acceptable for most engineering calculations
dealing with natural gas pipeline transportation.

Adjustment for sour gas and nonhydrocarbon components. The Standing-
Katz chart for compressibility factor calculation (discussed in Sec. 7.1.9)
can be used only if there are small amounts of nonhydrocarbon compo-
nents, up to 50 percent by volume. Adjustments must be made for sour
gases containing carbon dioxide and hydrogen sulfide. The adjustments
are made to the pseudo critical temperature and pressure as follows.
First an adjustment factor ε is calculated based on the amounts of car-
bon dioxide and hydrogen sulfide present in the sour gas as follows:

ε = 120 ( A0.9 − A1.6) + 15 (B0.5 − B4.0) (7.16)

where A = sum of mole fractions of CO2 and H2S
B = mole fraction of H2S
ε = adjustment factor, ◦R
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We can then apply this adjustment to the pseudo critical temperature
to get the adjusted pseudo critical temperature Tpc

′ as follows:

T ′
pc = Tpc − ε (7.17)

Similarly, the adjusted pseudo critical pressure P ′
pc is

P ′
pc = Ppc × T ′

pc

Tpc + B (1 − B)ε
(7.18)

7.1.9 Compressibility factor

The concept of the compressibility factor or gas deviation factor was
briefly mentioned in Sec. 7.1.7. It is a measure of how close a real gas is
to an ideal gas. The compressibility factor Z is a dimensionless number
close to 1.00. It is independent of the quantity of gas. It depends on the
gravity, temperature, and pressure of the gas. For example, a sample
of natural gas may have a Z value of 0.8595 at 1000 psia and 70◦F.
Charts are available that show the variation of Z with temperature
and pressure. A related term called the supercompressibility factor Fpv
is defined as follows:

Fpv = 1
Z1/2 (7.19)

or

Z = 1
(Fpv)2 (7.20)

Several methods are available to calculate the value of Z at a tem-
perature T and pressure P. One approach requires knowledge of the
critical temperature and pressure of the gas mixture. The reduced tem-
perature and pressure are calculated from the critical temperatures
and pressures as follows:

Reduced temperature = T
Tc

(7.21)

Reduced pressure = P
Pc

(7.22)

where temperatures and pressures are in absolute units. The value
of the compressibility factor Z is calculated using one of the following
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methods:

1. Standing and Katz method

2. Hall-Yarborough method

3. Dranchuk, Purvis, and Robinson method

4. AGA method

5. CNGA method

Standing and Katz method. This method uses a chart based on binary
mixtures and saturated hydrocarbon vapor data. This approach is re-
liable for sweet natural gas compositions. Corrections must be applied
for hydrogen sulfide and carbon dioxide content of natural gas, using
the adjustment factor ε discussed earlier. See Fig. 7.2 for the compress-
ibility factor chart.

Hall-Yarborough method. This method was developed using the equation
of state proposed by Starling and Carnahan and requires knowledge of
the pseudo critical temperature and pseudo critical pressure of the gas.
At a given temperature T and pressure P, we first calculate the pseudo
reduced temperature and pseudo reduced pressure. Next, a parame-
ter y, known as the reduced density, is calculated from the following
equation:

−0.06125Pprte−1.2(1−t)2 + y + y2 + y3 − y4

(1 − y)3 − Ay2 + By(2.18+2.82t) = 0

(7.23)

where A = 14.76t − 9.76t2 + 4.58t3

B = 90.7t − 242.2t2 + 42.4t3

Ppr = pseudo reduced pressure
Tpr = pseudo reduced temperature

t = 1/Tpr
y = reduced density, dimensionless

It can be seen that the calculation of y is not straightforward and re-
quires a trial-and-error approach. Once y is calculated, the compress-
ibility factor Z is found from the following equation:

Z = −0.06125Pprte−1.2(1−t)2

y
(7.24)

Dranchuk, Purvis, and Robinson method. In this method the Benedict-
Webb-Rubin equation of state is used to correlate the Standing-Katz Z
factor chart. Eight coefficients A1, A2, etc., are used in this equation as
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(
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(
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where ρr and the constants A1 through A8 are given as follows:

ρr = 0.27Ppr

ZTpr
(7.26)

where A1 = 0.31506237 A2 = −1.04670990
A3 = −0.57832729 A4 = 0.53530771
A5 = −0.61232032 A6 = −0.10488813
A7 = 0.68157001 A8 = 0.68446549

American Gas Association (AGA) method. The AGA method of calculat-
ing the compressibility factor Z involves a complicated mathematical
approach using the gas properties. A computer program is necessary to
calculate the Z factor. It may be stated as follows:

Z = function (gas properties, pressures, temperature) (7.27)

The AGA method for calculating Z is outlined in AGA-IGT, Report No.
10. This correlation is valid for gas temperatures ranging from 30◦F
to 120◦F and for gas pressures up to 1380 psig. The calculated val-
ues are fairly accurate and within 0.03 percent of the chart method in
this range of temperatures and pressures. With higher temperatures
and pressures, the difference between the AGA method and the chart
method may be as high as 0.07 percent.

For details of other methods of compressibility calculations refer to
the American Gas Association publication, Report No. 8, 2nd ed.,
November 1992.

California Natural Gas Association (CNGA) method. This is one of the eas-
iest equations for calculating the compressibility factor from given gas
gravity, temperature, and pressure values. Using this method the com-
pressibility factor Z is calculated from the following formula:

Z = 1
1 + Pavg (344,400)(10)1.785G/Tf

3.825 (7.28)

where Pavg = average gas pressure, psig
Tf = average gas temperature, ◦R
G = gas gravity (air = 1.00)

This formula is valid for the average gas pressure Pavg > 100 psia. When
Pavg ≤ 100, we can assume that Z = 1.00.

In the case of a gas flowing through a pipeline, since the pressure
varies along the pipeline, the compressibility factor Z must be cal-
culated based on an average pressure at a particular location on the
pipeline. If two locations have pressures of P1 and P2, we could use a
simple average pressure of (P1 + P2)/2. However, a more accurate value
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of the average pressure is calculated using the following equation:

Pavg = 2
3

(
P1 + P2 − P1 × P2

P1 + P2

)
(7.29)

Example 7.7 Using the Standing-Katz chart and the calculated values of
Tpc and Ppc, calculate the compressibility factor for the gas in Example 7.6
at 80◦F and 100 psig.

Solution From Example 7.6 we get

Pseudo reduced temperature Tpr = 1.4216◦R

Pseudo reduced pressure Ppr = 1.5198 psia

Using the Standing-Katz chart (Fig. 7.1), we read the value of Z as

Z = 0.83

Example 7.8 A natural gas sample has the following molecular composition:

Component y

C1 0.780
C2 0.005
C3 0.002
N2 0.013
CO2 0.016
H2S 0.184

where y represents the mole fraction.

(a) Calculate the molecular weight of the gas, its gravity, and the pseudo
critical temperature and pressure.

(b) Determine the compressibility factor of this gas at 100◦F temperature
and 1000 psia pressure.

Solution From the properties of hydrocarbon components (Table 7.1b), we
create the following spreadsheet showing the molecular weight M, critical
temperature Tc, and critical pressure Pc for each of the component gases,
and calculate the molecular weight of the mixture and the pseudo critical
temperature and pressure using Kay’s rule [Eqs. (7.12) and (7.13)].

Component y M yM Tc Pc yTc yPc

C1 0.780 16.04 12.5112 343 666 267.54 519.48
C2 0.005 30.07 0.1504 550 707 2.75 3.54
C3 0.002 44.10 0.0882 666 617 1.33 1.23
N2 0.013 28.01 0.3641 227 493 2.95 6.41
CO2 0.016 44.01 0.7042 548 1071 8.77 17.14
H2S 0.184 34.08 6.2707 672 1306 123.65 240.30

Total 1.000 20.0888 406.99 788.10
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Therefore, the molecular weight of the natural gas sample is

Mw =
∑

yM = 20.09

and the gas gravity is

G = Mw
29.0

= 20.09
29.0

= 0.6928

Also from the preceding,

Pseudo critical temperature =
∑

yTc = 406.99◦R

Pseudo critical pressure =
∑

yPc = 788.1 psia

Since this is a sour gas that contains more than 5 percent nonhydrocarbons,
we must adjust the pseudo critical temperature and pressure using Eq. (7.16).
The temperature adjustment factor ε is calculated from Eq. (7.16) as follows:

A = 0.016 + 0.184 = 0.20 and B = 0.184

Therefore,

ε = 120[(0.2)0.9 − (0.2)1.6] + 15[(0.184)0.5 − (0.184)4.0] = 25.47◦R

Therefore, the adjusted pseudo critical temperature and pressure are

T′
pc = 406.99 − 25.47 = 381.52◦R

P ′
pc = 788.1 × 381.52

406.99 + 0.184 × (1 − 0.184) × 25.47
= 731.90 psia

We can now calculate the compressibility factor Z at 100◦F and 1000 psia
pressure using the pseudo reduced temperature and pressure as follows:

Pseudo reduced temperature = 100 + 460
381.52

= 1.468

Pseudo reduced pressure = 1000
731.9

= 1.366

Then using these values and the Standing-Katz chart, we get

Z = 0.855

Example 7.9 The gas gravity of a sample of natural gas is 0.65. Calculate
the compressibility factor of this gas at 1000 psig pressure and a temperature
of 80◦F using the CNGA method. Use a base temperature of 60◦F.

Solution

Gas temperature Tf = 80 + 460 = 540◦R

Using Eq. (7.28), with slight simplification, the Z factor is given by

1
Z

= 1 + 1000 × 344,400 × (10)1.785×0.65

5403.825
= 1.1762



Gas Systems Piping 411

Solving for Z, we get

Z = 0.8502

7.1.10 Heating value

The heating value of a gas represents the thermal energy available per
unit volume of the gas. For natural gas, the heating value ranges from
900 to 1000 Btu/ft3. Two heating values are used in practice: lower
heating value (LHV) and higher heating value (HHV). The gross heat-
ing value of a gas mixture is calculated from the heating value of the
component gases using the following equation:

Hm =
∑

yH (7.30)

where y represents the percentage of each component gas with the
corresponding heating value H.

7.1.11 Calculating properties
of gas mixtures

The specific gravity and viscosity of gas mixtures may be calculated
from that of the component gases as follows. The specific gravity of a
mixture of gases is calculated from the percentage composition of each
component gas and its molecular weight. If the gas mixture consists
of three components with molecular weights, M1, M2, M3, and the re-
spective percentages are pct1, pct2, pct3, then the apparent molecular
weight of the mixture is

Mm = pct1M1 + pct2M2 + pct3M3

100
or

Mm =
∑

yM
100

(7.31)

where y represents the percentage of each component gas with
molecular weight M.

The specific gravity Gm of the gas mixture (relative to air = 1.00) is

Gm = Mm

28.9625
(7.32)

Example 7.10 A typical natural gas mixture consists of 85 percent methane,
10 percent ethane, and 5 percent butane. Assuming the molecular weights of
the three component gases to be 16.043, 30.070, 44.097, respectively, calculate
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the specific gravity of this natural gas mixture. Use 28.9625 for the molecular
weight of air.

Solution Applying the percentages to each component in the mixture we get
the molecular weight of the mixture as

(0.85 × 16.043) + (0.10 × 30.070) + (0.05 × 44.097) = 18.8484

Specific gravity of gas = molecular weight of gas
molecular weight of air

G = 18.8484
28.9625

= 0.6508

The viscosity of a mixture of gases at a specified pressure and temperature
can be calculated if the viscosities of the component gases in the mixture
are known. The following formula can be used to calculate the viscosity of a
mixture of gases:

µ =
∑

(µi yi
√

Mi )∑
(yi

√
Mi )

(7.33)

Example 7.11 The viscosities of components C1, C2, C3, and C4 of a natural
gas mixture and their percentages are as follows:

Component y

C1 0.8500
C2 0.0900
C3 0.0400
nC4 0.200
Total 1.000

Determine the viscosity of the gas mixture.

Solution

Component y M M1/2 yM1/2 µ µyM1/2

C1 0.8500 16.04 4.00 3.4042 0.0130 0.0443
C2 0.0900 30.07 5.48 0.4935 0.0112 0.0055
C3 0.0400 44.10 6.64 0.2656 0.0098 0.0026
nC4 0.0200 58.12 7.62 0.1525 0.0091 0.0014

Total 1.000 4.3159 0.0538

The viscosity of the gas mixture is calculated using Eq. (7.33) as follows:

Viscosity of gas mixture = 0.0538
4.3158

= 0.0125
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7.2 Pressure Drop Due to Friction

As gas flows through a pipeline, energy is lost due to friction between
the gas molecules and the pipe wall. This is evident in the form of a
pressure gradient along the pipeline. Before we introduce the various
equations to calculate the amount of pressure drop due to friction we
will discuss a couple of important parameters related to the flow of gas
in a pipeline. The first of these is the velocity of flow, and the other is
the Reynolds number.

7.2.1 Velocity

As gas flows at a particular volume flow rate Q, through a pipeline of
diameter D, the velocity of the gas can be calculated using the cross-
sectional area of pipe as follows:

v = Q
A

(7.34)

Since the flow rate Q is a function of gas pressure and temperature, we
must relate the velocity to volume flow at standard conditions. If the
density of gas at flowing temperature is ρ and the density at standard
conditions is ρb from the law of conservation of mass, the mass flow
rate at standard conditions must equal the mass flow rate at flowing
conditions. Therefore,

ρbQb = ρQ (7.35)

Using the real gas equation, Eq. (7.35) can be simplified as

ρb = PbM
ZbRTb

(7.36)

ρb

ρ
= Pb

P
Z
Zb

T
Tb

(7.37)

Q = Qb
Pb

P
T
Tb

Z
Zb

= Qb
T
P

Pb

Tb

Z
Zb

(7.38)

v = 4
86,400π(D/12)2 Qb

T
P

Pb

Tb

Z
Zb

= (2.653 × 10−3)
Qb

D2

T
P

Pb

Tb

Z
Zb

(7.39)
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where v = velocity of flowing gas, ft/s
D = pipe inside diameter, in
T = temperature of flowing gas, ◦R
P = pressure of gas, psia

Qb = flow rate, million standard ft3/day (MMSCFD)
Pb = base pressure, psia
Tb = base temperature, ◦R

Example 7.12 Calculate the gas velocity in a pipeline at 1000 psig pressure
and 80◦F temperature. The pipeline is NPS 16 (0.250-in wall thickness). Flow
rate = 80 MMSCFD. Use Z = 0.89.

Solution

Diameter D = 16 − 0.5 = 15.5 in

P = 1000 + 14.7 = 1014.7 psia

T = 80 + 460 = 540◦R

The gas velocity is calculated from Eq. (7.39) as

v = (2.653 × 10−3)
80 × 106

(15.5)2
540

1014.7
14.7
520

0.89
1.0

= 11.83 ft/s

7.2.2 Reynolds number

The Reynolds number of flow is a dimensionless parameter that de-
pends on the flow rate, pipe diameter, and gas properties such as den-
sity and viscosity. The Reynolds number is used to characterize the flow
type such as laminar flow and turbulent flow.

The Reynolds number is calculated as follows:

Re = vDρ

µ
(7.40)

where Re = Reynolds number of flow, dimensionless
v = velocity of flowing gas, ft /s
D = pipe inside diameter, ft
ρ = gas density, slug/ft3

µ = gas viscosity, lb/(ft · s)

In gas flow, the following equation for the Reynolds number is more
appropriate:

Re = 0.0004778
Pb

Tb

GQ
µD

(7.41)

Next Page
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where Pb = base pressure, psia
Tb = base temperature, ◦R
G = gas gravity (air = 1.0)
Q = gas flow rate, standard ft3/day (SCFD)
D = pipe internal diameter, in
µ = Gas viscosity, lb/(ft · s)

In SI units the Reynolds number is given by

Re = 0.5134
Pb

Tb

GQ
µD

(7.41a)

where Pb = base pressure, kPa
Tb = base temperature, K
G = gas gravity (air = 1.0)
Q = gas flow rate, m3/day
D = pipe internal diameter, mm
µ = gas viscosity, P

Laminar flow is defined as flow that causes the Reynolds number to be
below a threshold value such as 2000 to 2100. Turbulent flow is defined
as flow that causes the Reynolds number to be greater than 4000. The
range of Reynolds numbers between 2000 and 4000 characterizes an
unstable flow regime known as critical flow.

Example 7.13 Calculate the Reynolds number of flow for an NPS 16 (0.375-
in wall thickness) gas pipeline at a flow rate of 150 MMSCFD. Flowing
temperature = 80◦F, gas gravity = 0.6, viscosity = 0.000008 lb/(ft · s), base
pressure = 14.73 psia, and base temperature = 60◦F.

Solution Using Eq. (7.41) the Reynolds number is

Re = 0.0004778
Pb

Tb

GQ
µD

= 0.0004778
14.73

460 + 80
× 0.6 × 150 × 106

0.000008 × 15.25
= 9,614,746

Therefore, the flow is turbulent since Re > 4000.

7.2.3 Pressure drop equations

Pressure drop in a gas pipeline is calculated using one of several for-
mulas, each of which will be discussed.

1. General flow equation

2. Colebrook-White equation

Previous Page
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3. Modified Colebrook-White equation

4. AGA equation

5. Panhandle A equation

6. Panhandle B equation

7. Weymouth equation

The general flow equation, also referred to as the fundamental flow
equation, relates flow rate, gas properties, pipe size, and flowing tem-
perature to the upstream and downstream pressures in a pipeline seg-
ment. The internal roughness of the pipe is used to calculate a fric-
tion factor using the Colebrook-White, modified Colebrook-White, or
AGA equation. The friction factor is then used in the general flow
equation.

In a steady-state flow of a gas in a pipeline, pressure loss occurs
due to friction between the pipe wall and the flowing gas. The general
flow equation can be used to calculate the pressure drop due to friction
between two points along the pipeline. Since gas properties change with
pressure and temperature, the general flow equation must be applied
for short segments of the pipeline at a time. The total pressure drop
will be the same of the individual pressure drops.

General flow equation. The general flow equation for the steady-state
isothermal flow in a gas pipeline is as follows:

Q = 38.77F
(

Tb

Pb

)(
P1

2 − P2
2

GTf LZ

)0.5

D2.5 (7.42)

where Q = volume flow rate, SCFD
F = transmission factor, dimensionless
Pb = base pressure, psia
Tb = base temperature, ◦R
P1 = upstream pressure, psia
P2 = downstream pressure, psia
G = gas gravity (air = 1.00)
Tf = average gas flow temperature, ◦R
L = pipe segment length, mi
Z = gas compressibility factor, dimensionless
D = pipe inside diameter, in

The transmission factor F is related to the friction factor in an inverse
way. It will be discussed in detail shortly.

Since the pressure at the inlet of the pipe segment is P1 and that at
the outlet is P2, an average pressure must be used to calculate the gas
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compressibility factor Z at the average flowing temperature Tf . Instead
of an arithmetic average (P1 + P2)/2, the following formula is used to
calculate the average gas pressure in the pipe segment.

Pavg = 2
3

(
P1 + P2 − P1 P2

P1 + P2

)
(7.43)

It must be noted that Eq. (7.42) does not include any elevation effects.
The effect of elevation difference between the upstream and down-
stream ends of the pipe segment is taken into account by modifying
the pipe segment length L and the term P1

2 − P2
2 in Eq. (7.42). If the

elevation of the upstream end is H1 and at the downstream end is H2,
the length of the pipe segment L is replaced with an equivalent length
Le as follows:

Le = L (es − 1)
s

(7.44)

where Le = equivalent length of pipe, mi
L = length of pipe between upstream and downstream ends, mi
s = elevation correction factor, dimensionless

The parameter s depends on the elevation difference H2 − H1, and in
USCS units is calculated as follows:

s = 0.0375G (H2 − H1)
Tf Z

(7.45)

The calculation for Le shown in Eq. (7.44) is correct only if we assume
a single slope between point 1 (upstream) and point 2 (downstream). If
instead a series of slopes are to be considered, we define a parameter j
as follows:

j = es − 1
s

(7.46)

The term j must be calculated for each slope of each pipe segment of
length L1, L2, etc., that make up the length L. The equivalent length
then must be calculated as

Le = j1L1 + j2L2es1 + j3L3es2 + · · · (7.47)

where j1, j2, etc., are calculated for each rise or fall in the elevation
for pipe segments between the upstream and downstream ends. The
parameters s1, s2, etc., are calculated for each segment in accordance
with Eq. (7.45).
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Finally, the term P 1
2 − P 2

2 in Eq. (7.42) is modified to P1
2 − es P2

2 as
follows:

Q = 38.77F
(

Tb

Pb

)(
P1

2 − es P2
2

GTf Le Z

)0.5

D2.5 (7.48)

The transmission factor F in this equation may also be replaced with
the Darcy friction factor f defined by the equation

f = 4
F2 (7.49)

Some texts refer to a Fanning friction factor that is one-fourth the Darcy
friction factor defined in Eq. (7.49). Throughout this chapter, we will
only use the Darcy friction factor. The general flow equation (7.42) may
be rewritten in terms of the Darcy friction factor f as follows:

Q = 77.54
1√

f

Tb

Pb

(
P1

2 − P2
2

GTf LZ

)0.5

D2.5 (7.50)

With the correction for elevation, considering the pipeline subdivided
into short segments, and by substituting 1 for upstream and substitut-
ing 2 for downstream, the general flow equation becomes

Q = 38.77F
Tb

Pb

(
P2

1 − es P2
2

GTf Le Z

)0.5

D2.5 (7.51)

and

Q = 77.54
1√

f

Tb

Pb

(
P2

1 − es P2
2

GTf Le Z

)0.5

D2.5 (7.52)

where s and Le are defined by Eqs. (7.44) and (7.45) as

s = 0.0375G (H2 − H1)
Tf Z

(7.53)

Le = L (es − 1)
s

(7.54)

In SI units, Eqs. (7.51) and (7.52) become

Q = (5.7473 × 10−4)F
Tb

Pb

(
P1

2 − es P2
2

GTf Le Z

)0.5

D2.5 (7.55)



Gas Systems Piping 419

and

Q = (11.4946 × 10−4)
1√

f

Tb

Pb

(
P1

2 − es P2
2

GTf Le Z

)0.5

D2.5 (7.56)

and the elevation adjustment term s is given by

s = 0.0684G (H2 − H1)
Tf Z

(7.57)

where Q = gas flow rate at standard conditions, m3/day
Tb = base temperature, K (273 + ◦C)
Pb = base pressure, kPa
Tf = average gas flow temperature, K (273 + ◦C)
P1 = upstream pressure, kPa
P2 = downstream pressure, kPa
H1 = upstream elevation, m
H2 = downstream elevation, m
Le = equivalent length of pipe, km
L = pipe length, km

Other terms are the same as those for USCS units.

Reynolds number and friction factor. The friction factor f , introduced
earlier, depends on the type of flow (such as laminar or turbulent)
and on the pipe diameter and internal roughness. For laminar flow, for
Re ≤ 2000, the friction factor is calculated from

f = 64
Re

(7.58)

Depending on the value of Re, flow is laminar or turbulent.

For laminar flow: Re ≤ 2000

For turbulent flow: Re > 4000

The region for Re between these two values is termed the critical flow
regime.

The turbulent flow region is further subdivided into three separate
regions

1. Turbulent flow in smooth pipes

2. Turbulent flow in fully rough pipes

3. Transition flow between smooth pipes and rough pipes.

This is shown in the Moody diagram (Fig. 7.3).
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In the smooth pipe zone of turbulent flow, the pipe friction factor is not
affected significantly by the pipe internal roughness. The friction factor
f in this region depends only on the Reynolds number Re according to
the following equation:

1√
f

= −2 log10

(
2.51

Re
√

f

)
(7.59)

In the zone of turbulent flow of fully rough pipes the friction factor f
depends less on the Reynolds number and more on the pipe roughness
and diameter. It is calculated using the following equation:

1√
f

= −2 log10

( e
3.7D

)
(7.60)

where f = Darcy friction factor
D = pipe inside diameter, in
e = absolute pipe roughness, in

Table 7.2 lists typical pipe roughness values to be used.
In the transition zone between the smooth pipes zone and fully rough

pipes zone, the friction factor is calculated using the Colebrook-White
equation as follows:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

Re
√

f

)
(7.61)

Again, see Table 7.2 for typical values of pipe roughness.
For laminar flow the friction factor f is calculated from Eq. (7.58).

It can be seen from Eq. (7.58) that the friction factor for laminar flow
depends only on the Reynolds number and is independent of pipe di-
ameter or roughness. It must be noted that the Reynolds number does
depend on the pipe diameter and gas properties.

TABLE 7.2 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.0354–0.354 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.0102 0.26
Galvanized iron 0.0059 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, Drawn tubing, Glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0
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The friction factor is calculated using either the Colebrook-White
equation or the AGA equation (discussed next), and then is used in
the general flow equation to calculate the pressure drop. The last three
equations listed earlier, Panhandle A and B and Weymouth, do not use
a friction factor or the general flow equation. Instead these three equa-
tions directly calculate the flow rate for a given pressure drop in a gas
pipeline.

7.2.4 Transmission factor and friction factor

The transmission factor F is a measure of how much gas can be trans-
ported through the pipeline. Hence it has an inverse relationship to
the friction factor f . As the friction factor increases, the transmission
factor decreases and the flow rate reduces. Conversely, the higher the
transmission factor, the lower the friction factor and hence the higher
the flow rate.

The transmission factor F and the friction factor f are related by the
following equations:

f = 4
F2 (7.62)

F = 2√
f

(7.63)

The friction factor f is actually the Darcy friction factor discussed in
classical books on fluid mechanics. A similar friction factor called the
Fanning friction factor is also used in industry. The Darcy friction factor
and the Fanning friction factor are related as follows:

Darcy friction factor = 4 × Fanning friction factor (7.64)

We will only use the Darcy friction factor in this book.

Colebrook-White equation. The Colebrook-White equation for obtaining
the friction factor is applicable for a wide range of flow in gas pipelines.
Friction factor f is given for turbulent flow as:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

Re
√

f

)
(7.65)

for Re > 4000.

where f = Darcy friction factor
D = pipe inside diameter, in
e = absolute pipe roughness, in

Re = Reynolds number of flow
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In terms of the transmission factor F, discussed earlier, Eq. (7.65) may
be written as

F = −4 log10

(
e

3.7D
+ 1.255F

Re

)
(7.66)

for turbulent flow Re > 4000.
It can be seen from Eqs. (7.65) and (7.66) that the solutions of friction

factor f and the transmission factor F are not straightforward. These
equations are implicit equations and therefore have to be solved by
successive iteration.

Example 7.14 Calculate the flow rate through a 20-mi-long NPS 20 (0.500-
in wall thickness) pipeline using the general flow equation. Gas gravity = 0.6,
flowing temperature = 80◦F, inlet pressure = 1000 psig, outlet pressure =
800 psig, compressibility factor = 0.85, base temperature = 60◦F, and base
pressure = 14.7 psia. Assume the friction factor is 0.02.

Solution

P1 = 1000 + 14.7 = 1014.7 psia

P2 = 800 + 14.7 = 814.7 psia

Tf = 80 + 460 = 540◦R

Tb = 60 + 460 = 520◦R

Z = 0.85

Pb = 14.7 psia

The transmission factor F is found from Eq. (7.49) as

F = 2√
f

= 2√
0.02

= 14.14

From the general flow equation (7.42), we calculate the flow rate as

Q = 38.77 × 14.14
520
14.7

[
(1014.7)2 − (814.7)2

0.6 × 540 × 20 × 0.85

]0.5

(19.0)2.5

= 248,706,761 SCFD

= 248.71 MMSCFD

Example 7.15 Calculate the friction factor and transmission factor using the
Colebrook-White equation for a 16-in (0.250-in wall thickness) gas pipeline
at a flow rate of 100 MMSCFD. Flowing temperature = 80◦F, gas gravity =
0.6, viscosity = 0.000008 lb/(ft · s), base pressure = 14.73 psia, and base
temperature = 60◦F. Assume a pipe internal roughness of 600 microinches
(µin).
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Solution Using Eq. (7.41) the Reynolds number is

Re = 0.0004778
Pb

Tb

GQ
µD

= 0.0004778
14.73

460 + 80
× 0.6 × 100 × 106

0.000008 × 15.5
= 6,306,446

Since the flow is turbulent we use the Colebrook-White equation (7.61) to
calculate the friction factor as follows:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

Re
√

f

)

= −2 log10

(
0.0006

3.7 × 15.5
+ 2.51

6,306,446
√

f

)

This equation must be solved by trial and error. Initially, assume f = 0.02
and calculate the next approximation as follows:

1√
f

= −2 log10

(
0.0006

3.7 × 15.5
+ 2.51

6,306,446 × (0.02)1/2

)
= 9.7538

or

f = 0.0105

Using this value of f , the next approximation is

1√
f

= −2 log10

(
0.0006

3.7 × 15.5
+ 2.51

6,306,446 × (0.0105)1/2

)

f = 0.0107

After a few more trials we get

f = 0.0107

The transmission factor is calculated from Eq. (7.63) as follows:

F = 2√
f

= 2
(0.0107)1/2

= 19.33

Modified Colebrook-White equation. In 1956, the U.S. Bureau of Mines
published a report proposing a modified version of the Colebrook-White
equation. The modified equation tends to produce a higher friction fac-
tor and hence a more conservative solution. It is represented by the
following equation:

1√
f

= −2 log10

(
e

3.7D
+ 2.825

Re
√

f

)
(7.67)

for turbulent flow Re > 4000.
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In terms of the transmission factor, Eq. (7.67) may be written as

F = −4 log10

(
e

3.7D
+ 1.4125F

Re

)
(7.68)

for turbulent flow Re > 4000.

Example 7.16 Calculate the friction factor and transmission factor using
the modified Colebrook-White equation for a 16-in (0.250-in wall thickness)
gas pipeline at a flow rate of 100 MMSCFD. Flowing temperature = 80◦F,
gas gravity = 0.6, viscosity = 0.000008 lb/(ft · s), base pressure = 14.73 psia,
and base temperature = 60◦F. Assume a pipe internal roughness of 600 µin.

Solution Using Eq. (7.41) the Reynolds number is

Re = 0.0004778
Pb

Tb

GQ
µD

= 0.0004778
14.73

460 + 80
× 0.6 × 100 × 106

0.000008 × 15.5
= 6,306,446

Since the flow is turbulent, we use the modified Colebrook-White equation
(7.67) to calculate the friction factor as follows:

1√
f

= −2 log10

(
e

3.7D
+ 2.825

Re
√

f

)

= −2 log10

(
0.0006

3.7 × 15.5
+ 2.825

6,306,446
√

f

)

As before, solving by trial and error for friction factor we get

f = 0.02

The transmission factor is then calculated from Eq. (7.63) as follows:

F = 2√
f

= 2
(0.02)1/2

= 14.14

It can be seen from the preceding that the friction factor is higher than that
calculated using the original Colebrook-White equation in Example 7.15.

AGA equation. The AGA NB-13 method is based on a report published
under the sponsorship of the American Gas Association (AGA) in 1964
and 1965. Based on this report, the transmission factor F is calculated
using two different equations. The first one is based on the rough pipe
law, and the second one is based on the smooth pipe flow. The smaller
of the two values of F is used in the general flow equation (7.42) to
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calculate the pressure drop. For fully turbulent flow:

F = 4 log10

(
3.7D

e

)
(7.69)

For partially turbulent flow:

F = 4Df log10

(
Re

1.4125Ft

)
(7.70)

Ft = 4 log10

(
Re
Ft

)
− 0.6 (7.71)

where Ft is the smooth pipe transmission factor and Df is the pipe drag
factor that depends on the bend index (BI) of the pipe.

The drag factor Df is used to account for bends, fittings, etc., and
ranges in value from 0.90 to 0.99. The bend index (BI) is the sum of all
the angles of all bends in the pipe segment. The drag factor Df can be
estimated from Table 7.3.

Example 7.17 Calculate the transmission factor using the AGA method
for a 20-in (0.50-in wall thickness) pipeline at a flow rate of 250 MMSCFD.
Absolute pipe roughness = 0.0007 in, bend index = 60◦, gas gravity = 0.6,
viscosity = 0.000008 lb/(ft · s), base pressure = 14.73 psia, and base temper-
ature = 60◦F.

Solution From Eq. (7.41) the Reynolds number is calculated first.

Re = 0.0004778 (250 × 106) × 0.6 × 14.73
19.0 × 0.000008 × 520

= 13,356,517

The fully turbulent transmission factor using Eq. (7.69) is

F = 4 log10

(
3.7D

e

)
= 4 log10

(
3.7 × 19
0.0007

)
= 20.01

TABLE 7.3 Bend Index and Drag Factor

Bend Index

Extremely low Average Extremely high
(5◦–10◦) (60◦–80◦) (200◦–300◦)

Bare steel 0.975–0.973 0.960–0.956 0.930–0.900
Plastic lined 0.979–0.976 0.964–0.960 0.936–0.910
Pig burnished 0.982–0.980 0.968–0.965 0.944–0.920
Sand-blasted 0.985–0.983 0.976–0.970 0.951–0.930

NOTE: Values of the drag factor given are pipelines with 40-ft joints
at 10-mi spacing of mainline block valves.
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For the smooth pipe zone using Eq. (7.71),

Ft = 4 log10

(
Re
Ft

)
− 0.6

Solving the preceding equation by trial and error we get Ft = 22.49.
For the partially turbulent flow zone using Eq. (7.70), the transmission

factor is

F = 4Df log10

(
Re

1.4125Ft

)
= 4 × 0.96 log10

(
13,356,517

1.4125 × 22.49

)
= 21.6

We have used a drag factor of 0.96, taken from Table 7.2.
Therefore, using the smaller of the two values, the AGA transmission factor

is 20.01.

Panhandle A equation. The Panhandle A equation for flow rate and pres-
sure drop in a gas pipeline does not use pipe roughness or a friction
factor. Instead an efficiency factor E is used as described.

Q = 435.87E
(

Tb

Pb

)1.0788
(

P1
2 − P2

2

G0.8539Tf LZ

)0.5394

D2.6182 (7.72)

where Q = volume flow rate, SCFD
E = pipeline efficiency, a decimal value less than 1.0
Pb = base pressure, psia
Tb = base temperature, ◦R
P1 = upstream pressure, psia
P2 = downstream pressure, psia
G = gas gravity (air = 1.00)
Tf = average gas flow temperature, ◦R
L = pipe segment length, mi
Z = gas compressibility factor, dimensionless
D = pipe inside diameter, in

In SI Units, the Panhandle A equation is

Q = (4.5965 × 10−3)E
(

Tb

Pb

)1.0788
(

P1
2 − P2

2

G0.8539Tf LZ

)0.5394

D2.6182 (7.72a)

where Q = gas flow rate, standard condition m3/day
E = pipeline efficiency, a decimal value less than 1.0
Tb = base temperature, K (273 + ◦C)
Pb = base pressure, kPa
Tf = average gas flow temperature, K (273 + ◦C)
P1 = upstream pressure, kPa
P2 = downstream pressure, kPa
L = pipe length, km
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Example 7.18 Using the Panhandle A equation, calculate the pressure drop
in a 10-mi segment of a 16-in (0.250-in wall thickness) gas pipeline at a
flow rate of 100 MMSCFD. The inlet pressure at the beginning of the pipe
segment is 1000 psia. Gas gravity = 0.6, viscosity = 0.000008 lb/(ft · s), flowing
temperature of gas in pipeline = 80◦F, base pressure = 14.73 psia, and base
temperature = 60◦F. Use the CNGA method for the compressibility factor Z
and a pipeline efficiency of 0.95.

Solution The average pressure Pavg needs to be calculated before the com-
pressibility factor can be determined. Since the inlet pressure P1 = 1000 psia
and the outlet pressure P2 is unknown, we will have to assume a value of
P2 (such as 800 psia) and calculate Pavg and hence the value of Z. Once Z
is known using the Panhandle A equation we can calculate the outlet pres-
sure P2. Using this value of P2, a better approximation for Z is calculated.
This process is repeated until successive values of P2 are within allowable
tolerance limits, such as 0.1 psia.

Assume P2 = 800 psia. The average pressure from Eq. (7.43) is

Pavg = 2
3

(
P1 + P2 − P1 P2

P1 + P2

)
= 2

3

(
1000 + 800 − 1000 × 800

1000 + 800

)
= 903.7 psia = 888.97 psig

Next we calculate the compressibility factor Z using the CNGA method. From
Eq. (7.28)

Z = 1
1 + [888.97 × 344,400(10)(1.785×0.6))/(540)3.825)]

= 0.8869

From Eq. (7.72) substituting the given values, we get

100 × 106 = 435.87 (0.95)

(
520

14.73

)1.0788

×
[

P1
2 − P2

2

(0.6)0.8539 × 540 × 10 × 0.8869

]0.5394

(15.5)2.6182

P1
2 − P2

2 = 39,530

Solving for P2 we get

P2 = 980.04 psia

Since this is different from the assumed value of P2 = 800, we recalculate
the average pressure and Z using P2 = 980.04 psia. After a few iterations,
we calculate the final outlet pressure to be

P2 = 980.3 psia

Therefore, the pressure drop in the 10-mi segment = P1− P2 = 1000−980.3 =
19.7 psi.
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Panhandle B equation. Similar to the Panhandle A equation, the
Panhandle B equation calculates the flow rate for a given pressure drop
in a gas pipeline and does not use pipe roughness or a friction factor.
Instead an efficiency factor E is used as described.

Q = 737E
(

Tb

Pb

)1.02
(

P1
2 − P2

2

G0.961Tf LZ

)0.51

D2.53 (7.73)

All symbols are as defined before.
In SI units, the Panhandle B equation is

Q = (1.002 × 10−2)E
(

Tb

Pb

)1.02
(

P1
2 − P2

2

G0.961Tf LZ

)0.51

D2.53 (7.73a)

where Q = gas flow rate, standard condition m3/day
E = pipeline efficiency, a decimal value less than 1.0
Tb = base temperature, K (273 + ◦C)
Pb = base pressure, kPa
Tf = average gas flow temperature, K (273 + ◦C)
P1 = upstream pressure, kPa
P2 = downstream pressure, kPa
L = pipe length, km

Example 7.19 Using the Panhandle B equation, calculate the pressure drop
in a 10-mi segment of a 16-in (0.250-in wall thickness) gas pipeline at a
flow rate of 100 MMSCFD. The inlet pressure at the beginning of the pipe
segment is 1000 psia. Gas gravity = 0.6, viscosity = 0.000008 lb/(ft · s), flowing
temperature of gas in pipeline = 80◦F, base pressure = 14.73 psia, and base
temperature = 60◦F. Use the CNGA method for the compressibility factor Z
and a pipeline efficiency of 0.95.

Solution The average pressure Pavg needs to be known before the compress-
ibility factor can be calculated. Since the inlet pressure P1 = 1000 psia and
the outlet pressure P2 is unknown, we will have to assume a value of P2 (such
as 800 psia) and calculate Pavg and hence the value of Z. Once Z is known us-
ing the Panhandle A equation, we can calculate the outlet pressure P2. Using
this value of P2, a better approximation for Z is recalculated. This process is
repeated until successive values of P2 are within allowable tolerance limits,
such as 0.1 psia. Assume P2 = 800 psia.

The average pressure from Eq. (7.43) is

Pavg = 2
3

(
P1 + P2 − P1 P2

P1 + P2

)
= 2

3

(
1,000 + 800 − 1000 × 800

1000 + 800

)
= 903.7 psia = 888.97 psig
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Next we calculate the compressibility factor Z using the CNGA method. From
Eq. (7.28),

Z = 1
1 + [888.97 × 344,400(10)(1.785×0.6)]/(540)3.825

= 0.8869

From Eq. (7.73) substituting given values, we get

Q = 737E

(
Tb

Pb

)1.02( P1
2 − P2

2

G0.961Tf LZ

)0.51

D2.53

100 × 106 = 737(0.95)

(
520

14.73

)1.02

×
[

P1
2 − P2

2

(0.6)0.961 × 540 × 10 × 0.8869

]0.51

(15.5)2.53

P1
2 − P2

2 = 35,000

Solving for P2 we get

P2 = 981 psia

Since this is different from the assumed value of P2 = 800, we recalculate
the average pressure and Z using P2 = 981 psia. After a few iterations we
calculate the final outlet pressure to be

P2 = 981.3 psia

Therefore, the pressure drop in the 10-mi segment = P1−P2 = 1000−981.3 =
18.7 psi.

Example 7.20 For the gas pipeline system shown in Fig 7.4, calculate the
pressure required at A if Pc = 300 psig. Use the Panhandle B equation with
90 percent pipeline efficiency. Gas gravity is 0.70 and viscosity is 8 × 10−6

50 MMSCFD

30 MMSCFD

20 MMSCFD D

CBA

15-min-long,

6-in-diameter pipe

10-mi-long,
10-in-diameter pipe

20-mi-long,
8-in-diameter pipe

300 psig

Pc = 300 psig

Figure 7.4 Gas pipeline with a branch.



Gas Systems Piping 431

lb/(ft · s). What is the pressure at D? Compressibility factor Z = 0.85 and
Tf = 60◦F.

Solution We need to first calculate the pressure at junction B. Consider the
pipe section BC transporting 30 MMSCFD through NPS 8 (0.250-in wall
thickness) pipe. The upstream pressure PB is calculated from Panhandle B
equation (7.73) as follows:

30 × 106 = 737 × 0.9 ×
(

520
14.7

)1.02

×
[

PB
2 − 314.72

(0.7)0.961 × 520 × 20 × 0.85

]0.51

× (8.125)2.53

Therefore, the pressure at junction B is PB = 552.80 psia.
Again, using the Panhandle B equation (7.73) for pipe section BD, we

calculate the pressure at D as follows:

20 × 106 = 737 × 0.9 ×
(

520
14.7

)1.02

×
[

(552.8)2 − PD
2

(0.7)0.961 × 520 × 15 × 0.85

]0.51

× (6.125)2.53

Solving for PD we get

PD = 146.30 psia

Finally we calculate the pressure required at A as follows:

20 × 106 = 737 × 0.9 ×
(

520
14.7

)1.02

×
[

PA
2 − (552.8)2

(0.7)0.961 × 520 × 10 × 0.85

]0.51

× (10.25)2.53

Solving for PA we get

PA = 628.01 psia

Weymouth equation. This formula is generally used for short pipelines
and gathering systems. Like the Panhandle equations, this equation
also uses an efficiency factor.

Q = 433.5E
Tb

Pb

(
P1

2 − P2
2

GTf LZ

)0.5

D2.667 (7.74)

P1 is the upstream pressure and P2 is the downstream pressure, both
in psia. All other symbols are as defined before.

In SI units, the Weymouth equation is

Q = (3.7435 × 10−3)E
Tb

Pb

(
P1

2 − P2
2

GTf LZ

)0.5

D2.667 (7.74a)

All symbols are as defined before.
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Example 7.21 Using the Weymouth equation, calculate the flow rate in a 5-
mi-long, 12.75-in-diameter (0.250-in wall thickness) gas gathering pipeline
system. The upstream pressure is 1000 psia and the delivery pressure is
800 psia at the downstream end. Gas gravity = 0.6 and viscosity = 0.000008
lb/(ft · s). Flowing temperature of gas in pipeline = 80◦F, base pressure =
14.73 psia, and base temperature = 60◦F. Assume the Z factor to be 0.92 and
a pipeline efficiency of 0.90.

Solution Using Eq. (7.74), substituting given values, we get the flow rate as
follows:

Q = 433.5(0.9)
520

14.73

(
10002 − 8002

0.6 × 540 × 5 × 0.92

)0.5

(12.25)2.667

= 170.84 MMSCFD

Example 7.22 A natural gas transmission pipeline is used to transport
36 million m3/day of gas from a refinery to a compressor station site 150 km
away. The pipeline terrain may be assumed to be essentially flat. Determine
the pipe diameter required if the operating pressure is limited to 8000 kPa.
The delivery pressure must be at least 5000 kPa. Consider a pipe roughness
factor of 0.02 mm. The gas gravity is 0.64 and the flowing temperature is
20◦C. Compare results using the Panhandle A, Panhandle B, and Weymouth
equations. Base temperature = 15◦C, base pressure 101 kPa, compressibility
factor Z = 0.85, and pipeline efficiency = 0.95.

Solution

Tb

Pb
= 15 + 273

101
= 2.8515

Tf LZ = (20 + 273) × 150 × 0.85 = 37,357.5

Panhandle A

Substituting in Eq. (7.72a), we get

36 × 106 = (4.5965 × 10−3) × 0.95 ×
(

288
101

)1.0788

×
[

80002 − 50002

(0.64)0.8539 × 293 × 150 × 0.85

]0.5394

× D2.6182

Solving for D we get

D = 878.78 mm
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Panhandle B

Using Eq. (7.73a), we get

36 × 106 = (1.002 × 10−2) × 0.95 × (2.8515)1.02

×
[

80002 − 50002

(0.64)0.961 × 37,357.5

]0.51

× D2.53

Solving for D we get

D = 903.92 mm

Weymouth

Using Eq. (7.74a), we get

36 × 106 = (3.7435 × 10−3) × 0.95 × 2.8515

×
[

80002 − 50002

(0.64)0.961 × 37,357.5

]0.5

× D2.667

Solving for D we get

D = 951.96 mm

Thus, we see that the largest diameter is calculated using the Weymouth
equation, and the smallest using the Panhandle A equation. Weymouth is
therefore the most conservative equation.

7.3 Line Pack in Gas Pipeline

Consider a section of a gas pipeline between points A and B. The up-
stream end A is at a pressure of P1 psia and that at the downstream
end B is at P2 psia. The length of the pipe segment is L miles. The gas
temperature is Tf . The inside diameter of the pipe is D inches. The
volume of gas in packed condition at an average pressure Pavg will be
calculated as follows. The average pressure in the pipeline is calculated
from the upstream and downstream pressures using Eq. (7.43):

Pavg = 2
3

(
P1 + P2 − P1 P2

P1 + P2

)

where Pavg, P1, and P2 are all in absolute pressures.
The physical volume V contained in L miles of circular pipe can be

calculated as

V = area × length
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or

V = const1
π

4
D2L (7.75)

where V = volume, ft3

const1 = conversion constant that depends on units used
D = pipe inside diameter, in
L = pipe length, mi

This is the volume of the packed gas at temperature Tf and pressure
Pavg. Under standard conditions this gas will have a volume designated
as Vb. Using the perfect gas law [Eq. (7.11)], modified by the compress-
ibility factor, we can write the following equation:

PbVb

ZbTb
= PavgV

ZavgTf
(7.76)

where Pb = base pressure, 14.7 psia, in USCS units
Tb = base temperature, ◦R (60◦F + 460), in USCS units
Zb = gas compressibility factor at base conditions,

dimensionless
Zavg = gas compressibility factor at Pavg and Tf conditions,

dimensionless

Other symbols are as defined earlier.
Rearranging and solving for Vb we get

Vb = V
Pavg

Tf

Tb

Pb

Zb

Zavg
(7.77)

Substituting the value of the physical pipe volume V according to
Eq. (7.75) we get the line pack volume in the pipeline in standard ft3 as
follows:

Line pack = Vb = const1
π

4
D2L

Pavg

Tf

Tb

Pb

Zb

Zavg
(7.78)

In this equation, the line pack Vb will be in standard ft3 in USCS units
and standard m3 in SI units and all other symbols are as defined before.
The term const1 depends on the units used and is defined as

const1 = 36.6667 in USCS units

= 0.001 in SI units

It must be noted that in the line pack equation (7.78), the compress-
ibility factors Zb and Zavg must be computed at the standard condi-
tions and the pipeline conditions (Tf and Pavg), respectively. We can use
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either the Standing-Katz chart or the CNGA method to calculate the Z
factors.

Example 7.23 Calculate the line pack in a 5-mi section of NPS 16 (0.250-in
wall thickness) pipe at an average pressure of 950 psig. The gas temperature
is 80◦F and gas gravity is 0.68. Use the CNGA method for calculation of
the compressibility factor. Base temperature = 60◦F and base pressure =
14.7 psia.

Solution The compressibility factor using the CNGA method is

Z = 1
1 + [950 × 344,400 × (10)(1.785×0.68)]/(460 + 80)3.825

= 0.8408

Line pack = Vb = 36.667 × 0.7854 × (15.5)2 × 5
964.7
540

520
14.7

1
0.8408

= 2.60 MMSCF

Example 7.24 A 10-mm-thick, DN 500 natural gas pipeline operates at a
pressure of 7000 kPa (absolute). Estimate the line pack in 1 km length of
this pipe at a flowing temperature of 20◦C.

Base temperature = 15◦C and base pressure = 101 kPa. Assume gas com-
position as follows, taken from Example 7.8:

Component y

C1 0.780
C2 0.005
C3 0.002
N2 0.013
CO2 0.016
H2S 0.184

where y is the mole fraction.

Solution From Example 7.8, Z = 0.855

Line pack = Vb = (1 × 10−3) × π

4
(480)2(1.0)

7,000
273 + 20

15 + 273
101

1
0.855

= 14,418 standard m3

7.4 Pipes in Series

So far we have discussed pipelines that have the same pipe diameter
throughout the length. Many gas pipelines are constructed with differ-
ent pipe sizes and wall thicknesses to handle different volumes through
the pipeline. An example would be the following. A certain volume, say
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100 MMSCFD

20 MMSCFD 30 MMSCFD

80 MMSCFD 50 MMSCFD

A B C DNPS 16

Figure 7.5 Series piping with multiple flow rates.

100 MMSCFD, enters a 16-in pipeline at A. Twenty miles downstream
at B a portion of the inlet volume such as 20 MMSCFD may be deliv-
ered to a customer with the remaining 80 MMSCFD proceeding down
the line. Then 30 MMSCFD would be delivered to a second customer at
point C, and finally, the remaining 50 MMSCFD would be delivered to
the final destination at the end of the pipeline at D. This is illustrated
in Fig. 7.5.

Since section AB handles the largest volume (100 MMSCFD) and
section CD handles the least volume (50 MMSCFD), it is clear that both
AB and CD need not be the same pipe size. For reasons of economy
it would be preferable to size section CD as a smaller-diameter pipe
compared to AB. Suppose AB is NPS 16, section BC may be NPS 14,
and section CD may be designed as NPS 12 pipeline. Here we have
essentially pipes in series, AB, BC, and CD together comprising the
entire pipeline A to D. By reducing the pipe size as the flow reduces
we are saving on material and labor cost. It would be foolish to install
the same NPS 16 pipe for CD when that section transports only one-half
of the flow rate that section AB is required to handle.

A slightly different scenario would be if at point E between C and
D, additional volumes of gas enters the pipeline, maybe from another
pipeline. This is illustrated in Fig. 7.6 where both deliveries out of the
pipeline and injection into the pipeline are shown.

It is clear that in this case section ED must be designed to handle
the larger volume (40 + 50 = 90 MMSCFD) due to the 40-MMSCFD
injection at E. In fact, we may have to size ED as an NPS 16 pipe. How
do you decide on the required pipe size for such a pipeline? One way

100 MMSCFD

20 MMSCFD 30 MMSCFD 40 MMSCFD

80 MMSCFD 50 MMSCFD 90 MMSCFD

A B C E DNPS 16

Figure 7.6 Series piping with injection and deliveries.
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would be to allow approximately the same gas velocity and pressure
drop in each segment of pipe. This would necessitate increasing the
pipe diameter in proportion to the flow rate. Recalling that the flow
rate is proportional to D2.5 and the pressure drop is proportional to D5

we can approximately estimate the different pipe diameters required
to handle the different flow rates as follows:

Q1
2L1

D1
5 = Q2

2L2

D2
5 = Q3

2L3

D3
5 = · · · (7.79)

where Q1 = flow rate through section AB
Q2 = flow rate through section BC
Q3 = flow rate through section CE
L1 = length of section AB
L2 = length of section BC
L3 = length of section CE
D1 = pipe inside diameter of section AB
D2 = pipe inside diameter of section BC
D3 = pipe inside diameter of section CE

We pick a pipe size D1 for the first section AB and calculate an estimate
for the pipe size D2 for section BC as follows using Eq. (7.79):

D1 = D2

(
Q1

Q2

)0.4(L1

L2

)0.2

(7.80)

Similarly, we can determine the pipe diameters for relationships of
the other sections CD, DE, etc. Consider now a simplified case of pipes
in series as shown in Fig. 7.7. In this pipeline we have the same flow
rate Q flowing through three sections AB, BC, and CD of pipes of dif-
ferent diameters and pipe lengths. We are interested in calculating the
pressure drop through this pipeline using the easiest approach. One
way to solve the problem would be to treat this series piping system as
three different pipes and calculate the pressure drop through each pipe
diameter separately and add the pressure drops together. Thus start-
ing with an inlet pressure PA at A, we would calculate the downstream

L1

D1 D2 D3

L2 L3

A B DC

Figure 7.7 Series piping with uniform flow rates.
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pressure PB at B by considering the flow rate Q through a pipe of diam-
eter D1 and length L1. This would establish the pressure at B, which
would form the starting point of calculations for section BC. Using PB
we would calculate the pressure PC at C considering a flow rate of Q
through a pipe diameter D2 and length L2. Finally, starting with PC
we can calculate the pressure PD at D considering a flow of Q through
a pipe diameter D3 and length L3.

Another easier way to calculate the pressure drop in a series piping
system is using the concept of equivalent pipe length. In this approach
we assume the same flow rate Q through the same pipe diameter D1 as
the first section and calculate an equivalent length for each section in
terms of D1 such that the pressure drop in section BC of diameter D2
and length L2 will be the same as if BC were of diameter D1 and length
LeBC . The length LeBC is called the equivalent length of BC in terms of
the diameter D1. Thus we can replace section BC with a piece of pipe
with diameter D1 and length LeBC which will have the same pressure
drop as the original section BC of diameter D2 and length L2. Similarly
the section CD can be replaced with a piece of pipe with diameter D1
and length LeCD which will have the same pressure drop as the original
section BC of diameter D2 and length L2. We can continue this process
for each piece of pipe in series. Finally, we have a pipeline system of
constant diameter D1 having a length of (L1 + LeBC + LeCD +· · ·) that will
have the same pressure drop characteristic of the multiple diameter
pipes in series. This is illustrated in Fig. 7.8.

The equivalent length for each pipe section in terms of diameter D1
is calculated using the following formula:

Le = L2

(
D1

D2

)5

(7.81)

An example will illustrate this approach.

Example 7.25 A series piping system consists of 20 mi of NPS 16 (0.250-in
wall thickness) pipe connected to 20 mi of NPS 14 (0.250-in wall thickness)
pipe and 20 mi of NPS 12 (0.250-in wall thickness) pipe. Using the equivalent
length concept calculate the total pressure drop in this pipeline system for a
gas flow rate of 80 MMSCFD. Inlet pressure = 1000 psia, gas gravity = 0.6,

D1

L1 LEBC LECD

A B C D

Figure 7.8 Equivalent length of series piping.

Next Page
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viscosity = 0.000008 lb/(ft · s), and flowing temperature = 60◦F. Assume the
compressibility factor = 0.95. Use the general flow equation with a Darcy
friction factor = 0.02. Base temperature = 60◦F and base pressure =
14.7 psia. Compare results calculating individual pressure drops in the three
pipe sections.

Solution Using the base diameter D1 as the diameter of the first section
of NPS 16 pipe the equivalent length of the NPS 14 pipe section is from
Eq. (7.81):

Le = 20

(
15.5
13.5

)5

= 39.9 mi

Similarly, the equivalent length of NPS 12 is

Le = 20

(
15.5

12.25

)5

= 64.86 mi

Therefore, the given series pipeline system can be replaced with a single NPS
16 pipe of length

20.00 + 39.90 + 64.86 = 124.76 mi

Using the general flow equation (7.42), substituting given values we get

80 × 106 = 77.54
1√
0.02

520
14.7

(
10002 − P2

2

0.6 × 520 × 124.76 × 0.95

)0.5

15.52.5

Transposing and solving for P2, we get

P2 = 544.79 psia

7.5 Pipes in Parallel

Many times pipelines are installed in parallel. Such installations are
necessary sometimes to reduce pressure drop in a bottleneck section
due to pressure limitations or for expansion of an existing pipeline with-
out adding expensive compression equipment. A typical parallel piping
system is illustrated in Fig. 7.9.

Gas pipelines in parallel are configured such that the multiple pipes
are connected together so that the gas flow splits into the multiple pipes
at the beginning and the separate flow streams subsequently rejoin

A B E F

C

D Figure 7.9 Parallel piping.

Previous Page
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downstream into another single pipe as shown in Fig. 7.9. In this figure
we assume that the parallel piping system is in the horizontal plane
with no change in pipe elevations. Gas flows through a single pipe AB,
and at the junction B the flow splits into two pipe branches BCE and
BDE. At the downstream end at junction E, the flows rejoin to the initial
flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, two main principles of parallel piping must be
followed. These are flow conservation at any junction point and common
pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE. Thus

Q = QBCE + QBDE (7.82)

where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = incoming flow at junction B

The other requirement in parallel pipes concerns the pressure drop
in each branch piping. Based on this, the pressure drop due to friction
in branch BCE must exactly equal that in branch BDE. This is because
both branches have a common starting point (B) and a common ending
point (E). Since the pressure at each of these two points is a unique
value, we can conclude that the pressure drop in branch pipe BCE and
that in branch pipe BDE are both equal to PB − PE where PB and PE
represent the pressure at the junction points B and E, respectively.

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 7.9, if pipe AB were NPS 14 and branches BCE and BDE were
NPS 10 and NPS 12, respectively, we can find some equivalent diam-
eter pipe of the same length as one of the branches that will have the
same pressure drop between points B and C as the two branches. An
approximate equivalent diameter can be calculated using the general
flow equation.

The pressure loss in branch BCE which is NPS 10 can be calculated as

PB
2 − PE

2 = K1L1 Q1
2

D1
5 (7.83)

where the term K (resistance) depends on gas gravity, compressibil-
ity factor, flowing temperature, base temperature, base pressure, and
friction factor. PB and PE are the pressures at the junctions B and E,
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respectively. The subscript 1 is used for branch BCE and subscript 2 for
branch BDE.

Similarly, we have for branch BDE,

PB
2 − PE

2 = K2L2 Q2
2

D2
5 (7.84)

Suppose we replace the two branches BCE and BDE with a single piece
of pipe of diameter De and length Le between B and E. For hydraulic
equivalence, the pressure drop in the equivalent diameter pipe must
equal the pressure drop in either branch BCE or BDE from Eq. (7.84).
Therefore,

PB
2 − PE

2 = Ke Le Q2

De
5 (7.85)

where Ke represents the resistance coefficient for the equivalent diam-
eter pipe of length Le flowing the full volume Q = QBCE + QBDE. We can
also choose Le = L1, and Eq. (7.85) then reduces to

PB
2 − PE

2 = Ke L1 Q2

De
5 (7.86)

From Eqs. (7.83) through (7.85), we have

K1L1 Q1
2

D1
5 = K2L2 Q2

2

D2
5 = Ke Le Q2

De
5 (7.87)

Also the flow conservation equation (7.82) can be written as

Q = Q1 + Q2 (7.88)

We can solve Eqs. (7.87) and (7.88) for Q1, Q2, and De in terms of all
other known quantities:

(
Q1

Q2

)2

= K2

K1

(
D1

D2

)5 L2

L1

Q1 = Q2

√
K2

K1

(
D1

D2

)5 L2

L1
(7.89)

Q1 = const1 (Q2) (7.90)
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where

const1 =
√

K2

K1

(
D1

D2

)5 L2

L1

Substituting the value of Q1 from Eq. (7.90) into Eq. (7.88) we get

Q2 = Q
1 + const1

(7.91)

and

Q1 = const1Q
1 + const1

(7.92)

Next from Eq. (7.86) we calculate De as follows:

(
De

D1

)5

= Ke

K1

Le

L1

(
Q
Q1

)2

(7.93)

Substituting the value of Q1 in Eq. (7.93) using Le = L1, we get

De = D1

[
Ke

K1

(
1 + const1

const1

)2
]1/5

(7.94)

where

const1 =
√

K2

K1

(
D1

D2

)5 L2

L1
(7.95)

and K1, K2, and Ke are parameters that depend on the gas gravity, com-
pressibility factor, flowing temperature, base temperature, base pres-
sure, and friction factor. We will illustrate this by means of an example.

Example 7.26 The parallel piping system shown in Fig. 7.9 is to be designed
for a flow rate of 100 MMSCFD.

AB is 10 mi long and is NPS 16 (0.250-in wall thickness)

BCE is 20 mi long and is NPS 14 (0.250-in wall thickness)

BDE is 15 mi long and is NPS 12 (0.250-in wall thickness)

EF is 20 mi long and is NPS 16 (0.250-in wall thickness)

If the gas gravity is 0.6, calculate the outlet pressure and flow rate in the
two parallel pipes. Other given values are inlet pressure at A = 1000 psia,
flowing temperature = 60◦F, base temperature = 60◦F, base pressure =
14.7 psia, compressibility factor Z = 0.90, and friction factor f = 0.02.
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Solution Using Eq. (7.94) we calculate the equivalent diameter and the flow
rates Q1 and Q2 in the branches:

const1 =
√

1

(
13.5

12.25

)5 15
20

= 1.1041 from Eq. (7.95)

Using Eq. (7.91),

Q2 = 100
1 + 1.1041

= 47.53 MMSCFD

Q1 = 100 − 47.53 = 52.47 MMSCFD

Flow rate in NPS 14 branch = 52.47 MMSCFD

Flow rate in NPS 12 branch = 47.53 MMSCFD

The equivalent diameter De is calculated from Eq. (7.94):

De = 13.5

[
1 ×
(

1 + 1.1041
1.1041

)2
]1/5

= 17.47 in

Therefore, De is NPS 18, 0.265-in wall thickness.
We now have the pipeline reduced to three pipes in series: 10 mi of NPS 16,

20 mi of NPS 18, and 20 mi of NPS 16. The middle section will be converted
to an equivalent length of NPS 16 pipe using the theory of pipes in series.
From Eq. (7.81), the equivalent length of midsection in terms of NPS 16 is

Le = 20

(
15.5
17.47

)5

= 11.0 mi of NPS 16

Therefore, we now have a single NPS 16 pipe of equivalent length

10 + 11 + 20 = 41 mi

Since the friction factor f = 0.02, we get a transmission factor

F = 2√
0.02

= 14.14

Using the general flow equation (7.42) we get

100 × 106 = 38.77 × 14.14
520
14.7

(
10002 − P2

2

0.6 × 520 × 41 × 0.9

)0.5

× (15.5)2.5

Solving for P2 we get the outlet pressure at F as

P2 = 811.06 psia

The pressures at B and D may now be calculated considering sections AB
and DF separately as follows. For AB, applying the general flow equation,
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we get

100 × 106 = 38.77 × 14.14
520
14.7

(
10002 − PB

2

0.6 × 520 × 10 × 0.9

)0.5

× (15.5)2.5

Solving for PB we get

PB = 958.92 psia

Similarly considering section EF, we get

100 × 106 = 38.77 × 14.14
520
14.7

(
PE

2 − 811.062

0.6 × 520 × 20 × 0.9

)0.5

× (15.5)2.5

Solving for PE we get

PE = 904.86 psia

Therefore the pressures and flow rates are

PA = 1000 psia Q = 100 MMSCFD

PB = 958.92 psia QBCE = 52.47 MMSCFD

PE = 904.86 psia QBDE = 47.53 MMSCFD

PF = 811.06 psia

Example 7.27 A DN 500 (10-mm wall thickness) pipeline is 50 km long. Gas
flows at 6.0 Mm3/day at 20◦C. If the inlet pressure is 8 MPa, what is the
delivery pressure, using the Colebrook-White equation? Pipe roughness =
0.0152 mm. If the entire line is looped with a DN 400 (10-mm wall thickness)
pipeline, estimate the delivery pressure at an increased flow of 10 Mm3/day.
Calculate the line pack volume in both cases. Gas gravity = 0.65, viscosity
= 0.000119 P, compressibility factor Z = 0.9, base temperature = 15◦C, and
base pressure = 101 kPa.

Solution

D = 500 − 2 × 10 = 480 mm

Q = 6.0 × 106 m3/day

Tf = 20 + 273 = 293 K

P1 = 8000 kPa

The Reynolds number, using Eq. (7.41b) is

Re = 0.5134
101
288

0.65 × 6 × 106

0.000119 × 480
= 12.293 × 106

From the Colebrook-White equation (7.66),

F = −4 log10

(
0.0152

3.7 × 480
+ 1.255F

12.293 × 106

)
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Solving by successive iteration, we get

F = 19.71

Using the general flow equation,

6 × 106 = (5.7473 × 10−4) × 19.71
273 + 15

101

(
80002 − P2

2

0.65 × 293 × 50 × 0.9

)0.5

× (480)2.5

Solving for P2 we get

P2 = 7316 kPa = 7.32 MPa

If the entire line is looped with a DN 400 pipeline, the equivalent diameter,
according to Eq. (7.94), is

const1 =
√

1 ×
(

480
380

)5

(1) = 1.7933

De = 480

[
1 ×
(

1 + 1.7933
1.7933

)2
]1/5

= 573.09 mm

Now we have a single 573.09-mm-diameter pipeline flowing at 10 Mm3/day.
Next we determine the Reynolds number:

Re = 0.5134 × 10 × 106 × 0.65 × 101
573.09 × 0.000119 × (15 + 273)

= 17.16 × 106

From the Colebrook-White equation (7.66),

F = −4 log10

(
0.0152

3.7 × 573.09
+ 1.255F

17.16 × 106

)

Solving, F = 20.25. Using the general flow equation (7.55),

10 × 106 = 5.7473 × 10−4 × 20.25
273 + 15

101

(
80002 − P2

2

0.65 × 293 × 50 × 0.9

)0.5

× (573.09)2.5

Solving for P2, we get

P2 = 7.24 MPa

Example 7.28 A natural gas distribution system (NPS 16, 0.250-in wall
thickness) is described in Fig. 7.10. The inlet flow rate is 75 MMSCFD. The
plant at Davis must be supplied with 20 MMSCFD at a minimum pressure
of 500 psig. Calculate the inlet pressure required at Harvard.
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75 MMSCFD 20 MMSCFD

Harvard
Davis

500 psig

10 20 5 8 5 7
12.0 18.0 22.0 35.0 50.0 65.0 80.0

MMSCFD
 Milepost 0.0

Figure 7.10 Harvard to Davis distribution pipeline.

Use the AGA equation. Assume compressibility factor = 0.95, gas gravity =
0.6, viscosity = 8×10−6 lb/(ft · s), flowing temperature = 70◦F, pipe roughness
= 700 µin, base temperature = 60◦F, and base pressure = 14.7 psia.

Solution For each section of piping such as Harvard to A, AB, etc., we must
calculate the pressure drop due to friction at the correct flow rates and then
determine the total pressure drop for the entire pipeline.

Using the AGA turbulent equation (7.69), we get

Transmission factor F = 4 log10

(
3.7 × 15.5

0.0007

)
= 19.65

Using the general flow equation, for the last milepost 65 to milepost 80,
we get

20 × 106 = 38.77 × 19.65
520
14.7

[
PF

2 − 514.72

0.6 × 530 × 15 × 0.95

]0.5

× (15.5)2.5

Solving for pressure at F,

PF = 517.40 psia

Next we will use this pressure PF to calculate the upstream pressure PE
from the 15-mi section of pipe EF flowing 27 MMSCFD.

27 × 106 = 38.77 × 19.65
520
14.7

(
PE

2 − 517.42

4531.5

)0.5

× (15.5)2.5

Solving for pressure at E,

PE = 522.29 psia

Repeating the process we get the pressures at D, C, etc., as follows,

PD = 529.08 psia

PC = 538.14 psia

PB = 541.64 psia

PA = 552.41 psia

And at Harvard, P1 = 580.12 psia.

Inlet pressure required at Harvard = 580.12 psia
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7.6 Looping Pipelines

From Sec. 7.5, it is clear that by installing a parallel pipeline on an
existing pipeline the pressure drop can be reduced for a particular flow
rate. Alternatively, if we keep the inlet and outlet pressures the same,
we can realize a higher flow rate. The installation of parallel pipes in
certain segments of a pipeline is also referred to as looping. Figure 7.11
shows a 50-mi-long NPS 20, (0.500-in wall thickness) pipeline trans-
porting 200 MMSCFD.

At an inlet pressure of 1000 psig, the delivery pressure is 818 psig,
using the AGA equation. If the flow rate is increased to 250 MMSCFD,
the delivery pressure drops to 696 psig. If we need to keep the delivery
pressure the same as before, we must either increase the inlet pressure
from 1000 to 1089 psig or install a loop in the pipeline as shown by the
dashed line in Fig. 7.10. If we are already at the maximum allowable
operating pressure (MAOP) of the pipeline, we cannot increase the inlet
pressure; therefore to keep the delivery pressure at 818 psig starting
at an inlet pressure of a 1000 psig at 250 MMSCFD, we must install a
loop of length x and diameter D. If we choose the loop to be the same
diameter as the main pipe, NPS 20 (0.500-in wall thickness), we can cal-
culate the looping length x by equating the pressure drop (1000−818 =
182 psig) in the unlooped pipe case to the looped pipe case. We will
use the equivalent diameter concept to determine the miles of loop
needed.

The equivalent diameter De from Eq. (7.94) is

De = D1

[
Ke

K1

(
1 + const1

const1

)2
]1/5

(7.96)

x miles of diameter D

1000 psig

200 MMSCFD

A B C DNPS 20

50 mi

818 psig

Figure 7.11 Looping a pipeline.
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where

const1 =
√

K2

K1

(
D1

D2

)5 L2

L1
(7.97)

Example 7.29 A DN 500 (10-mm wall thickness) pipeline transports 5 Mm3/
day of natural gas (gravity = 0.60) from Tapas to Benito, a distance of
200 km. Average flowing temperature is 15◦C, base temperature is 15◦C,
and base pressure is 101 kPa. Assume Z = 0.90. If inlet pressure is 9000 kPa,
what is the delivery pressure at Benito? Use the Panhandle A equation with
an efficiency of 0.9. If the first 100 km is looped with the same pipe size, what
is the revised pressure at Benito?

Solution Using the Panhandle A equation (7.72a), we get

5 × 106 = (4.5965 × 10−3) × 0.9 ×
(

288
101

)1.0788

×
[

90002 − P2
2(

0.6
)0.8539 × 288 × 200 × 0.9

]0.5394

× (480)2.6182

Solving for the outlet pressure P2 we get

P2 = 7319 kPa

If the first 100 km is looped, the equivalent diameter from Eq. (7.94) is

const1 =
√

(1)

(
1
1

)5 1
1

= 1

De = 480

[
1 ×
(

1 + 1
1

)2
]1/5

= 1.3195 × 480 = 633.36 mm

Now we have 100 km of 633.36-mm inside diameter pipe in series with
100 km of DN 500 pipe. Reducing this to the same diameter (DN 500), we get
the equivalent length as

Le = 100 + 100

(
480

633.36

)5

= 125.0 km

Therefore the system reduces to one 125-km-long section of DN 500 pipe.
Applying the Panhandle A equation as before we get,

5 × 106 = (4.5965 × 10−3) × 0.9 ×
(

288
101

)1.0788

×
[

90002 − P2
2(

0.6
)0.8539 × 288 × 125 × 0.9

]0.5394

× (480)2.6182
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Solving for P2 we get

P2 = 7991 kPa

7.7 Gas Compressors

Compressors are required to provide the pressure in gas pipelines to
transport a given volume of gas from source to destination. During the
process of compressing the gas from inlet conditions to the necessary
pressure at the discharge side, the temperature of the gas increases
with pressure. Sometimes the discharge temperature may increase to
levels beyond the maximum that the pipeline coating can withstand.
Therefore, cooling of the compressed gas will be necessary to protect
the pipeline coating. Cooling also has a beneficial effect on the gas
transported, since cooler gas results in a lower pressure drop at a
given flow rate. This in turn will reduce the compressor horsepower
required.

Compressors are classified as positive displacement (PD) compres-
sors or centrifugal compressors. PD compressors may be reciprocat-
ing or rotary compressors. Generally centrifugal compressors are more
commonly used in natural gas transportation due to their flexibility
and reduced operating costs. The drivers for the compressors may be
internal combustion engines, electric motors, steam turbines, or gas
turbines.

The work done to compress a given quantity of gas from a suction
pressure P1 to the discharge pressure P2, based upon isothermal com-
pression or adiabatic compression can be calculated as demonstrated
in Sec. 7.7.1.

7.7.1 Isothermal compression

The work done in isothermal compression of 1 lb of natural gas is
calculated using the following equation:

Wi = 53.28
G

T1 loge
P2

P1
(7.98)

where Wi = isothermal work done, (ft · lb)/lb of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, ◦R
P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia

loge = natural logarithm to base e(e = 2.718 . . .)
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The ratio P2/P1 is called the compression ratio.
In SI units the isothermal compression equation is as follows:

Wi = 159.29
G

T1 loge
P2

P1
(7.98a)

where Wi = isothermal work done, J/kg of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, K
P1 = suction pressure of gas, kPa
P2 = discharge pressure of gas, kPa

loge = natural logarithm to base e(e = 2.718 . . .)

7.7.2 Adiabatic compression

In the adiabatic compression process the pressure and volume of gas
follow the adiabatic equation PVγ = constant where γ is the ratio of the
specific heats Cp and Cv, such that

γ = Cp

Cv
(7.99)

The work done in adiabatic compression of 1 lb of natural gas is given
by the following equation:

Wa = 53.28
G

T1
γ

γ − 1

[(
P2

P1

)(γ−1)/γ

− 1

]
(7.100)

where Wa = adiabatic work done, (ft · lb)/lb of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, ◦R
γ = ratio of specific heats of gas, dimensionless

P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia

In SI units the adiabatic compression equation is as follows:

Wa = 159.29
G

T1
γ

γ − 1

[(
P2

P1

)(γ−1)/γ

− 1

]
(7.100a)
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where Wa = adiabatic work done, J/kg of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, K
γ = ratio of specific heats of gas, dimensionless

P1 = suction pressure of gas, kPa
P2 = discharge pressure of gas, kPa

Example 7.30 A compressor compresses natural gas (G = 0.6) from the
suction temperature of 60◦F and 800 to 1400 psia discharge. If isothermal
compression is assumed, what is the work done by the compressor?

Solution Using Eq. (7.98) for isothermal compression, the work done is

Wi = 53.28
0.6

(520) × loge
1400
800

= 25,841 (ft · lb)/lb

Example 7.31 In Example 7.30, if the compression were adiabatic (γ = 1.29),
calculate the work done per pound of gas.

Solution From Eq. (7.100) for adiabatic compression, the work done is

Wa = 53.28
0.6

×520× 1.29
1.29 − 1

[(
1400
800

)(1.29−1)/1.29

− 1

]
= 27,537 (ft · lb)/lb

It can be seen by comparing results with those of Example 7.31 that the
adiabatic compressor requires more work than an isothermal compressor.

7.7.3 Discharge temperature of
compressed gas

When gas is compressed adiabatically according to the adiabatic process
PVγ = constant, the discharge temperature of the gas can be calculated
as follows:

T2

T1
=
(

P2

P1

)(γ−1)/γ

(7.101)

where T1 = suction temperature of gas, ◦R
T2 = discharge temperature of gas, ◦R
P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia
γ = ratio of specific heats of gas, dimensionless

Example 7.32 What is the final temperature of gas in Example 7.31 for
adiabatic compression?
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Solution We get the discharge temperature by using Eq. (7.101):

T2 = 520 ×
(

1400
800

)0.29/1.29

= 589.7◦R or 129.7◦F

7.7.4 Compressor horsepower

Compressor head measured in (ft · lb)/lb of gas is the energy added to
the gas by the compressor. In SI units it is referred to in J/kg. The
horsepower necessary for compression is calculated from

HP = mass flow of gas × head
efficiency

It is common practice to refer to compression HP per MMSCFD of gas.
Using the perfect gas equation modified by the compressibility factor
[Eq. (7.11)], we can state that the compression HP is

HP = 0.0857
γ

γ − 1
T1

Z1 + Z2

2
1
ηa

[(
P2

P1

)(γ−1)/γ

− 1

]
(7.102)

where HP = compression HP per MMSCFD
γ = ratio of specific heats of gas, dimensionless

T1 = suction temperature of gas, ◦R
P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia
Z1 = compressibility of gas at suction conditions,

dimensionless
Z2 = compressibility of gas at discharge conditions,

dimensionless
ηa = compressor adiabatic (isentropic) efficiency, decimal

value

In SI units, the power equation is as follows:

Power = 4.0639
γ

γ − 1
T1

Z1 + Z2

2
1
ηa

[(
P2

P1

)(γ−1)/γ

− 1

]
(7.102a)
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where Power = compression power, kW per Mm3/day
γ = ratio of specific heats of gas, dimensionless

T1 = suction temperature of gas, K
P1 = suction pressure of gas, kPa
P2 = discharge pressure of gas, kPa
Z1 = compressibility of gas at suction conditions,

dimensionless
Z2 = compressibility of gas at discharge conditions,

dimensionless
ηa = compressor adiabatic (isentropic) efficiency, decimal

value

The adiabatic efficiency ηa is usually between 0.75 and 0.85. We can
incorporate a mechanical efficiency ηm of the driver unit to calculate
the brake horsepower (BHP) of the driver as follows:

BHP = HP
ηm

(7.103)

The driver efficiency ηm may range from 0.95 to 0.98. The adiabatic
efficiency ηa may be expressed in terms of the suction and discharge
pressures and temperatures and the specific heat ratio g as follows:

ηa = T1

T2 − T1

[(
P2

P1

)(γ−1)/γ

− 1

]
(7.104)

All symbols in Eq. (7.104) are as defined earlier.
It can be seen from the preceding that the efficiency term ηa modifies

the discharge temperature T2 given by Eq. (7.101).

Example 7.33 Calculate the compressor HP required in Example 7.32 if
Z1 = 1.0, Z2 = 0.85, and ηa = 0.8. What is the BHP if the mechanical efficiency
of the driver is 0.95?

Solution From Eq. (7.102), the HP required per MMSCFD is

HP = 0.0857
1.29
0.29

(520)
1 + 0.85

2
1

0.8

[(
1400
800

)0.29/1.29

− 1

]

= 30.73 per MMSCFD

Using Eq. (7.103)

BHP required = 30.73
0.95

= 32.35 HP per MMSCFD
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7.8 Pipe Stress Analysis

The pipe used to transport natural gas must be strong enough to with-
stand the internal pressure necessary to move the gas at the desired
flow rate. The wall thickness T necessary to safely withstand an inter-
nal pressure of P depends upon the pipe diameter D and yield strength
of the pipe material. It is generally calculated from Barlow’s equation as

Sh = PD
2T

(7.105)

where Sh represents the hoop stress in the circumferential direction in
the pipe material. Another stress, termed the axial stress, or longitudi-
nal stress, acts perpendicular to the cross section of the pipe. The axial
stress is one-half the magnitude of the hoop stress. Hence the governing
stress is the hoop stress from Eq. (7.105).

Applying a safety factor and including the yield strength of the pipe
material, Barlow’s equation is modified for use in gas pipeline cal-
culation as follows:

P = 2t × S× E × F × T
D

(7.106)

where P = internal design pressure, psig
D = pipe outside diameter, in
t = pipe wall thickness, in
S= specified minimum yield strength (SMYS) of pipe material,

psig
E = seam joint factor, 1.0 for seamless and submerged arc

welded (SAW) pipes (see Table 7.4 for other joint types)
F = design factor, usually between 0.4 and 0.72 for natural gas

pipelines
T = temperature derating factor, 1.00 for temperature below

250◦F (121.1◦C)

The design factor F in Eq. (7.106) depends upon the type of construc-
tion. There are four construction types: A, B, C, and D. Corresponding
to these, the design factors are as follows:

F =




0.72 for type A
0.60 for type B
0.50 for type C
0.40 for type D

The construction type depends upon the population density and cor-
responds to class 1, 2, 3, and 4 as defined by DOT standards, Code of
Federal Regulations, Title 49, Part 192.
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TABLE 7.4 Pipe Design Joint Factors

Pipe specification Pipe category Joint factor E

ASTM A53 Seamless 1.00
Electric resistance welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

ASTM A106 Seamless 1.00
ASTM A134 Electric fusion arc welded 0.80
ASTM A135 Electric resistance welded 1.00
ASTM A139 Electric fusion welded 0.80
ASTM A211 Spiral welded pipe 0.80
ASTM A333 Seamless 1.00
ASTM A333 Welded 1.00
ASTM A381 Double submerged arc welded 1.00
ASTM A671 Electric fusion welded 1.00
ASTM A672 Electric fusion welded 1.00
ASTM A691 Electric fusion welded 1.00
API 5L Seamless 1.00

Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

API 5LX Seamless 1.00
Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00

API 5LS Electric resistance welded 1.00
Submerged arc welded 1.00

The temperature derating factor T depends upon the operating tem-
perature of the pipeline. It is equal to 1.00 as long as the temperature
does not exceed 250◦F (121.1◦C). When the operation temperature ex-
ceeds 250◦F, the value of T is less than 1.00. ASME B31.8 Code for
Pressure Piping lists the temperature derating factors. See Table 7.5.

Equation (7.106) for calculating the internal design pressure is found
in the Code of Federal Regulations, Title 49, Part 192, published by the

TABLE 7.5 Temperature Derating Factors

Temperature
◦F ◦C Derating factor T

250 or less 121 or less 1.000
300 149 0.967
350 177 0.033
400 204 0.900
450 232 0.867
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U.S. Department of Transportation (DOT). You will also find reference
to this equation in ASME standard B31.8 for design and transportation
of natural gas pipelines.

In SI units, the internal design pressure equation is the same as
shown in Eq. (7.106), except the pipe diameter and wall thickness are
in millimeters. The SMYS of pipe material and the internal design pres-
sures are both expressed in kilopascals.

Natural gas pipelines are constructed of steel pipe conforming to
American Petroleum Institute (API) standard 5L and 5LX specifica-
tions. Some piping may also be constructed of steel pipe conforming
to ASTM and ANSI standards. High-strength steel pipe may be desig-
nated as API 5LX-52, 5LX-60, or 5LX-80. The last two digits of the pipe
specification denote the SMYS of the pipe material. Thus 5LX-52 pipe
has a yield strength of 52,000 psi. The pipe material is also referred to
as the grade of pipe. Thus grade 52 means X-52 pipe. Refer to Table 7.6
for various commonly used grades of pipe.

A useful formula in calculating pipe costs is the one for determining
the weight per foot of steel pipe. Pipe vendors use this handy formula
for quickly calculating the tonnage of pipe needed for a particular ap-
plication. In USCS units pipe weight is referred to as lb/ft and can be
calculated from a given diameter and wall thickness as follows:

w = 10.68 × t × (D − t) (7.107)

where D = pipe outside diameter, in
t = pipe wall thickness, in

w = pipe weight, lb/ft

The constant 10.68 includes the density of steel.
In SI units, the following equation can be used to calculate the pipe

weight in kg/m:

w = 0.0246 × t × (D − t) (7.107a)

TABLE 7.6 Grades of Pipes

Pipe sizes Specified minimum yield
API 5LX grade strength (SMYS), psig

X42 42,000
X46 46,000
X52 52,000
X56 56,000
X60 60,000
X65 65,000
X70 70,000
X80 80,000
X90 90,000
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where D = pipe outside diameter, mm
t = pipe wall thickness, mm

w = pipe weight, kg/m

Example 7.34 Calculate the allowable internal design pressure for a 16-inch
(0.250-in wall thickness) pipeline constructed of API 5LX-52 steel. What wall
thickness will be required if an internal working pressure of 1400 psi is re-
quired? Use class 1 construction with design factor F = 0.72 and for operating
temperatures below 200◦F.

Solution Using Eq. (7.106),

P = 2 × 0.250 × 52000 × 0.72 × 1.0 × 1.0
16

= 1170 psi

For an internal working pressure of 1400 psi, the wall thickness required is

1400 = 2 × t × 52,000 × 0.72 × 1.0
16

Solving for t, we get

Wall thickness t = 0.299 in

The nearest standard pipe wall thickness is 0.312 in.

Example 7.35 A DN 1000 natural gas pipeline is 1000 km long and has an
operating pressure of 9.7 MPa. Compare the cost of using X-70 or X-80 steel
pipe for this application. The material cost of the two grades of steel are as
follows:

Pipe grade Material cost, $/ton

X-70 800
X-80 1000

Use a design factor of 0.72 and temperature deration factor of 1.00.

Solution We will first determine the wall thickness of pipe required to with-
stand the operating pressure of 9.7 MPa. Using Eq. (7.106), the pipe wall
thickness required for X-70 pipe (70,000 psi = 482 MPa) is

t = 9.7 × 1000
2 × 482 × 1.0 × 0.72 × 1.0

= 13.98 mm, say 14 mm

Similarly, the pipe wall thickness required for X-80 pipe (80,000 psi =
552 MPa) is

t = 9.7 × 1000
2 × 552 × 1.0 × 0.72 × 1.0

= 12.2 mm, say 13 mm

Pipe weight in kg/m will be calculated using Eq. (7.107a). For X-70 pipe,

Weight per meter = 0.0246 × 14 × (1000 − 14) = 339.58 kg/m
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Therefore the total cost of a 1000-km pipeline at $800 per ton of X-70 pipe is

Total cost = 800 × 339.58 × 1000 × 1000
1000

= $271.66 million

Similarly, the pipe weight in kg/m for X-80 pipe is

Weight per meter = 0.0246 × 13 × (1000 − 13) = 315.64 kg/m

Therefore, the total cost of a 1000-km pipeline at $1000 per ton of X-80
pipe is

Total cost = 1000 × 315.64 × 1000 × 1000
1000

= $315.64 million

Therefore the X-80 pipe will cost more than the X-70 pipe. The difference in
cost is $315.64 − $271.66 = $43.98 million.

7.9 Pipeline Economics

In pipeline economics we are interested in determining the most eco-
nomical pipe size and material to be used for transporting a given vol-
ume of a gas from a source to a destination. The criterion would be to
minimize the capital investment as well as annual operating and main-
tenance cost. In addition to selecting the pipe itself to handle the flow
rate we must also evaluate the optimum size of compression equipment
required. By installing a smaller-diameter pipe we may reduce the pipe
material cost and installation cost. However, the smaller pipe size would
result in larger pressure drop due to friction and hence higher horse-
power, which would require larger more costly compression equipment.
On the other hand selecting a larger pipe size would increase the capital
cost of the pipeline itself but would reduce the compression horsepower
required and hence the capital cost of compression equipment. Larger
compressors and drivers will also result in increased annual operating
and maintenance cost. Therefore, we need to determine the optimum
pipe size and compression equipment required based on some approach
that will minimize both capital investment as well as annual operat-
ing costs. The least present value approach, which considers the total
capital cost and the annual operating costs over the life of the pipeline,
time value of money, borrowing cost, and income tax rate, seems to be
an appropriate method in this regard.

Example 7.36 A 250-mi-long is transmission pipeline is used to transport
200 MMSCFD of natural gas [specific gravity = 0.650, viscosity = 0.000008
lb/(ft · s)] from a gathering plant at Bloomfield to a compressor station at
Topock. The flowing temperature is 60◦F. Use Z = 0.89 and γ = 1.29.
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Determine the optimum pipe size for this application based on the least ini-
tial cost. Consider three different pipe sizes: NPS 20, NPS 24, and NPS 30.
Use the Colebrook-White equation or the Moody diagram for friction factor
calculations. Assume the pipeline is on fairly flat terrain. Use 85 percent
adiabatic efficiency and 95 percent mechanical efficiency for centrifugal com-
pression at Bloomfield. Use $700 per ton for pipe material cost and $1500
per HP for compressor station installation cost. Labor costs for installing the
three pipe sizes are $100, $120, and $140 per ft. The pipeline will be designed
for an operating pressure of 1400 psig. Pipe absolute roughness e = 700 µin.

Solution Based on a 1400 psi design pressure, the wall thickness of NPS
20 pipe will be calculated first. Assuming API 5LX-52 pipe, the wall thickness
required for a 1400-psi operating pressure is calculated from Eq. (7.106),
assuming design factor F = 0.72.

Wall thickness t = 1400 × 20
2 × 52,000 × 0.72

= 0.374 in

The nearest standard size is 0.375 in. Therefore, the NPS 20 pipe will have
an inside diameter of

D = 20 − 2 × 0.375 = 19.25 in

Next we calculate the Reynolds number using Eq. (7.41):

Re = 0.0004778
14.7
520

× 0.65 × 200 × 106

0.000008 × 19.25
= 1.1402 × 107

Using the Colebrook equation (7.66), the transmission factor is

F = −4 log10

(
0.0007

3.7 × 19.25
+ 1.255F

1.1402 × 107

)

Solving by iteration, F = 19.68.
The pressure drop, using the general flow equation (7.42), is

200 × 106 = 38.77 × 19.68
520
14.7

(
1414.72 − Pdel

2

0.65 × 520 × 250 × 0.89

)0.5

× (19.25)2.5

Solving for Pdel, the delivery pressure at Topock,

Pdel = 662.85 psia

We will assume a compression ratio of 1.50. Therefore,

P2

P1
= 1414.7

P1
= 1.5

and

P1 = 943.13 psia
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The NPS 20 pipeline will require one compressor station discharging at
1400 psig. The compressor HP required from Eq. (7.102) is

BHP = 0.0857 × 200
0.95

1.29
0.29

(520)
1 + 0.89

2
1

0.85

[(
1414.7
943.13

)0.29/1.29

− 1

]

BHP = 4428, say 5000 HP installed.

Capital cost of compressor station = $1500 × 5000 = $7.5 million

Next the pipe material cost can be determined using Eq. (7.107):

$700 × 10.68 × 0.375(20 − 0.375) × 5280 × 250
2000

= $35.62 million

The labor cost for installing 250 mi of NPS 20 pipe is

$100 × 5280 × 250 = $132 million

Therefore the total capital cost of the NPS 20 pipeline system is

$7.5 + $35.62 + $132.0 = $175.12 million

Similarly, we will repeat calculations for the NPS 24 and NPS 30 systems.
For the NPS 24 system:

Wall thickness t = 1400 × 24
2 × 52,000 × 0.72

= 0.449 in, say 0.500 in

D = 24 − 2 × 0.5 = 23.00 in

R = 9.543 × 106 and F = 19.86

The compressor HP = 5000 as before.

Capital cost of compressor station = $1500 × 5000 = $7.5 million

The pipe material cost is

$700 × 10.68 × 0.500 (24 − 0.500) × 5280 × 250
2000

= $57.98 million

The labor cost for installing 250 mi of NPS 24 pipe is

$120 × 5280 × 250 = $158.4 million

Therefore the total capital cost of the NPS 24 pipeline system is

$7.5 + $57.98 + $158.4 = $223.88 million

Finally, we repeat the calculations for the NPS 30 system.

Wall thickness t = 1400 × 30
2 × 52,000 × 0.72

= 0.561 in, say 0.600 in

D = 30 − 2 × 0.6 = 28.800 in

R = 7.621 × 106 and F = 20.02
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The compressor HP = 5000 as before.

Capital cost of compressor station = $1500 × 5000 = $7.5 million

The pipe material cost is

$700 × 10.68 × 0.600 (30 − 0.600) × 5280 × 250
2000

= $87.04 million

The labor cost for installing 250 mi of NPS 30 pipe is

$140 × 5280 × 250 = $184.8 million

Therefore the total capital cost of the NPS 30 pipeline system is

$7.5 + $87.04 + $184.8 = $279.34 million

The summary of the total capital cost is

Pipe size Total cost, $ million

NPS 20 175.12
NPS 24 223.88
NPS 30 279.34

From the preceding it appears that NPS 20 is the most economical of the
three pipe sizes since it has the least initial cost.

Example 7.37 A natural gas transmission pipeline is being constructed to
serve a central distribution system in San Jose. The pipeline is 500 km long
and originates at a Santa Fe compressor station (elevation 1200 m). The
pipeline MAOP is limited to 9.5 MPa (gauge). The delivery pressure required
at San Jose is 4.5 MPa. San Jose is at an elevation of 2500 m. During the first
phase of the project, 15 million m3/day of natural gas (specific gravity = 0.60,
viscosity = 0.000119 P) will be transported at a 95 percent availability factor.
What is the most economical pipe size for this project? The pipe material cost
is estimated at $800/ton, and the labor cost for pipe installation is $800 per
mm diameter per km pipe length. The compressor station cost is $2500 per
kilowatt installed. Consider three different pipe sizes, DN 800, DN 1000,
and DN 1200, of API 5LX-65 grade. Use the Colebrook-White equation or
the Moody diagram for friction factor calculations. Use 80 percent adiabatic
efficiency and 98 percent mechanical efficiency for centrifugal compressors at
Santa Fe. Pipe absolute roughness e = 0.02 mm, base temperature = 15◦C,
base pressure = 101 kPa, flowing temperature = 20◦C, and compressibility
factor = 0.9.

Solution Consider DN 800 pipe. The wall thickness required for 9.5 MPa
pressure for X65 (65,000/ 145 = 448 MPa) pipe is

t = 9.5 × 800
2 × 448 × 0.72

= 11.78 mm, use 12 mm
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Weight per meter of pipe = 0.0246 × 12 × (800 − 12)

= 232.62 kg/m

Cost of pipe for 500 km at $800/ton = 800 × 232.62 × 500

= $93.05 million

Installation cost = $800 × 800 × 500

= $320 million

Next we will calculate the pressure and HP required.

Reynolds number Re = 0.5134 × 101
288

× 0.6 × 15 × 106

0.000119 × 776
= 1.755 × 107

The Colebrook-White transmission factor is

F = −4 log

(
0.02

3.7 × 776
+ 1.255F

1.755 × 107

)

Solving by iteration, F = 20.3. The elevation correction factor is

s = 0.0684 × 0.6 × (2500 − 1200)
293 × 0.9

= 0.2023

The equivalent length is

Le = 500 (e0.2023 − 1)
0.2023

= 554.17 km

Using the general flow equation, the pressure at Santa Fe is given by

15×106 = (5.7473×10−4)(20.3)
288

0.101

(
P1

2 − 1.2242 × 4.6012

0.6 × 293 × 554.17 × 0.9

)0.5

7762.5

Solving for P1,

P1 = 9.45 MPa (absolute)

We will assume a compression ratio of 1.5. Therefore,

Suction pressure at Santa Fe = 9.45
1.5

= 6.3 MPa

The power required at Santa Fe is

Power = 15× 4.0639
0.98

× 1.29
0.29

×288× 1 + 0.9
2

1
0.8

[
(1.5)0.29/1.29 − 1

] = 9031 kW

Assume 10,000 kW installed.

Cost of compression station = $2500 × 10,000 = $25 million

Finally the total capital cost of DN 800 pipe is

$93.05 + $320 + $25 = $438.05 million
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Next consider DN 1000 pipe. The wall thickness required for 9.5 MPa
pressure for X65 (65,000/145 = 448 MPa) pipe is

t = 9.5 × 1000
2 × 448 × 0.72

= 14.73 mm, use 15 mm

Weight per meter of pipe = 0.0246 × 15 × (1000 − 15)

= 363.47 kg/m

Cost of pipe for 500 km at $800/ton = 800 × 363.47 × 500

= $145.39 million

Installation cost = $800 × 1000 × 500 = $400 million

Next we will calculate the pressure and HP required.

Reynolds number Re = 0.5134 × 101
288

× 0.6 × 15 × 106

0.000119 × 970
= 1.404 × 107

The Colebrook-White transmission factor is

F = 20.52

Using the general flow equation, the pressure at Santa Fe is given by

15×106 = (5.7473×10−4)(20.52)
288

0.101

(
P1

2 − 1.2242 × 4.6012

0.6 × 293 × 554.17 × 0.9

)0.5

9702.5

Solving for P1,

P1 = 6.8 MPa (absolute)

Compression ratio = 6.8
6.3

= 1.08

The power required at Santa Fe is

Power = 15 × 4.0639
0.98

× 1.29
0.29

× 288 × 1 + 0.9
2

1
0.8

[
(1.08)0.29/1.29 − 1

]
= 1652 kW

Assume 2000 kW installed.

Cost of compression station = $2500 × 2000 = $5 million

Finally, the total capital cost of DN 1000 pipe is

$145.39 + $400 + $5 = $550.39 million

Finally we consider DN 1200 pipe. The wall thickness required for 9.5 MPa
pressure for X65 (65,000/145 = 448 MPa) pipe is

t = 9.5 × 1200
2 × 448 × 0.72

= 17.67 mm, use 18 mm
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Weight per meter of pipe = 0.0246 × 18 × (1200 − 18)

= 523.39 kg/m

Cost of pipe for 500 km at $800/ton = 800 × 523.39 × 500 = $209.36 million

Installation cost = $800 × 1200 × 500 = $480 million

Next we will calculate the pressure and HP required.

Reynolds number Re = 0.5134 ×
(

101
288

)
× 0.6 × 15 × 106

0.000119 × 1164
= 1.17 × 107

The Colebrook-White transmission factor is

F = 20.65

Using the general flow equation, the pressure at Santa Fe is given by

15 × 106 = (5.7473 × 10−4)(20.65)
288

0.101

(
P1

2 − 1.2242 × 4.6012

0.6 × 293 × 554.17 × 0.9

)0.5

×11642.5

Solving for P1,

P1 = 5.83 MPa (absolute)

Since the suction pressure is 6.3 MPa, no compression is needed. Finally the
total capital cost of DN 1200 pipe is

$209.36 + $480 = $689.36 million

Since the total capital cost is least using the DN 800 pipe, this is the most
economical pipe size.
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8
Fuel Gas Distribution

Piping Systems

Introduction

Fuel gas distribution piping systems are used to supply fuel gas for
heating and lighting purposes. The more commonly used fuel gases are
natural gas (NG), liquefied petroleum gas (LPG), and propane. Other
gases include acetylene and butane. In this chapter we will discuss the
more commonly used fuel gas piping systems such as for NG and LPG.
We will look at how a typical fuel gas distribution piping system is sized
based on customer demand. These are low-pressure piping systems. For
a detailed discussion of the transportation of NG and other compressible
gases at high pressures, refer to Chap. 7.

8.1 Codes and Standards

Several design codes and standards regulate the design, manufacture,
and installation of NG and LPG fuel gas systems. The more commonly
used standards are as follows:

ASME Section VIII American Society of Mechanical Engi-
neers—Pressure Vessels Code

ANSI/NFPA 30 American National Standards Institute/
National Fire Protection Association—
Flammable and Combustible Liquids
Code

ANSI Z223.1/NFPA 54 American National Standards Institute/
National Fire Protection Association—
National Fuel Gas Code
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ANSI Z83.3 American National Standards Institute—
The Standard for Gas Utilization Equip-
ment in Large Boilers

ANSI/UL 144 Pressure Regulating Valves for LPG

NFPA 58 National Fire Protection Association—
Standard for the Storage and Handling
of LPG

SBCCI International Fuel Gas Code

8.2 Types of Fuel Gas

Natural gas, LPG, and propane are commonly used fuel gases. LPG
is a mixture of propane and butane. It is generally transported and
stored in liquid form. Other gases may also be used as fuel, but cost and
availability may dictate the use of a specific gas over another. Table 8.1
lists commonly available fuel gases and their properties such as heating
value and density.

Since NG, LPG, and propane are the most common fuel gases, detailed
properties of these fuels are listed in Table 8.2. LPG is the commercial
term for a liquid under pressure that contains varying proportions of
propane (C3H8) and butane (C4H10). It is generally transported and

TABLE 8.1 Physical and Combustion Properties of Fuel Gases

Heating value
Btu/ft3 Btu/lb

Gas name Gross Net Gross Net

Specific
Specific Density, volume,
gravity lb/ft3 ft3/lb

Acetylene 1,498 1,447 21,569 21,837 0.91 0.070 14.4
Blast furnace gas 92 92 1,178 1,178 1.02 0.078 12.8
Butane 3,225 2,977 21,640 19,976 1.95 0.149 6.71
Butylene 3,077 2,876 20,780 19,420 1.94 0.148 6.74
Carbon monoxide 323 323 4,368 4,368 0.97 0.074 13.5
Carbureted gas 550 508 11,440 10,566 0.63 0.048 20.8
Coke oven gas 574 514 17,048 15,266 0.44 0.034 29.7
Sewage gas 690 621 11,316 10,184 0.80 0.062 16.3
Ethane 1,783 1,630 22,198 20,295 1.06 0.060 12.5
Hydrogen 325 275 61,084 51,628 0.07 0.0054 186.9
Methane 1,011 910 23,811 21,433 0.55 0.042 23.8
Natural gas, 1,073 971 20,065 18,158 0.70 0.054 18.4

California, U.S.
Propane 2,572 2,365 21,500 19,770 1.52 0.116 8.61
Propylene 2,332 2,181 20,990 19,630 1.45 0.111 9.02
Water gas 261 239 4,881 4,469 0.71 0.054 18.7

(bituminous)
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TABLE 8.2 Properties of Natural Gas and Propane

Propane Natural gas

Formula C3H8 CH4
Molecular weight 44.097 16.402
Melting point, ◦F −305.84 −3.54
Boiling point, ◦F −44.0 −258.7
Specific gravity of gas (air = 1.00) 1.52 0.60
Specific gravity of liquid 60◦F/60◦F (water = 1.00) 0.588 0.30
Latent heat of vaporization at normal boiling 183.0 245.0
point, Btu/lb

Vapor pressure, lb/in2, gauge at 60◦F (15.6◦C) 92.0
Liquid

lb/gal at 60◦F 4.24 2.51
gal/lb at 60◦F 0.237

Gas
Btu/lb (gross) 21591 23,000
Btu/ft3 at 60◦F and 30 in mercury 2516 1050+/−
Btu/gal at 60◦F 91,547
ft3 at 60◦F, 30 in mercury/gal of liquid 36.39 59
ft3 at 60◦F, 30 in mercury/lb of liquid 8.58 23.6

Air in ft3 required to burn 1 ft3 of gas 23.87 9.53
Flame temperature, ◦F 3,595 3,416
Octane number (iso-octane = 100) 125
Flammability limit in air

Upper 9.5 15.0
Lower 2.87 5.0

stored as a liquid under pressure ranging from 200 to 300 pounds per
square inch (lb/in2 or psi). As a liquid it is approximately half as heavy
as water. When the pressure is reduced, LPG vaporizes to form a gas
with a specific gravity of approximately 1.52 (air = 1.00).

8.3 Gas Properties

Natural gas consists of hydrocarbon gases such as methane, ethane, etc.
Generally a sample of NG will contain a majority (85 to 95 percent) of
methane. The specific gravity of NG relative to air is approximately
0.6 indicating that NG is lighter than air and is about 60 percent
as heavy as air. The physical properties of natural gas are listed in
Table 8.2.

LPG on the other hand, which consists of a mixture of propane and
butane, is treated as a liquid because it is normally stored under pres-
sure in liquid form. Therefore, the specific gravity of LPG is compared
to the density of water and is approximately 0.50. As LPG vaporizes, de-
pending upon the composition, the vapor will be heavier than air since
propane has a gravity of 1.52 (air = 1.00) and butane has a gravity of
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1.95 (air = 1.00). LPG, therefore, settles on the ground as it vaporizes
and may flow along the ground surfaces and potentially be ignited by
a source considerably far from the leakage location. NG, on the other
hand, being lighter than air rises above the ground and disperses into
the surrounding air. When LPG is mixed with air in the right propor-
tions, a flammable mixture is formed. At normal ambient temperature
and pressure, between 2 and 10 percent of LPG vapor in air is the range
for an explosive mixture. Beyond this range the mixture is too weak or
too rich to cause flame propagation. At higher pressures the upper ex-
plosive limit increases. LPG vapor is also an anesthetic and will cause
asphyxiation in large quantities by reducing the amount of available
oxygen. Commercial LPG is generally odorized by the addition of ethyl
mercaptan or dimethyl sulfide. This will enable small leaks to be de-
tected fairly quickly due to the smell resulting from the odorant. As LPG
leaks from storage tanks the resulting vaporization causes a cooling ef-
fect of the surroundings, and hence condensation and even freezing of
water vapor will occur. This may be manifested in the form of ice in the
vicinity of the leak. Because of the rapid vaporization of LPG and the
resulting drop in temperature, LPG contact with human skin must be
avoided as it will result in severe frost burn. Proper eye and hand pro-
tection must be worn when handling and being in the vicinity of LPG
storage vessels and piping systems. The physical properties of LPG are
listed in Table 8.2.

8.4 Fuel Gas System Pressures

Compared to trunk lines carrying natural gas, fuel gas distribution
systems operate at low pressures. A typical pressure in a public utility
main piping is in the range of 25 to 50 psig. The pressure downstream
of the gas meter is as low as 4 to 7 in of water column (WC). This is
equivalent to 0.14 to 0.25 psi. Because we are dealing with low pressures
stated in inches of water column or inches of mercury, a convenient table
such as Table 8.3 may be used to determine the pressure in psi from
inches of water column.

The maximum allowable operating pressure of fuel gas piping inside
a building is regulated by NFPA 54 or other more stringent local city
codes or insurance carrier requirements. Generally, NG piping is lim-
ited to 5 psig. The local codes may allow higher pressures if the entire
fuel gas piping system is of welded construction, piping is enclosed for
protection, and the system is located in well-ventilated areas such that
there will be no accumulation of fuel gas in the event of a leak. Higher
pressures of up to 20 psig are allowed for LPG piping systems provided
piping is run within industrial buildings constructed in accordance with
NFPA 58.
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TABLE 8.3 Pressures in Inches of Water Column, psi, and kPa at 60◦F

Inches Pressure
Water Mercury psi kPa

0.10 0.007 0.0036 0.02
0.20 0.015 0.0072 0.05
0.30 0.022 0.0108 0.07
0.40 0.029 0.0144 0.10
0.50 0.037 0.0180 0.12
0.60 0.044 0.0216 0.15
0.70 0.051 0.0253 0.17
0.80 0.059 0.0289 0.20
0.90 0.066 0.0325 0.22
1.00 0.074 0.0361 0.25
1.50 0.110 0.0541 0.37
2.00 0.147 0.0722 0.50
2.50 0.184 0.0902 0.62
3.00 0.221 0.1082 0.75
4.00 0.294 0.1443 1.00
5.00 0.368 0.1804 1.24
6.00 0.441 0.2165 1.49
7.00 0.515 0.2525 1.74
8.00 0.588 0.2886 1.99
9.00 0.662 0.3247 2.24

10.00 0.735 0.3608 2.49
12.00 0.882 0.4329 2.99
14.00 1.029 0.5051 3.48
16.00 1.176 0.5772 3.98
18.00 1.324 0.6494 4.48
20.00 1.471 0.7215 4.98
22.00 1.618 0.7937 5.47
24.00 1.765 0.8658 5.97
27.72 2.038 1.0000 6.90

8.5 Fuel Gas System Components

Filters in fuel gas systems are necessary to prevent dirt and other for-
eign matter from entering meters and pressure regulators and caus-
ing damage to these components. Depending upon the quality of fuel
gas, such filters may be necessary. Gas meters are installed in fuel dis-
tribution systems to measure the quantity of fuel gas being supplied
from the utility company’s service mains to the residential or com-
mercial consumer. A complete gas metering system will consist of a
filter, a pressure regulator, and relief valves. Pressure regulators are
installed to reduce the utility fuel gas pressure down to that required
for a residential or commercial service. Direct-acting and pilot-operated
pressure regulators are in common use. Sometimes a two-step regula-
tion is used to cut the pressure from the comparatively high utility
pressure (25 to 50 psig) to the lower pressure required to operate ap-
pliances, etc. A pressure relief valve is installed to protect the piping
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downstream of the meter and pressure regulator in the event of a mal-
function of the pressure regulator.

8.6 Fuel Gas Pipe Sizing

As fuel gas flows through a pipeline, energy is lost due to friction be-
tween the gas molecules and the pipe wall. Therefore, there is a pres-
sure gradient or pressure loss from the inlet of the pipe to the outlet.
This frictional pressure drop depends on the flow rate, pipe inside di-
ameter, and gas gravity. It has been found that for an efficient fuel
gas distribution piping system, the pressure drop must be limited to
about 10 percent of the inlet pressure. Therefore, if the pipe inlet pres-
sure is 20 psig, the total pressure drop in the entire pipe length must
be limited to 2 psig. The pipe size required for a particular flow rate
and equivalent length (of all pipes, fittings, and valves) of pipe will be
based on this pressure drop. Suppose the size selected is NPS 4 for a
certain capacity and length of pipe. If the flow rate is increased, the
pressure drop will increase. In order to keep the total pressure loss to
within 10 percent of the inlet pressure, we may have to choose a larger
pipe size. (Note: The designation NPS 4 means nominal pipe size of
4 in.)

Pipe sizing in fuel gas distribution systems is generally done using
tables that list capacity in cubic feet per hour (ft3/h) for different pipe
sizes and lengths based upon the available fuel gas pressure. As indi-
cated earlier, in determining the pipe diameter required for a particular
flow rate, the pressure drop is limited to about 10 percent of the avail-
able pressure over the length of the piping. Table 8.4 shows the capacity
of horizontal gas piping for different pipe diameters and lengths at an
inlet pressure of 20 psi.

It can be seen from Table 8.4 that for 100 ft of NPS 2 pipe the capacity
is 21,179 ft3/h or 21.179 thousand ft3/h (MCF/h). This particular pipe
size at this capacity and inlet pressure will produce a pressure drop of
2 psig over the 100-ft length. The length to be used is the total equivalent
length of pipe, and it includes the straight run of pipe, valves, and
fittings. To determine the equivalent length of valves and fittings, we
can use a table similar to Table 8.5. As an example, using Table 8.5 we
can determine the total equivalent length of NPS 2 pipe consisting of
100 ft of straight pipe, four elbows, and one plug valve as follows:

Straight pipe, NPS2 = 100 ft

Four NPS 2 elbows = 4 × 30 × 2
12

= 20 ft

One NPS 2 plug valve = 1 × 18 × 2
12

= 3 ft



TABLE 8.4 Pipeline Capacities at 20 psig Inlet Pressure and 2 psig Pressure Drop

Nominal pipe size (actual inside diameter), inches of schedule 40 Pipe

Length, 0.5 0.75 1 1.25 1.5 2 2.5 3 3.5 4 5 6
ft (0.622) (0.824) (1.049) (1.380) (1.610) (2.067) (2.469) (3.068) (3.548) (4.026) (5.047) (6.065)

10 2,723 5,765 10,975 22,804 34,398 66,973 107,577 191,989 282,890 396,270 724,020 1,181,799
20 1,926 4,076 7,760 16,125 24,323 47,357 76,068 135,757 200,034 280,205 511,959 838,658
25 1,722 3,646 6,941 14,422 21,755 42,358 68,037 121,424 178,915 250,623 457,910 747,435
30 1,572 3,328 6,336 13,166 19,860 38,667 62,109 110,845 163,327 228,787 418,013 682,312
35 1,456 3,082 5,866 12,189 18,386 35,799 57,502 102,622 151,211 211,815 387,005 631,698
40 1,362 2,883 5,487 11,402 17,199 33,487 53,788 95,994 141,445 198,135 362,010 590,900
45 1,284 2,718 5,174 10,750 16,215 31,572 50,712 95,504 133,356 186,804 341,306 557,105
50 1,218 2,578 4,908 10,198 15,383 29,951 48,110 85,860 126,512 177,217 323,791 528,517
60 1,112 2,354 4,480 9,310 14,043 27,342 43,918 78,379 115,489 161,777 295,580 482,467
70 1,029 2,179 4,148 8,619 13,001 25,314 40,660 72,565 106,922 149,776 273,654 446,678
80 963 2,038 3,880 8,062 12,161 23,679 38,034 67,878 100,017 140,103 255,980 417,829
90 908 1,922 3,658 7,601 11,466 22,324 35,859 63,996 94,297 132,090 241,340 393,933

100 861 1,823 3,471 7,211 10,878 21,179 34,019 60,712 89,458 125,312 228,955 373,718
125 770 1,631 3,104 6,450 9,729 18,943 30,427 54,303 80,013 112,082 204,784 334,263
150 703 1,489 2,834 5,888 8,881 17,292 27,776 49,571 73,042 102,317 186,941 305,139
200 609 1,289 2,454 5,099 7,692 14,976 24,055 42,930 63,256 88,609 161,896 264,258
300 497 1,053 2,004 4,163 6,280 12,228 19,641 35,052 51,648 72,349 132,187 215,766
400 431 912 1,735 3,606 5,439 10,589 17,009 30,356 44,729 62,656 114,478 186,859
500 385 815 1,552 3,225 4,865 9,471 15,214 27,151 40,007 56,041 102,392 167,132

1,000 272 577 1,097 2,280 3,440 6,697 10,758 19,199 28,289 39,627 72,402 118,180
1,500 222 471 896 1,862 2,809 5,468 8,784 15,676 23,098 32,355 59,116 96,493
2,000 193 408 776 1,612 2,432 4,736 7,607 13,576 20,003 28,021 51,196 83,566

NOTE: Natural gas flow rates in standard ft3/h and specific gravity = 0.6.
SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York, McGraw-Hill, 2000.
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TABLE 8.5 Equivalent Lengths of Valves
and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

Therefore,

Total equivalent length = 123 ft of NPS 2 pipe

It must be noted that Table 8.4 lists the capacity of horizontal pipes
carrying natural gas at an inlet pressure of 20 psig. Since some piping
may be vertical, the pressure drop in the vertical pipes should also be
accounted for. Generally when calculating the capacity of NG systems,
the vertical runs of piping are ignored because NG is lighter than air
and expands as it rises in a vertical section of pipe. This argument is
applicable only to NG. On the other hand LPG, when vaporized, is a gas
that is heavier than air (specific gravity = 1.52), and therefore vertical
runs of pipe are included in the total equivalent length. When the initial
pressure is 50 psig, with a 10 percent allowable pressure drop, a table
such as Table 8.6 may be used to determine the capacity of a NG piping
system.

For example from Table 8.6, NPS 2 pipe with a 100-ft equivalent
length has a capacity of 45,494 ft3/h. This is based on an initial gas
pressure of 50 psig and a total pressure drop of 5 psig in the 100-ft
length of NPS 2 pipe.

The table method of calculating the capacity of a pipe for fuel gas flow
is only approximate. More accurate formulas are available to calculate



TABLE 8.6 Pipeline Capacities at 50 psig Inlet Pressure and 5 psig Pressure Drop

Nominal pipe size (actual inside diameter), inches of schedule 40 Pipe

Length, 0.5 0.75 1 1.25 1.5 2 2.5 3 3.5 4 5 6
ft (0.622) (0.824) (1.049) (1.380) (1.610) (2.067) (2.469) (3.068) (3.548) (4.026) (5.047) (6.065)

10 5,850 12,384 23,575 48,984 73,889 143,864 231,083 412,407 607,670 851,220 1,555,251 2,538,598
20 4,137 8,757 16,670 34,637 52,248 101,727 163,400 291,616 429,688 601,903 1,099,729 1,795,060
50 2,616 5,538 10,543 21,906 33,044 64,338 103,343 184,434 241,758 380,677 695,529 1,135,295

100 1,850 3,916 7,456 15,490 23,336 45,494 73,075 130,415 192,162 269,179 491,814 802,775
200 1,308 2,769 5,271 10,953 16,522 32,169 51,672 92,217 135,879 190,339 347,765 567,648
300 1,068 2,261 4,304 8,943 13,490 26,266 42,190 75,295 110,945 155,411 283,949 463,482
400 925 1,958 3,727 7,745 11,683 22,747 36,537 65,207 96,081 134,590 245,907 401,388
500 827 1,751 3,334 6,927 10,450 20,345 32,680 58,323 85,938 120,381 219,946 359,012

1,000 585 1,238 2,357 4,898 7,389 14,386 23,108 41,241 60,767 85,122 155,525 253,860
1,500 478 1,011 1,925 4,000 6,033 11,746 18,868 33,673 49,616 69,502 126,986 207,276
2,000 414 876 1,667 3,464 5,225 10,173 16,340 29,162 42,969 60,190 109,973 179,506

NOTE: Natural gas flow rates in standard ft3/h and specific gravity = 0.6.
SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York, McGraw-Hill, 2000.
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the pressure drop in a specific pipe size at a certain gas flow rate. These
are called the Spitzglass and Weymouth formulas for pressure drop.

In what follows, psi and psig both refer to gauge pressures. Absolute
pressures (inclusive of the base atmospheric pressure) is referred to as
psia.

For low-pressure (less than or equal to 1 psi) calculations, the Spitz-
glass formula is used. This formula is expressed in U.S. Customary
System (USCS) units as follows:

Qs = 3550K

√
h

GL
(8.1)

and

K =
√

d5

1 + 3.6/d + 0.03d
(8.2)

where Qs = gas flow rate at standard conditions (60◦F or 15.6◦C), ft3/h
K = parameter that is a function of pipe diameter, d
h = frictional head loss, in of WC
L = equivalent pipe length, ft
G = fuel gas specific gravity (air = 1.00), dimensionless
d = pipe inside diameter, in

In SI units the Spitzglass formula is expressed as follows, for pres-
sures less than 6.9 kilopascals (kPa):

Qs = 11.0128K

√
h

GL
(8.3)

and

K = (3.075 × 10−4)

√
d5

1 + 91.44/d + 0.001181d
(8.4)

where Qs = gas flow rate at standard conditions (15.6◦C), m3/h
K = parameter that is a function of pipe diameter, d
h = frictional head loss, mm of WC
L = equivalent pipe length, m
G = fuel gas specific gravity (air = 1.00), dimensionless
d = pipe inside diameter, mm

The value of h in millimeters of water column in Eq. (8.3) may be
converted to pressure in kilopascals as follows:

Pressure in kPa = h
25.4

× 0.0361
0.145
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or

Pressure in kPa = h
102

(8.4a)

where h is in millimeters of water column.
For pressures greater than 1.0 psig, the Weymouth equation is used.

This equation in USCS units is expressed as follows:

Qs = 3550K

√
Pavg �P

GL
(8.5)

where Pavg is the average pressure (psig) and �P is the pressure drop
(psig). All other symbols are as defined earlier and K is calculated using
Eq. (8.2).

In SI units the Weymouth formula is expressed as follows, for inlet
pressures greater than 6.9 kPa:

Qs = 8.0471K

√
Pavg �P

GL
(8.6)

where Pavg is the average pressure (kPa) and �P is the pressure drop
(kPa). All other symbols are as defined earlier and K is calculated using
Eq. (8.4).

Tables 8.7 and 8.8 show the capacities of different pipe sizes based on
low pressures (1.0 psig) and higher pressures (2.0 to 10.0 psig), respec-
tively. Equivalent tables in SI units with gas capacity in liters per sec-
ond (L/s) and pressures in kilopascals are given in Tables 8.9 and 8.10,
respectively. These tables are based on the Spitzglass and Weymouth
equations.

Example 8.1 Calculate the fuel gas capacity of NPS 4 pipe with an inside
diameter of 4.026 in and a total equivalent length of 150 ft. The inlet pressure
is 1.0 psig. Consider a pressure drop of 0.6 in water column and assume the
specific gravity of the gas is 0.6.

Solution Since this is low pressure, we will use the Spitzglass formula. First
we will calculate the parameter K from Eq. (8.2).

K =
√

4.0265

1 + (3.6/4.026) + (0.03 × 4.026)
= 22.91

and from Eq. (8.1), the capacity in ft3/h is

Qs = 3550 × 22.91

√
0.6

0.6 × 150
= 6641 ft3/h



TABLE 8.7 Pipeline Capacities at Low Pressures (1.0 psig) and Pressure Drop of 0.5 in Water Column

Nominal pipe size (actual inside diameter), inches of schedule 40 Pipe

Length, 0.5 0.75 1 1.25 1.5 2 2.5 3 3.5 4 5 6
ft (0.622) (0.824) (1.049) (1.380) (1.610) (2.067) (2.469) (3.068) (3.548) (4.026) (5.047) (6.065)

10 120 272 547 1,200 1,860 3,759 6,169 11,225 16,685 23,479 42,945 69,671
20 85 192 387 849 1,315 2,658 4,362 7,938 11,798 16,602 30,367 49,265
30 69 157 316 693 1,074 2,171 3,562 6,481 9,633 13,556 24,794 40,225
40 60 136 273 600 930 1,880 3,084 5,613 8,342 11,740 21,473 34,835
50 54 122 244 537 832 1,681 2,759 5,020 7,462 10,500 19,206 31,158
60 49 111 223 490 759 1,535 2,518 4,583 6,811 9,585 17,532 28,443
70 45 103 207 454 703 1,421 2,332 4,243 6,306 8,874 16,232 26,333
80 42 96 193 424 658 1,329 2,181 3,969 5,899 8,301 15,183 24,632
90 40 91 182 400 620 1,253 2,056 3,742 5,562 7,826 14,315 23,224

100 38 86 173 379 588 1,189 1,951 3,550 5,276 7,425 13,581 22,032
150 31 70 141 310 480 971 1,593 2,898 4,308 6,062 11,088 17,989
200 27 61 122 268 416 841 1,379 2,510 3,731 5,250 9,603 15,579
400 19 43 86 190 294 594 975 1,775 2,638 3,712 6,790 11,016
500 17 38 77 170 263 532 872 1,588 2,360 3,320 6,073 9,853

1,000 12 27 55 120 186 376 617 1,123 1,668 2,348 4,295 6,967
1,500 10 22 45 98 152 307 504 917 1,362 1,917 3,506 5,689
2000 8 19 39 85 132 266 436 794 1180 1660 3037 4926

NOTE: Flow rates in standard ft3/h with gas specific gravity = 0.6.
SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York, McGraw-Hill, 2000.
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TABLE 8.8 Pipeline Capacities at Higher Pressures (2.0–10.0 psig)

Pressure drop per 100 ft as
percent of inlet pressure

2% 6% 10%
Inlet pressure, Pipe size,

psig in

2 1 340 590 760
5 590 1,030 1,320

10 930 1,610 2,070
2 1 1

4 710 1,230 1,590
5 1,230 2,130 2,740

10 1,950 3,370 4,330
2 1 1

2 1,080 1,870 2,410
5 1,860 3,220 4,140

10 2,940 5,080 6,530
2 2 2,100 3,640 4,700
5 3,630 6,270 8,070

10 5,740 9,890 12,720
2 2 1

2 3,390 5,880 7,580
5 5,850 10,100 13,010

10 9,240 15,940 20,500
2 3 6,060 10,500 13,540
5 10,450 18,050 23,240

10 16,510 28,480 36,610
2 4 12,480 21,620 27,890
5 21,520 37,180 47,880

10 34,000 58,650 75,410
2 6 37,250 64,560 83,270
5 64,240 111,010 142,950

10 101,520 175,120 225,150

NOTE: Flow rates in standard ft3/h of natural gas with specific gravity = 0.6.
SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York,

McGraw-Hill, 2000.

Example 8.2 Calculate the fuel gas capacity of DN 100 (6-mm wall thick-
ness) pipe for a total equivalent length of 50 m. The inlet pressure is 6 kPa.
Consider a pressure drop of 25 mm of water column and assume the specific
gravity of the gas is 0.6.

Solution Since this is low pressure, we will use Spitzglass formula. First we
will calculate the parameter K from Eq. (8.4).

Inside diameter of pipe = 100 − 2 × 6 = 88 mm

K = (3.075 × 10−4)

√
885

1 + (91.44/88) + 0.001181 × 88

= 15.26

and from Eq. (8.3), the capacity in m3/h is

Qs = 11.0128 × 15.26

√
25

0.6 × 50
= 153.41 m3/h



TABLE 8.9 Pipeline Capacities at Low Pressures (up to 6.9 kPa) and Pressure Drop of 1.2 kPa

Capacity in L/s for horizontal gas piping for DN sizes

6 10 15 20 25 32 40 50 65 80 90 100 125 150 200 250 300
Length,

m

3 0.20 0.49 0.96 2.15 4.38 9.60 15.00 30.0 49.0 90.0 133.0 188.0 344.0 557 1135 2022 3134
6 0.13 0.34 0.67 1.53 2.06 6.79 11.00 21.0 35.0 64.0 94.0 133.0 243.0 394 802 1430 2216
9 0.12 0.29 0.55 1.24 1.30 5.54 9.00 17.0 28.0 52.0 77.0 108.0 198.0 322 655 1168 1809

12 0.10 0.24 0.47 1.08 1.10 4.80 7.50 15.0 25.0 45.0 67.0 94.0 172.0 279 567 1011 1567
15 0.08 0.22 0.42 0.97 0.98 4.30 6.60 13.0 22.0 40.0 60.0 84.0 154.0 249 507 904 1401
18 0.08 0.22 0.39 0.87 0.92 3.92 6.00 12.0 20.0 37.0 54.0 77.0 140.0 228 463 826 1279
21 0.07 0.18 0.35 0.82 0.84 3.36 5.60 11.0 19.0 34.0 50.0 71.0 130.0 211 429 764 1184
24 0.07 0.17 0.34 0.76 0.78 3.39 5.20 11.0 17.0 32.0 47.0 66.0 121.0 197 401 715 1108
27 0.07 0.15 0.32 0.72 0.73 3.20 5.00 10.0 16.0 30.0 44.0 63.0 115.0 186 378 674 1045
30 0.07 0.15 0.30 0.69 0.69 3.03 4.70 10.0 15.0 28.0 42.0 59.0 109.0 176 359 640 991
45 0.05 0.13 0.25 0.55 0.58 2.43 3.80 8.0 13.0 23.0 34.0 48.0 89.0 144 293 522 809
60 0.05 0.12 0.22 0.49 0.54 2.14 3.30 7.0 11.0 20.0 30.0 42.0 77.0 125 254 452 701
90 0.03 0.10 0.18 0.42 0.46 1.92 3.00 6.0 10.0 18.0 27.0 38.0 69.0 111 227 404 627

120 0.03 0.08 0.15 0.34 0.41 1.52 2.30 5.0 8.0 14.0 21.0 30.0 54.0 88 179 320 495
150 0.03 0.07 0.13 0.30 0.33 1.36 2.10 4.0 7.0 13.0 19.0 27.0 49.0 79 160 286 443
300 0.02 0.05 0.10 0.22 0.29 0.96 1.50 3.0 5.0 9.0 13.0 19.0 34.0 56 113 202 313
450 0.02 0.03 0.08 0.17 0.21 0.78 1.20 2.0 4.0 7.0 11.0 15.0 28.0 46 93 165 256
600 0.02 0.03 0.07 0.15 0.17 0.68 1.00 2.0 3.0 6.0 9.0 13.0 24.0 39 80 143 222

NOTE: Flow rates in L/s with gas specific gravity = 0.6.
SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York, McGraw-Hill, 2000.
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TABLE 8.10 Pipeline Capacities at Higher Pressures (13.8–69 kPa)

Pressure drop kPa/m as
percent of inlet pressure

Pipe size,
kPa DN 2% 6% 10%

13.8 25 2.72 4.00 5.60
34.5 25 4.72 8.24 10.56
69.0 25 7.44 12.88 16.56
13.8 32 5.68 9.84 12.72
34.5 32 9.84 17.04 21.92
69.0 32 15.60 26.72 34.64
13.8 40 8.64 14.96 19.28
34.5 40 14.88 25.76 33.12
69.0 40 23.52 40.64 52.24
13.8 50 16.80 29.12 37.60
34.5 50 29.04 50.16 64.56
69.0 50 45.92 79.12 101.76
13.8 65 27.12 47.04 60.64
34.5 65 46.80 80.80 104.08
69.0 65 73.92 127.52 164.00
13.8 80 48.48 84.00 108.32
34.5 80 83.60 144.40 185.92
69.0 80 132.08 227.84 292.88
13.8 100 99.84 172.96 222.40
34.5 100 172.16 297.44 383.04
69.0 100 272.00 469.20 603.28
13.8 150 298.00 516.48 666.16
34.5 150 513.92 888.08 1143.60
69.0 150 812.16 1400.96 1801.20

NOTE: Flow rates in L/s with gas specific gravity = 0.6.
SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed.,

New York, McGraw-Hill, 2000.

Example 8.3 A fuel gas pipeline is 250 ft in equivalent length and is con-
structed of NPS 6 pipe, with an inside diameter of 6.065 in. For an inlet pres-
sure of 10.0 psig, calculate the total pressure drop at a flow rate of 60,000
standard cubic feet per hour (SCFH). Specific gravity of gas is 0.6.

Solution Since this is not low pressure, we will use the Weymouth equation
(8.5). First we will calculate the parameter K from Eq. (8.2).

K =
√

6.0655

1 + (3.6/6.065) + (0.03 × 6.065)
= 67.99

The flow rate and pressure drop are related by Eq. (8.5).

60,000 = 3550 × 67.99

√
10 �P

0.6 × 250

Solving for �P, we get

�P = 0.93 psig
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In the preceding we used the inlet pressure in place of the average pressure.
The average pressure can now be calculated, since the pressure drop has
been calculated:

Average pressure = 10 + (10 − 0.93)
2

= 9.54 psi

We can recalculate the pressure drop using this average pressure. This pro-
cess can be repeated until the successive values of �P are within 0.1 psi.

Example 8.4 A fuel gas pipeline is 70 m in equivalent length and is con-
structed of DN 150 (6-mm wall thickness) pipe. The inlet pressure is 50 kPa
and the flow rate is 300 L/s. Calculate the pressure drop if the specific gravity
of gas is 0.65.

Solution

Pipe inside diameter = 150 − 2 × 6 = 138 mm

Since the pressure is higher than 6.9 kPa, the Weymouth formula will be
used. First we calculate the value of the parameter K using Eq. (8.4):

K = (3.075 × 10−4)

√
1385

1 + (91.44/138) + 0.001181 × 138
= 50.91

From Eq. (8.6), converting the flow rate from L/s to m3/h;

300 × 60 × 60
1000

= 8.0471 × 50.91

√
50 �P

0.65 × 70

Solving for �P, we get

�P = 6.32 kPa

It must be noted that in Eq. (8.6) we used 50 kPa for the average pressure
since we did not know how much the pressure drop was going to be. We can
calculate the average pressure based on the �P obtained and recalculate the
corresponding �P from Eq. (8.6) as follows:

Average pressure = 50 + (50 − 6.32)
2

= 46.84

300 × 60 × 60
1000

= 8.0471 × 50.91

√
46.84 �P
0.65 × 70

�P = 6.75 kPa

The process is repeated until successive values of �P are within 0.1 kPa.
This is left as an exercise for the reader.

Example 8.5 A typical NG fuel gas distribution system for a building is
illustrated schematically in Fig. 8.1. Three fuel consumption devices A, B,
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2200 SCFH 2000 SCFH

200 SCFH 500 SCFH

1500 SCFH

1500 SCFH

E F G

A

M
D

B C

38 ft 110 ft 280 ft

Figure 8.1 Sample fuel gas distribution system.

and C are shown requiring NG in the amounts of 200, 500, and 1500 ft3/h,
respectively. The equivalent lengths of piping are as shown in Fig. 8.1. De-
termine the pipe size required for each of the sections DE, EF, FG and the
branch piping EA, FB, GC to handle the required fuel gas volumes. Assume
the pressure available downstream of the utility meter at D is 6 in of water
column.

Solution The total equivalent length will be calculated based on the length
from the meter at D to the most remote point C. Accordingly,

Total length = 38 + 110 + 280 + 50 = 478 ft

We will round this up to 500 ft equivalent length.
In order to size the various sections of the fuel gas distribution system

shown in the figure, we will use Table 8.7 based on the inlet pressure of
1 psig and a pressure drop of 10 percent of inlet pressure.

Total flow rate for all devices = 200 + 500 + 1500 = 2200 ft3/h

From Table 8.7, for a length of 500 ft, we find that NPS 3.5 pipe has a capacity
of 2360 ft3/h. This flow rate is quite close to our requirement of 2200 ft3/h
that will flow through section DE. Therefore, section DE will require NPS
3.5 pipe.

Similarly, section EF has a flow of 2000 ft3/h which also requires NPS
3.5 pipe. Section FG and GC both require a capacity of 1500 ft3/h. From
Table 8.7 this requires NPS 3 pipe which has a capacity of 1588 ft3/h.

Next, we will select pipe sizes for branches EA and FB. Branch EA requires
200 ft3/h, which according to Table 8.7 requires NPS 1.5 pipe (263 ft3/h).
Finally, branch FB carries 500 ft3/h, which requires NPS 2 pipe that has a
capacity of 532 ft3/h according to Table 8.7.

It must be noted that the table method demonstrated here is fairly easy
but only approximate. A more accurate approach would be to select a pipe
size for the entire length from D to C and calculate the pressure drop using
the Spitzglass formula. Section DE will have a flow rate of 2200 ft3/h, EF
will have a flow rate of 2000 ft3/h, and sections FG and GC will each have a
flow rate of 1500 ft3/h. Similarly, branches EA and FB will be sized to handle
flow rates of 200 and 500 ft3/h, respectively.
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8.7 Pipe Materials

Pipe materials used in NG piping systems include carbon steel, cop-
per tubing, and high-density polyethylene (HDPE). Pipe materials are
specified in NFPA 54 and other codes listed in Sec. 8.1. The working
pressures of the fuel gas piping system must be lower than the pressure
rating of the pipe, fittings, and valves used. Class 150 pipe and fittings
are specified for carbon steel and are suitable for working pressures of
up to 285 psig at 100◦F. As the temperature of services increases, the
allowable working pressure decreases. Underground fuel gas distribu-
tion piping is often constructed of plastic pipe (HDPE). These pipes
are buried to a minimum depth of 3 ft. For safety reasons a corrosion-
resistant tracer wire is buried with the plastic pipe so that the fuel gas
line may be located using a metal detector. Warning signs must be in-
stalled indicating the existence of an underground natural gas pipeline.
Steel pipes used for underground distribution piping systems gener-
ally conform to ASTM A106 or A53. Steel pipe and fittings are welded,
and the pipe exterior is coated and wrapped to prevent pipe corrosion.
Aboveground pipes are always constructed with carbon-steel material.
Plastic piping is not allowed for aboveground installation. In order to
isolate appliances from each other, valves are used. Small valves used
in conjunction with domestic appliances are referred to as gas cocks.
Check valves are used to prevent backflow of the fuel gas and are con-
structed of a cast iron body with stainless steel trim. Screwed fittings
are used with NPS 3 and smaller valves. Larger size valves are con-
structed of flanged connections. Special valves are used in earthquake
zones. These valves automatically shut down the fuel gas supply in the
event that the horizontal or vertical displacements (due to earthquakes)
exceed predetermined design values.

8.8 Pressure Testing

Fuel gas distribution piping must be pressure tested before being put
into service. Compressed air is used for the test. After satisfactory pres-
sure testing, all air in the piping must be purged by using an inert gas
such as nitrogen, before filling the piping with natural gas. The test
pressure is 150 percent of the highest pressure in the main fuel gas
piping. The duration of the test depends upon the length and total vol-
ume of the pipe. For example, the test must be held for 6 h if the pipe
length is 700 ft. The testing is reduced to 2 h for a pipe length of 200 ft
of NPS 6 plastic pipe. For piping inside a building consisting of low-
pressure gas (8 in of mercury or less), testing is done with air or fuel
gas at a test pressure of 3 psi for a minimum period of 1 h. When the
operating pressure is between 9 in of water column and 5 psig, the
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pressure test is conducted using air at 50 psig for a period of 4 h. When
pressure is greater than 5 psig, the test is done using air at 100 psig for
a minimum period of 4 h. No pressure drop is allowed for the duration
of the test. Refer to design codes for details.

8.9 LPG Transportation

LPG is economically transported as a compressed fluid in the liquid
phase. When used as a fuel, LPG is vaporized and distributed as a gas
through the distribution piping system similar to the NG piping system
discussed earlier. In this section we will first discuss LPG transporta-
tion (at high pressure) and pipe sizing. Next we will discuss storage of
LPG and subsequent distribution as a fuel in vapor form.

Pressure within an LPG transportation piping system must be main-
tained at some minimum level to prevent vaporization during trans-
port. The vapor pressure of the components propane and butane will
determine this minimum pressure. In general most LPG transporta-
tion systems are maintained at a minimum of 200 to 250 psig (1.38 to
1.72 MPa) depending upon the ambient temperature and the percent-
age of propane in LPG.

Sometimes, we need to convert the pressure in psi to head of liquid
in feet, and vice versa. If the specific weight of the liquid is γ lb/ft3, a
pressure of P in psig and the equivalent head of liquid H ft are related
by the following equation

P = γ H
144

(8.7)

This is the gauge pressure. The absolute pressure would be (γ H/144) +
Patm where Patm is the atmospheric pressure.

More generally we can state that the absolute pressure is

Pabs = Pgage + Patm (8.8)

The unit of pressure designated as psia is for absolute pressure and that
designated as psig is for gauge pressure. Unless otherwise specified, psi
means gauge pressure or psig. The variable γ may also be replaced with
ρg, where ρ is the density in slug/ft3 and g is gravitational acceleration
in ft/s2.

In a more general form, the pressure P in psi and liquid head h in
feet for a specific gravity of Sg are related by

P = h × Sg
2.31

(8.9)
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In SI units, pressure P in kilopascals and head h in meters are related
by the following equation:

P = h × Sg
0.102

(8.10)

Example 8.6 Calculate the pressure in psi in an LPG piping system if the
pressure in feet of head is 2500 ft and LPG specific gravity is 0.5. What is the
equivalent pressure in kilopascals? If the atmospheric pressure is 14.7 psi,
calculate the absolute pressure.

Solution Using Eq. (8.9),

Pressure = 2500 × 0.5
2.31

= 541.13 psig

Thus,

Pressure at 2500 ft head = 541.13 psig

Absolute pressure = 541.13 + 14.7 = 555.83 psia

In SI units we can calculate the pressures as follows. Since 1 kPa = 0.145 psi
(see App. A for various conversion factors),

Pressure at 2500 ft head = 541.13 psig
0.145 psi/kPa

= 3732 kPa or 3.73 MPa

8.9.1 Velocity

The velocity at which LPG flows through a pipeline depends on the pipe
diameter and flow rate. If the flow rate is constant (steady flow) and the
pipe diameter is uniform, the velocity at every cross section along the
pipe will be a constant value. However, there is a variation in velocity
along the pipe cross section. The velocity at the pipe wall will be zero,
increasing to a maximum at the centerline of the pipe.

We can define an average velocity of flow at any cross section of the
pipe as follows:

Velocity = flow rate
area of flow

(8.11)

If the flow rate is in ft3/s and the pipe cross-sectional area is in ft2, the
velocity from Eq. (8.11) is in ft/s.

Employing commonly used units of flow rate Q in gallons per minute
(gal/min) and pipe diameter in inches, the velocity in ft/s is as follows:

V = 0.4085
Q
D2 (8.12)
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where V = velocity, ft/s
Q = flow rate, gal/min
D = pipe inside diameter, in

Sometimes, in the petroleum transportation industry, flow rates are
expressed in barrels per hour (bbl/h) or bbl/day. Therefore, Eq. (8.12)
for velocity can be modified as follows. For flow rate in bbl/h:

V = 0.2859
Q
D2 (8.13)

where V = velocity, ft/s
Q = flow rate, bbl/h
D = pipe inside diameter, in

For the flow rate in bbl/day:

V = 0.0119
Q
D2 (8.14)

where V = velocity, ft/s
Q = flow rate, bbl/day
D = pipe inside diameter, in

In SI units, the velocity equation is as follows:

V = 353.6777
Q
D2 (8.15)

where V = velocity, m/s
Q = flow rate, m3/h
D = internal diameter, mm

Example 8.7 LPG flows through an NPS 16 (15.5-in inside diameter) pipe
at the rate of 4000 gal/min. Calculate the average velocity for steady-state
flow.

Solution From Eq. (8.12) the average flow velocity is

V = 0.4085
4000
15.52

= 6.80 ft/s

Example 8.8 LPG flows through a DN 400 outside diameter (10-mm wall
thickness) pipeline at 200 L/s. Calculate the average velocity for steady flow.

Solution The designation DN 400 in SI units corresponds to NPS 16 in USCS
units. DN 400 means a metric pipe size of 400-mm outside diameter.

Inside diameter of pipe = 400 − 2 × 10 = 380 mm
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First convert flow rate in L/s to m3/h.

Flow rate = 200 L/s = 200 × 60 × 60 × 10−3 m3/h = 720 m3/h

From Eq. (8.15) the average flow velocity is

V = 353.6777
720
3802

= 1.764 m/s

8.9.2 Reynolds number

The Reynolds number of flow is a dimensionless parameter that de-
pends on the pipe diameter, liquid flow rate, liquid viscosity, and density.
It is defined as follows:

R = VDρ

µ
(8.16)

or

R = VD
ν

(8.17)

where R = Reynolds number, dimensionless
V = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = mass density of liquid, slug/ft3

µ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s

In terms of more commonly used units in the petroleum industry, we
have the following version of the Reynolds number equation:

R = 3162.5
Q
Dν

(8.18)

where R = Reynolds number, dimensionless
Q = flow rate, gal/min
D = inside diameter of pipe, in
ν = kinematic viscosity, centistokes (cSt)

When the flow rate is given in bbl/h or bbl/day, the following forms of
the Reynolds number are used:

R = 2213.76
Q
Dν

(8.19)

R = 92.24
BPD
Dν

(8.20)
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where R = Reynolds number, dimensionless
Q = flow rate, bbl/h

BPD = flow rate, bbl/day
D = inside diameter of pipe, in
ν = kinematic viscosity, cSt

In SI units, the Reynolds number is expressed as follows:

R = 353,678
Q

νD
(8.21)

where R = Reynolds number, dimensionless
Q = flow rate, m3/h
D = inside diameter of pipe, mm
ν = kinematic viscosity, cSt

Example 8.9 An LPG (specific gravity = 0.5 and viscosity = 0.15 cP) pipeline
is composed of NPS 20 pipe with 0.375-in wall thickness. At a flow rate of
5000 gal/min, calculate the average velocity and the Reynolds number of
flow.

Solution The NPS 20 (0.375-in wall thickness) pipe has an inside diameter =
20.0−2×0.375 = 19.25 in. From Eq. (8.12) the average velocity is calculated
first:

V = 0.4085
5000

19.252
= 5.51 ft/s

Kinematic viscosity of LPG = 0.15 cP
0.5

= 0.30 cSt

From Eq. (8.18) the Reynolds number is therefore

R = 3162.5
5000

19.25 × 0.3
= 2,738,095

Example 8.10 LPG (specific gravity = 0.5 and viscosity = 0.3 cSt) flows
through a DN 400 (10-mm wall thickness) pipeline at the rate of 800 m3/h.
Calculate the average flow velocity and the Reynolds number of flow.

Solution The DN 400 (10-mm wall thickness) pipe has an inside diameter =
400 − 2 × 10 = 380 mm. From Eq. (8.15) the average velocity is therefore

V = 353.6777
800
3802

= 1.96 m/s

Next, from Eq. (8.21), the Reynolds number is

R = 353,678
800

380 × 0.3
= 2,481,951

Next Page
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8.9.3 Types of flow

Flow through a pipeline is classified as laminar flow, turbulent flow,
or critical flow depending on the magnitude of the Reynolds number
of flow. If the Reynolds number is less than 2100, the flow is said to
be laminar. When the Reynolds number is greater than 4000, the flow
is considered to be turbulent. Critical flow occurs when the Reynolds
number is in the range of 2100 to 4000. Laminar flow is characterized by
smooth flow in which no eddies or turbulence exist. The flow is also said
to occur in laminations. If dye was injected into a transparent pipeline,
laminar flow would be manifested in the form of smooth streamlines
of dye. Turbulent flow occurs at higher velocities and is accompanied
by eddies and other disturbances in the liquid. More energy is lost in
friction in the critical flow and turbulent flow regions as compared to
the laminar flow region.

The three flow regimes characterized by the Reynolds number of
flow are

Laminar flow: R ≤ 2100
Critical flow: 2100 < R ≤ 4000
Turbulent flow: R > 4000

In the critical flow regime, where the Reynolds number is between 2100
and 4000, the flow is undefined and unstable, as far as pressure drop
calculations are concerned. In the absence of better data, it is customary
to use the turbulent flow equation to calculate the pressure drop in the
critical flow regime as well.

8.9.4 Pressure drop due to friction

As LPG flows through a pipeline, energy is lost due to resistance be-
tween the flowing liquid layers as well as due to the friction between
the liquid and the pipe wall. One of the objectives of pipeline calculation
is to determine the amount of energy and hence the pressure lost due
to friction as the liquid flows from the source to the destination. The
Darcy equation can be used to determine the head loss due to friction in
LPG pipelines for a given flow rate, LPG properties, and pipe diameter.

8.9.5 Darcy equation

As LPG flows through a pipeline from point A to point B the pressure
along the pipeline decreases due to frictional loss between the flowing
liquid and the pipe. The extent of pressure loss due to friction, desig-
nated in feet of liquid head, depends on various factors. These factors
include the liquid flow rate, liquid specific gravity and viscosity, pipe
inside diameter, pipe length, and internal condition of the pipe (rough,

Previous Page
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smooth, etc.) The Darcy equation may be used to calculate the pressure
drop in a pipeline as follows:

h = f
L
D

V 2

2g
(8.22)

where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = inside diameter of pipe, ft
V = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

The Darcy equation gives the frictional pressure loss in feet of liquid
head, which must be converted to pressure loss in psi using Eq. (8.9).
The term V 2/2g in the Darcy equation is the velocity head, and it rep-
resents the kinetic energy of the liquid. The term velocity head will be
used in subsequent sections of this chapter when analyzing frictional
loss through pipe fittings and valves.

The friction factor f in the Darcy equation is the only unknown on the
right-hand side of Eq. (8.22). This friction factor is a nondimensional
number between 0.0 and 0.1 that depends on the internal roughness of
the pipe, the pipe diameter, and the Reynolds number of flow.

In laminar flow, the friction factor f depends only on the Reynolds
number and is calculated from

f = 64
R

(8.23)

where f is the friction factor for laminar flow and R is the Reynolds
number for laminar flow (R ≤ 2100) (dimensionless). Therefore, if a
particular flow has a Reynolds number of 1780, we can conclude that in
this laminar flow condition the friction factor f to be used in the Darcy
equation is

f = 64
1780

= 0.036

Some pipeline hydraulics texts may refer to another friction factor
called the Fanning friction factor. This is numerically equal to one-
fourth the Darcy friction factor. In this example the Fanning friction
factor can be calculated as

0.036
4

= 0.009

To avoid any confusion, throughout this chapter we will use only the
Darcy friction factor as defined in Eq. (8.22).
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For LPG pipelines, it is inconvenient to use the Darcy equation in the
form described in Eq. (8.22). We must convert the equation in terms of
commonly used petroleum pipeline units. One form of the Darcy equa-
tion in pipeline units is as follows:

h = 0.1863
f LV 2

D
(8.24)

where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = pipe inside diameter, in
V = average flow velocity, ft/s

Another form of the Darcy equation with frictional pressure drop ex-
pressed in psi/mi and using flow rate instead of velocity is as follows:

Pm = const
f Q2Sg

D5 (8.25)

where Pm = frictional pressure loss, psi/mi
f = Darcy friction factor, dimensionless

Q = flow rate
D = pipe inside diameter, in

Sg = liquid specific gravity
const = factor that depends on flow units

=



34.87 for Q in bbl/h
0.0605 for Q in bbl/day
71.16 for Q in gal/min

In SI units, the Darcy equation may be written as

h = 50.94
f LV 2

D
(8.26)

where h = frictional pressure loss, m of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
V = average flow velocity, m/s

In terms of flow rate, the Darcy equation in SI units is as follows:

Pkm = (6.2475 × 1010) f Q2 Sg
D5 (8.27)
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where Pkm = pressure drop due to friction, kPa/km
Q = liquid flow rate, m3/h
f = Darcy friction factor, dimensionless

Sg = liquid specific gravity
D = pipe inside diameter, mm

8.9.6 Colebrook-White equation

We have seen that in laminar flow the friction factor f is easily calcu-
lated from the Reynolds number using Eq. (8.23). In turbulent flow, the
calculation of friction factor f is more complex. It depends on the pipe
inside diameter, the pipe roughness, and the Reynolds number. Based
on work by Moody, Colebrook and White, and others, the following em-
pirical equation, known as the Colebrook-White equation, is used for
calculating the friction factor in turbulent flow:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

R
√

f

)
(8.28)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in
R = Reynolds number, dimensionless

The absolute pipe roughness, or internal pipe roughness, may range
from 0.0 to 0.01 depending on the internal condition of the pipe. It is
listed for common piping systems in Table 8.11. The ratio e/D is termed
the relative roughness and is dimensionless. Equation (8.28) is also
sometimes called simply the Colebrook equation.

In SI units, we can use the same form of the Colebrook equation. The
absolute pipe roughness e and the pipe diameter D are both expressed
in millimeters. All other terms in the equation are dimensionless.

TABLE 8.11 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0
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It can be seen from the Colebrook-White equation that the calcula-
tion of the friction factor f is not straightforward since it appears on
both sides of the equation. This is known as an implicit equation in f ,
compared to an explicit equation. An explicit equation in f will have the
unknown quantity f on one side of the equation. In the present case, a
trial-and-error approach is used to solve for the friction factor. First an
initial value for f is assumed (for example, f = 0.01) and substituted
in the right-hand side of the Colebrook equation. This will result in a
new calculated value of f , which is used as the next approximation,
and f is recalculated based on this second approximation. The process
is continued until successive values of f calculated by such iterations
are within a small value such as 0.001. Usually three or four iterations
will yield a satisfactory solution.

8.9.7 Moody diagram

A graphical method of determining the friction factor for turbulent flow
is available using the Moody diagram as shown in Fig. 8.2. First the
Reynolds number is calculated based upon liquid properties, flow rate,
and pipe diameter. This Reynolds number is used to locate the ordinate
on the horizontal axis of the Moody diagram. A vertical line is drawn
up to the curve representing the relative roughness e/D of the pipe. The
friction factor is then read off of the vertical axis to the left. From the
Moody diagram it is seen that the turbulent region is further divided
into two regions: the “transition” zone and the “complete turbulence in
rough pipes” zone. The lower boundary is designated as “smooth pipes.”
The transition zone extends up to the dashed line, beyond which is
known as the zone of complete turbulence in rough pipes. In the zone
of complete turbulence in rough pipes, the friction factor depends very
little on the Reynolds number and more on the relative roughness.

Example 8.11 LPG (specific gravity = 0.5 and viscosity = 0.3 cSt) flows
through an NPS 16 (0.250-in wall thickness) pipeline at a flow rate of
3000 gal/min. The absolute roughness of the pipe may be assumed to be
0.002 in. Calculate the Darcy friction factor and pressure loss due to friction
in a mile of pipe length, using the Colebrook-White equation.

Solution The inside diameter of an NPS 16 (0.250-in wall thickness) pipe is

16.00 − 2 × 0.250 = 15.50 in

Next we will calculate the Reynolds number R to determine the flow regime
(laminar or turbulent). The Reynolds number from Eq. (8.18) is

R = 3162.5 × 3000
15.5 × 0.3

= 2,040,323
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Since R > 4000, the flow is turbulent and we can use the Colebrook-White
equation to calculate the friction factor. We can also use the Moody diagram
to read the friction factor based on R and the pipe relative roughness e/D.
Using Eq. (8.28), the friction factor is

1√
f

= −2 log10

(
0.002

3.7 × 15.5
+ 2.51

2,040,323
√

f

)

Solving by trial and error, we get the Darcy friction factor

f = 0.0133

Next calculate the pressure drop due to friction using the Darcy equation
(8.25) as follows:

Pm = 71.16 × 0.0133 × (3000)2 × 0.5
15.55

= 4.76 psi/mi

Therefore, pressure loss due to friction in a mile of pipe is 4.76 psi/mi.

Example 8.12 A DN 500 (10-mm wall thickness) steel pipe is used to trans-
port LPG from a refinery to a storage tank 15 km away. Neglecting any
difference in elevations, calculate the friction factor and pressure loss due to
friction (kPa/km) at a flow rate of 990 m3/h. Assume an internal pipe rough-
ness of 0.05 mm. A delivery pressure of 1800 kPa must be maintained at the
delivery point, and the storage tank is at an elevation of 200 m above that of
the refinery. Calculate the pump pressure required at the refinery to trans-
port the given volume of LPG to the storage tank location. Specific gravity of
LPG = 0.5 and viscosity = 0.3 cSt.

Solution The pipe designated as DN 500 and 10-mm wall thickness has an
inside diameter of

D = 500 − 2 × 10 = 480 mm

First calculate the Reynolds number from Eq. (8.15):

R = 353,678
Q
νD

= 353,678 × 990
0.3 × 480

= 2,431,536

Therefore, the flow is turbulent, and we can use the Colebrook-White equa-
tion or the Moody diagram to determine the friction factor.

Relative roughness
e
D

= 0.05
480

= 0.0001

Using the determined values for relative roughness and the Reynolds
number, from the Moody diagram we get

f = 0.0128
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The pressure drop due to friction can now be calculated using the Darcy
equation (8.27):

Pkm = (6.2475 × 1010)
0.0128 × 9902 × 0.5

4805

= 15.38 kPa/km

The pressure required at the pumping facility is calculated by adding the
pressure drop due to friction, the delivery pressure required, and the static
elevation head between the pumping facility and storage tank, all expressed
in same unit of pressure.

Pressure drop due to friction in 15 km of pipe = 15 × 15.38 = 230.7 kPa

The static head difference is 200 m. This is converted to pressure in
kilopascals. Using Eq. (8.10),

Pressure due to elevation head = 200 × 0.5
0.102

= 980.39 kPa

Minimum pressure required at delivery point = 1800 kPa

Therefore, adding all three numbers, the total pressure required at the
refinery is

Pt = Pf + Pelev + Pdel

where Pt = total pressure required at refinery pump
Pf = frictional pressure drop

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage tank at destination

Therefore

Pt = 230.7 + 980.39 + 1800.0 = 3011.1 kPa

Therefore, the pump pressure required at the refinery is 3011 kPa.

8.9.8 Minor losses

So far, we have calculated the pressure drop per unit length in straight
pipe. We also calculated the total pressure drop considering several
miles of pipe from a pump station to a storage tank. Minor losses in
an LPG pipeline are classified as those pressure drops that are as-
sociated with piping components such as valves and fittings. Fittings
include elbows and tees. In addition there are pressure losses asso-
ciated with pipe diameter enlargement and reduction. A pipe nozzle
exiting from a storage tank will have entrance and exit losses. All
these pressure drops are called minor losses, as they are relatively
small compared to friction loss in a straight length of pipe. Generally,
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minor losses are included in calculations by using the equivalent length
of the valve or fitting or using a resistance factor or K factor mul-
tiplied by the velocity head V 2/2g discussed earlier. The term minor
losses can be applied only where the pipeline lengths and hence the
friction losses are relatively large compared to the pressure drops in
the fittings and valves. In a situation such as plant piping and tank
farm piping the pressure drop in the straight length of pipe may be
of the same order of magnitude as that due to valves and fittings. In
such cases the term minor losses is really a misnomer. Regardless, the
pressure losses through valves, fittings, etc., can be accounted for ap-
proximately using the equivalent length or K times the velocity head
method.

8.9.9 Valves and fittings

Table 8.5 shows the equivalent length ratios of commonly used valves
and fittings in a petroleum pipeline system. It can be seen from this
table that a gate valve has an L/D ratio of 8 compared to straight pipe.
Therefore, a 20-in-diameter gate valve may be replaced with a 20×8 =
160 in long piece of pipe that will match the frictional pressure drop
through the valve.

Example 8.13 A piping system is 2000 ft of NPS 20 pipe that has two
20-in gate valves, three 20-in ball valves, one swing check valve, and four
90◦ standard elbows. Using the equivalent length concept, calculate the total
pipe length that will include all straight pipe and valves and fittings.

Solution Using Table 8.5 for equivalent length ratios, we can convert all
valves and fittings in terms of 20-in pipe as follows:

Two 20-in gate valves = 2 × 20 × 8 = 320 in of 20-in pipe
Three 20-in ball valves = 3 × 20 × 3 = 180 in of 20-in pipe
One 20-in swing check valve = 1 × 20 × 50 = 1000 in of 20-in pipe
Four 90◦ elbows = 4 × 20 × 30 = 2400 in of 20-in pipe
Total for all valves

and fittings = 3900 in of 20-in pipe = 325 ft of 20-in pipe

Adding the 2000 ft of straight pipe, the total equivalent length of straight
pipe and all fittings = 2000 + 325 = 2325 ft.

The pressure drop due to friction in the preceding piping system can
now be calculated based on 2325 ft of pipe. It can be seen in this example
the valves and fittings represent roughly 14 percent of the total pipeline
length. In plant piping this percentage may be higher than that in a
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long-distance petroleum pipeline. Hence, the reason for the term minor
losses.

Another approach to accounting for minor losses is using the resis-
tance coefficient or K factor. The K factor and the velocity head approach
to calculating pressure drop through valves and fittings can be analyzed
as follows using the Darcy equation. From the Darcy equation (8.22),
the pressure drop in a straight length of pipe is given by

h = f
L
D

V 2

2g

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and Eq. (8.28) then becomes

h = K
V 2

2g
(8.29)

In Eq. (8.29), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head V 2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(V 2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 8.12. It can be seen that the K factor depends on the
nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.

From the K factor table it can be seen that a 6-in gate valve has a
K factor value of 0.12, while a 20-in gate valve has a K factor of 0.10.
However, both sizes of gate valves have the same equivalent length–
to–diameter ratio of 8. The head loss through the 6-in valve can be
estimated to be 0.12 (V 2/2g) and that in the 20-in valve is 0.10 (V 2/2g).
The velocities in both cases will be different due to the difference in
diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

V6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 20-in valve will be
approximately

V6 = 0.4085
1000
19.52 = 1.07 ft/s



TABLE 8.12 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72
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Therefore

Head loss in 6-in gate valve = 0.12 (10.89)2

64.4
= 0.22 ft

Head loss in 20-in gate valve = 0.10 (1.07)2

64.4
= 0.002 ft

These head losses appear small since we have used a relatively low
flow rate in the 20-in valve. In reality the flow rate in the 20-in valve
may be as high as 6000 gal/min and the corresponding head loss will be
0.072 ft.

8.9.10 Pipe enlargement and reduction

Pipe enlargements and reductions contribute to head loss that can be
included in minor losses. For sudden enlargement of pipes, the following
head loss equation may be used:

hf = (V1 − V2)2

2g
(8.30)

where V1 and V2 are the velocities of the liquid in the two pipe sizes
D1 and D2 and hf is the head loss in feet of liquid. Writing the above
in terms of pipe cross-sectional areas A1 and A2, we get for sudden
enlargement:

hf =
(

1 − A1

A2

)2 V 2
1

2g
(8.31)

This is illustrated in Fig. 8.3.
For sudden contraction or reduction in pipe size as shown in Fig. 8.3

the head loss is calculated from

hf =
(

1
Cc

− 1
)

V 2
2

2g
(8.32)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 8.3.

Gradual enlargement and reduction of pipe size, as shown in Fig. 8.4,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc (V1 − V2)2

2g
(8.33)

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 8.5.
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8.9.11 Pipe entrance and exit losses

The K factors for computing the head loss associated with the pipe
entrance and exit are as follows:

K =



0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

8.9.12 Total pressure required

So far we have examined the frictional pressure drop in an LPG pipeline
consisting of pipe, valves, fittings, etc. We also calculated the total
pressure required to pump LPG through a pipeline up to a delivery
station at an elevated point. The total pressure required at the begin-
ning of a pipeline, for a specified flow rate consists of three distinct
components:

1. Frictional pressure drop

2. Elevation head

3. Delivery pressure

Pt = Pf + Pelev + Pdel (8.34)

The first item is simply the total frictional head loss in all straight pipe,
fittings, valves, etc. The second item accounts for the pipeline elevation
difference between the origin of the pipeline and the delivery termi-
nus. If the origin of the pipeline is at a lower elevation than that of the
pipeline terminus or delivery point, a certain amount of positive pres-
sure is required to compensate for the elevation difference. On the other
hand if the delivery point were at a lower elevation than the beginning
of the pipeline, gravity will assist the flow and the pressure required
at the beginning of the pipeline will be reduced by this elevation differ-
ence. The third component, delivery pressure at the terminus, simply
ensures that a certain minimum pressure is maintained at the delivery
point, such as a storage tank. In addition due to the high vapor pressure
of LPG compared to other petroleum liquids, we must also make sure
that the pressure in the pipeline at any point does not drop below the
vapor pressure of LPG. In a pipeline with drastic elevation changes at
high points the pipeline pressure must be maintained above LPG vapor
pressure. An example will be used to illustrate this.

Suppose an LPG pipeline requires 800 psi to compensate for fric-
tional losses and the minimum delivery pressure required is 300 psi,
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the total pressure required at the beginning of the pipeline is calculated
as follows. If there were no elevation difference between the beginning
of the pipeline and the delivery point, the elevation head (component 2)
is zero. Therefore, the total pressure Pt required is

Pt = 800 + 0 + 300 = 1100 psi

Next consider elevation changes. If the elevation at the beginning is
100 ft, the elevation at the delivery point is 600 ft, and the specific
gravity of LPG is 0.5,

Pt = 800 + (600 − 100) × 0.5
2.31

+ 300 = 1208.23 psi

The middle term in this equation represents the static elevation head
difference converted to psi. Finally, if the elevation at the beginning is
600 ft and the elevation at the delivery point is 100 ft, then

Pt = 800 + (100 − 600) × 0.5
2.31

+ 300 = 991.77 psi

It can be seen from the preceding that the 500-ft advantage in elevation
in the final case reduces the total pressure required by approximately
108.23 psi compared to the situation where there was no elevation
difference between the beginning of the pipeline and delivery point
(1100 psi versus 991.77 psi).

8.9.13 Effect of elevation

The preceding discussion illustrated an LPG pipeline that had a flat el-
evation profile compared to an uphill pipeline and a downhill pipeline.
There are situations, where the ground elevation may have drastic
peaks and valleys that require careful consideration of the pipeline
topography. In some instances, the total pressure required to transport
a given volume of liquid through a long pipeline may depend more on
the ground elevation profile than on the actual frictional pressure drop.
In the preceding we calculated the total pressure required for a flat
pipeline as 1100 psi and that for an uphill pipeline to be 1208.23 psi. In
the uphill case the static elevation difference contributed to 9 percent
of the total pressure required. Thus the frictional component was much
higher than the elevation component. We will examine a case where
the elevation differences in a long pipeline dictate the total pressure
required more than the frictional head loss.

Next Page
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8.9.14 Pump stations required

In a long pipeline the pressure required at the beginning for pumping a
certain volume may exceed the maximum allowable operating pressure
(MAOP) of the pipeline. Therefore, the necessary pressure may have to
be provided in stages at two or more pump stations. For example, con-
sider a 500-mi pipeline pumping LPG from a refinery to a storage site.
The pressure required at the delivery point is 300 psi and the MAOP
of the pipeline is limited to 1400 psi. Suppose calculations show that
taking into account friction losses and elevation difference and the min-
imum delivery pressure required, the pressure required at the begin-
ning of the pipeline is 3600 psi at a certain flow rate. Since pipe pressure
is limited to 1400 psi, we need to provide the required 3600 psi by in-
stalling two intermediate pump stations in addition to the pump station
at the origin. The first pump station will operate at 1400 psi and by the
time the LPG arrives at the second pump station its pressure would
have dropped to the minimum required pressure of 300 psi (to prevent
vaporization of LPG). At this second pump station the LPG pressure
is boosted to 1400 psi which then drops to 300 psi at the third pump
station. Finally, the LPG is boosted to 1400 psi at the third station for
eventual delivery at the required pressure of 300 psi at the storage site.

In general the equation for calculating the approximate number of
pump stations based upon total pressure required, MAOP, and mini-
mum delivery pressure is as follows:

n = Pt − Ps

MAOP − Ps
(8.35)

where n = number of pump stations required
Pt = total pressure required calculated from Eq. (8.34), psi
Ps = minimum suction pressure required at each pump station,

psi
MAOP = maximum allowable operating pressure of pipe, psi

The calculated value of n from Eq. (8.35) is rounded up to the nearest
whole number. It must be noted that the preceding analysis assumes
that the entire pipeline has the same MAOP and the same minimum
suction pressure at all pump stations.

Using the example discussed earlier, we have

Pt = 3600 psi

Ps = 300 psi

MAOP = 1400 psi

Previous Page
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Therefore, the number of pump stations required from Eq. (8.35) is

n = 3600 − 300
1400 − 300

= 3

Thus, three pump stations are required.
If the total pressure required had been 3400 psi, everything else re-

maining the same, the number of pump stations required from Eq. (8.35)
would be

n = 3400 − 300
1400 − 300

= 2.82 or 3 pump stations

With three pump stations, the adjusted discharge pressure at each
station becomes

Discharge pressure = 3400 − 300
3

+ 300 = 1333.33 psi

Example 8.14 A 20-in (0.375-in wall thickness) LPG pipeline 500 mi long
has a ground elevation profile as shown in Fig. 8.6. The elevation at Corona
is 600 ft and at Red Mesa is 2350 ft.

(a) Calculate the total pressure required at the Corona pump station to
transport 200,000 bbl/day of LPG (specific gravity = 0.5 and viscosity = 0.3
cSt) to Red Mesa storage tanks, with a minimum delivery pressure of 300 psi
at Red Mesa. Use the Colebrook equation for friction factor calculation.

(b) If the pipeline operating pressure cannot exceed 1400 psi, how many
pumping stations, besides Corona will be required to transport the above
flow rate? Use a pipe roughness of 0.002 in.

Hydraulic gradient = 200,000 bbl/day LPG

Pipeline elevation profile

C

A BFlow

Corona
Elev. = 600 ft

Red Mesa
Elev. = 2350 ft

500-mi-long, 20-in pipeline

300 psi

Figure 8.6 Corona to Red Mesa pipeline.



Fuel Gas Distribution Piping Systems 505

Solution

(a) First, calculate the Reynolds number from Eq. (8.20):

R = 92.24 × 200,000
19.25 × 0.3

= 3,194,459

Therefore the flow is turbulent.

Relative pipe roughness = e
D

= 0.002
19.25

= 0.0001

Next, calculate the friction factor f using the Colebrook equation (8.28):

1√
f

= −2 log10

(
0.0001

3.7
+ 2.51

3,194,459
√

f

)

Solving for f by trial and error, f = 0.0125. We can now find the pressure
loss due to friction using Eq. (8.25) as follows:

Pm = 0.0605 × 0.0125 × (200,000)2 × 0.5
(19.25)5

= 5.72 psi/mi

The total pressure required at Corona is calculated by adding the pressure
drop due to friction to the delivery pressure required at Red Mesa and the
static elevation head between Corona and Red Mesa.

Pt = Pf + Pelev + Pdel from Eq. (8.34)

Pt = (5.72 × 500) + (2350 − 600) × 0.5
2.31

+ 300

= 2860 + 378.79 + 300 = 3539 psi

Since a total pressure of 3539 psi at Corona far exceeds the maximum oper-
ating pressure of 1400 psi, it is clear that we need additional intermediate
booster pump stations besides Corona.

(b) The approximate number of pump stations required without exceeding
the pipeline pressure of 1400 psi according to Eq. (8.35) is

Number of pump stations = 3539 − 300
1400 − 300

= 2.95 or 3 pump stations

Therefore, we will need two additional booster pump stations besides Corona.
With three pump stations the average discharge pressure per pump station
will be

Average pump station discharge pressure = 3539 − 300
3 + 300

= 1380 psi
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Figure 8.7 Tight line operation.

8.9.15 Tight line operation

When there are drastic elevation differences in a long pipeline, some-
times the last section of the pipeline toward the delivery terminus may
operate in an open-channel flow. This means that the pipeline section
will not be full of liquid and there will be a vapor space above the liquid.
Such situations are acceptable in ordinary petroleum liquid (gasoline,
diesel, and crude oils) pipelines compared to high vapor pressure liquids
such as LPG. In LPG pipelines the pressure cannot be allowed to fall
below the vapor pressure of LPG. Hence slack line conditions or open-
channel flow conditions cannot be allowed. We must therefore pack the
line by providing adequate back pressure at the delivery terminus as
illustrated in Fig. 8.7.

8.9.16 Hydraulic gradient

The graphical representation of the pressures along the pipeline as
shown in Fig. 8.8 is the hydraulic gradient. Since elevation is measured
in feet, the pipeline pressures are converted to feet of head of LPG and
plotted against the distance along the pipeline, superimposed on the

C
F

D

E

A B

Pipeline elevation profile

Pressure

Hydraulic gradient

Pump station Delivery terminus

Figure 8.8 Hydraulic gradient.
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elevation profile. If we assume a beginning elevation of 100 ft, a delivery
terminus elevation of 500 ft, a total pressure of 1000 psi required at
the beginning, and a delivery pressure of 250 psi at the terminus, we
can plot the hydraulic pressure gradient graphically by the following
method.

At the beginning of the pipeline the point C representing the total
pressure will be plotted at a height of

100 ft + 1000 × 2.31
0.5

= 4720 ft

where the liquid specific gravity = 0.5 has been assumed. Similarly,
at the delivery terminus the point D representing the total head at
delivery will be plotted at a height of

500 + 250 × 2.31
0.5

= 1655 ft

The line connecting points C and D represents the variation of the
total head in the pipeline and is termed the hydraulic gradient. At any
intermediate point such as E along the pipeline the pipeline pressure
will be the difference between the total head represented by point F on
the hydraulic gradient and the actual elevation of the pipeline at E.

If the total head at F is 2500 ft and the pipeline elevation at E is
250 ft, the actual pipeline pressure at E is

(2500 − 250) ft = 2250 × 0.5
2.31

= 487 psi

It can be seen that the hydraulic gradient clears all peaks along the
pipeline. If the elevation at E were 3000 ft, we would have a negative
pressure in the pipeline at E equivalent to

(2500 − 3000) ft or − 500 ft = −500 × 0.5
2.31

= −108 psi

A negative pressure is not acceptable for LPG, and the minimum pres-
sure anywhere in the pipeline must be higher than the vapor pressure
of LPG. Otherwise vaporization of LPG will occur.

Therefore, the total pressure at the beginning of the pipeline will
have to be higher by 108 psi, and the vapor pressure of LPG will have
to be at the flowing temperature. If the latter is taken as 250 psig, the
revised pressure at A becomes

Revised pressure at A = 1000 + 108 + 250 = 1358 psi
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Correspondingly,

Revised total head at A = 1358 × 2.31
0.5

+ 100 = 6374 ft

and the revised total head at F becomes

2500 + (108 + 250) × 2.31
0.5

= 4154 ft

Calculating the revised pressure at peak E, we get

Pressure at peak E = (4154 − 3000) ft or 1154 ft = 1154 × 0.5
2.31

= 250 psi

which is the minimum pressure required for LPG, and therefore the
pressures are fine.

8.9.17 Pumping horsepower

In the previous sections we calculated the total pressure required at
the beginning of the pipeline to transport a given volume of LPG over a
certain distance. We will now calculate the pumping horsepower (HP)
required to accomplish this.

The water horsepower (WHP), also known as the hydraulic horse-
power (HHP), based on 100 percent pump efficiency, is calculated from
the following equation:

WHP = ft of head × gal/min × liquid specific gravity
3960

(8.36)

The brake horsepower (BHP) of a pump takes into account the pump
efficiency and is calculated as follows:

BHP = ft of head × gal/min × liquid specific gravity
3960 × effy

(8.36a)

where effy is the pump efficiency expressed as a decimal value.
In SI units, the pumping power is expressed in kW. If pressures are

in kPa and the liquid flow rate is in m3/h, the pumping power required
is calculated from the following:

Power in kW = pressure in kPa × flow rate in m3/h
3600

Therefore, the power equation for pumping a liquid [Eq. (8.36a)] can be
modified for SI units as follows:

Power = (Pd − Ps) × Q
3600 × effy

(8.36b)
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where Power = pump power required, kW
Pd = pump discharge pressure, kPa
Ps = pump suction pressure, kPa
Q = liquid flow rate, m3/h

effy = pump efficiency, decimal value

Consider Example 8.14 in which we calculated the total pressure re-
quired to pump 200,000 bbl/day of LPG from Corona to Red Mesa
through a 500-mi-long, 20-in pipeline. We calculated the total pres-
sure required to be 3539 psi. Since the maximum allowable working
pressure in the pipeline was limited to 1400 psi, we concluded that two
additional pump stations besides Corona were required. With a total
of three pump stations, each pump station would be discharging at a
pressure of approximately 1380 psi.

At the Corona pump station LPG would enter the pump at some
minimum suction pressure, say 300 psi, and the pumps would boost the
pressure to the required discharge pressure of 1380 psi. Effectively, the
pumps would add the energy equivalent of (1380 − 300) or 1080 psi at a
flow rate of 200,000 bbl/day (5,833.33 gal/min). The water horsepower
(WHP) required is calculated as follows:

WHP =
(

1080 × 2.31
0.5

)
× 5833.33 × 0.5

3960
= 3675 HP

Assuming a pump efficiency of 80 percent, the pump brake horsepower
(BHP) required at Corona is

BHP = 3675
0.8

= 4594 HP

If the pump is driven by an electric motor with a motor efficiency of
95 percent, the drive motor HP required will be

Motor HP = 4594
0.95

= 4836 HP

The nearest standard size motor of 5000 HP would be adequate for this
application. Of course, this assumes that the entire pumping require-
ment at the Corona pump station is handled by a single pump-motor
unit. In reality, to provide for operational flexibility and maintenance
two or more pumps will be configured in series or parallel to provide
the necessary pressure at the specified flow rate. Let us assume that
two pumps are configured in parallel to provide the necessary head
pressure of 1080 psi (4990 ft of LPG) at the Corona pump station. Each
pump will be designed for one-half the total flow rate, or 2917 gal/min,
and a pressure of 4990 ft. If each pump selected had an efficiency
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of 80 percent, we can calculate the BHP required for each pump as
follows:

BHP = 4990 × 2917 × 0.5
3960 × 0.80

from Eq. (8.36a)

= 2298 HP

Alternatively, if the pumps are configured in series instead of parallel,
each pump will be designed for the full flow rate of 5833.33 gal/min
but at half the total head required, or 2495 ft. The BHP required per
pump will still be the same as for the parallel configuration. Pumps are
discussed in more detail in Chap. 6.

8.10 LPG Storage

LPG is usually stored as a liquid in steel storage tanks. These tanks
may be aboveground or belowground. Underground tanks have the ad-
vantage of a constant temperature of LPG in the tank and therefore
minimal vaporization. Aboveground tanks are less expensive to install,
but the LPG will be subject to temperature fluctuations and therefore
different evaporation rates. These tanks are designed in accordance
with the ASME Boiler and Pressure Vessel Code, Section VIII. The va-
por pressure that is developed in the tanks depends upon the outside
air temperature. For example, 100 percent propane at 50◦F has a vapor
pressure of approximately 80 psig. When the temperature increases to
80◦F the vapor pressure becomes 150 psig. On the other hand 100 per-
cent butane has a vapor pressure of 7 psig at 50◦F and increases to
24 psig at 80◦F.

Commercial LPG, being a mixture of propane and butane, will have
vapor pressures between the values for propane and butane just given.
LPG tank capacities range from 6000 to 30,000 gal, and the tanks weigh
between 11,000 and 50,000 lb. Smaller standard size tanks are avail-
able in a capacity range from 120 to 1000 gal. LPG cylinders are man-
ufactured in capacities from 1 to 420 lb. Underground tanks must be
protected from potential traffic loads by installing them at a depth of at
least 2 ft below the ground surface. If LPG tanks are located in remote
areas and no traffic or potential for damage from construction equip-
ment is anticipated, the tank burial depth can be reduced to as low as
6 in. Before filling a storage tank with LPG, the tank must be com-
pletely purged of any water and air, usually with an inert gas, such as
nitrogen. The maximum allowable amount of air is limited to 6 percent.

Pressure regulators and pressure relief valves are installed on the
LPG tanks to reduce pressure to that required in fuel distribution piping
and to protect piping from excessive pressures.
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8.11 LPG Tank and Pipe Sizing

The size of the LPG tank is determined by the demand (in ft3/h) for
the fuel. The vaporization rate of propane determines the amount of
fuel available from a particular size tank at a certain ambient tem-
perature. The tank must be large enough to provide the vaporization
rate when the ambient temperature is minimum. The rate of vaporiza-
tion can be calculated considering the wetted area of LPG in the tank.
The following formula can be used to calculate the vaporization rate
for an aboveground tank based on the ambient temperature and the
temperature of LPG in the tank.

Q = U × A× �T (8.37)

where Q = heat transfer rate to vaporize a given quantity of LPG,
Btu/h

U = overall heat transfer coefficient for the tank, Btu/(h · ft2 · ◦F)
A = wetted surface area of the aboveground tank, ft2

�T = temperature difference between ambient air and LPG
temperature in tank

For a belowground tank, A may be taken as the entire surface area of
the tank.

Generally, the difference between the coldest outside temperature
and the warmest LPG temperature is used to calculate �T. Depending
upon the relative humidity of the air, frost formation may occur on the
outside of the tank. Frost must be avoided since it acts as an insulation
and therefore inhibits the vaporization of the LPG. Table 8.13 shows
the temperature difference to be used at different humidity levels.

For example, from the table when the relative humidity is 50 percent
and the outside temperature is 40◦F, �T equals 16.5. For aboveground
tanks a value of U = 2.0 may be used. For underground tanks U = 0.5

TABLE 8.13 Temperature Difference and Relative Humidity

Air temperature Relative humidity
◦C ◦F 20 30 40 50 60 70 80 90

−34.4 −30.0 8.0 5.0 2.5 1.0
−28.9 −20.0 20.0 15.0 11.5 8.5 5.0 3.0 1.5
−23.3 −10.0 27.5 20.5 16.0 12.0 9.0 6.0 3.0 1.5
−17.8 0.0 29.0 21.5 16.5 12.5 9.0 6.0 4.0 2.0
−12.2 10.0 30.0 22.5 17.0 13.0 9.5 6.5 4.0 2.0
−6.7 20.0 31.5 24.0 18.0 14.0 10.0 7.0 4.0 2.0
−1.1 30.0 33.0 25.0 19.5 15.0 11.0 8.0 5.0 3.0

4.4 40.0 35.0 27.0 21.0 16.5 12.0 9.0 8.0 8.0



512 Chapter Eight

TABLE 8.14 Latent Heat of Vaporization of Propane

Ambient air temperature Propane
◦C ◦F Btu/lb Btu/gal

−40.0 −40.0 180.8 765
−34.4 −30.0 178.7 755
−28.9 −20.0 176.2 745
−23.3 −10.0 173.9 735
−17.8 0.0 171.5 725
−12.2 10.0 169.0 715
−6.7 20.0 166.3 704
−1.1 30.0 163.4 691

4.4 40.0 160.3 678
10.0 50.0 156.5 662
15.6 60.0 152.6 645

is used. After calculating the vaporization rate Q using Eq. (8.37), we
can calculate the quantity of LPG vaporized in gal/h as follows:

V = Q
L

(8.38)

where V = volume of LPG vaporized, gal/h
Q = heat transfer rate to vaporize a given quantity of LPG,

Btu/h
L = latent heat of vaporization of propane, Btu/gal

The latent heat of vaporization for propane is listed in Table 8.14 for
various ambient temperatures.

Example 8.15 An aboveground LPG storage tank is installed at a location
where the relative humidity is 70 percent and the lowest expected ambient
temperature is 40◦F. The continuous demand for LPG is at the rate of 150,000
Btu/h. Calculate the vaporization rate required in gal/h and the minimum
surface area of tank required.

Solution Since the LPG requirement is 150,000 Btu/h, we will determine the
flow rate out of the tank in gal/h as follows. From Table 8.2 the heat content
of LPG is 91,547 Btu/gal. Then

LPG vaporization rate = 150,000 Btu/h
91,547 Btu/gal

= 1.6385 gal/h

Also from Table 8.14, the latent heat of vaporization at 40◦F is 160.3 Btu/lb
or 678 Btu/gal. Therefore the heat transfer rate to vaporize 1.6385 gal/h of
LPG at 40◦F, using Eq. (8.38), is

1.6385 = Q
678
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Solving for heat transfer Q,

Q = 1.6385 × 678 = 1111 Btu/h

From Table 8.14 at a relative humidity of 70 percent and an ambient tem-
perature of 40◦F, the temperature difference �T for heat transfer is 9◦F.
Therefore, the minimum tank area required to vaporize LPG at this rate,
using Eq. (8.37), is

1111 = 0.2 × A× 9

Solving for A, we get

A = 617.22 ft2

This is the minimum wetted surface area of the aboveground tank required
to vaporize LPG and provide the required demand of 150,000 Btu/h at an
LPG flow rate of 1.6385 gal/h.

Finally, from the manufacturer’s catalog we can select a tank that will
provide the minimum wetted area previously calculated for the minimum
level of LPG in the tank.

When LPG is supplied as a fuel gas through distribution piping, the pres-
sures are limited to that allowed by the code for fuel gas distribution piping. It
was mentioned earlier that an NG fuel distribution piping system is limited
to 5 psig and a LPG piping system is limited to 20 psig. The 20-psig limitation
for LPG fuel gas distribution piping is allowed only if the building containing
the LPG distribution piping is constructed in compliance with NFPA 58 fuel
gas code and the buildings are used exclusively for industrial applications
or laboratories. In all other instances LPG distribution piping is limited to
5 psig as with NG fuel gas distribution piping.

For low-pressure LPG distribution piping we can use the same methods for
determining the pipe size and capacity as with NG pipe sizing. Therefore, the
Spitzglass equation (less than or equal to 1 psi) and the Weymouth equation
(greater than 1.0 psi) can be used. The NG piping capacity tables (Tables
8.7 through 8.10) may also be used for an LPG distribution piping system
provided adjustments are made to the capacities to account for the difference
in specific gravities between LPG vapor and natural gas. The table values are
based on NG with a specific gravity of 0.60 (air = 1.0), whereas LPG vapor
has a specific gravity of approximately 1.52 (air = 1.0). Since the capacity is
inversely proportional to the square root of the specific gravity from Eqs. (8.1)
and (8.5), the multiplication factor for the capacity from Tables 8.7 through
8.10 is

Multiplication factor =
(

0.6
1.52

)0.5

= 0.6283

Sometimes propane is mixed with air in varying proportions to use in
place of NG. One such mixture has a specific gravity of 1.30 and a heating
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value of 1450 Btu/ft3. In such a case the multiplication factor for capacity
becomes

Multiplication factor =
(

0.6
1.3

)0.5

= 0.6794

Example 8.16 Calculate the LPG capacity of fuel gas distribution piping
consisting of NPS 4 pipe, with an inside diameter of 4.026 in and a total
equivalent length of 150 ft. The inlet pressure is 1.0 psig. Consider a pressure
drop of 0.6 in of water column and a specific gravity of gas = 1.52.

Solution Since this is low pressure, we will use the Spitzglass formula. First
we will calculate the parameter K from Eq. (8.2):

K =
√

4.0265

1 + (3.6/4.026) + (0.03 × 4.026)
= 22.91

and from Eq. (8.1), the capacity in ft3/h is

Qs = 3550 × 22.91

√
0.6

1.52 × 150
= 4172 ft3/h

Thus the LPG capacity of the NPS 4 pipe is 4172 SCFH.

Example 8.17 Calculate the LPG capacity of a fuel gas distribution pipeline
consisting of DN 100 (6-mm wall thickness) pipe with a total equivalent
length of 50 m. The inlet pressure is 6 kPa. Consider a pressure drop of
0.5 kPa and a specific gravity of gas = 1.52.

Solution Since this is low pressure, we will use the Spitzglass formula. First
we will calculate the parameter K from Eq. (8.4):

K = 3.075 × 10−4

√
885

1 + (91.44/88) + 0.001181 × 88

= 15.26

Pressure drop of 0.5 kPa = 0.5 × 0.145 = 0.0725 psi

= 0.0725 × 2.31 × 12 = 2 in of water column

= 2 × 25.4 = 50.8 mm of water column

and from Eq. (8.3), the capacity in m3/h is

Qs = 11.0128 × 15.26

√
50.8

1.52 × 50
= 137.4 m3/h

Therefore, the LPG capacity of the DN 100 pipe is 137.4 m3/h at standard
conditions.
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Example 8.18 An LPG fuel gas distribution pipeline is 210 ft of straight
NPS 6 pipe with an inside diameter of 6.065 in and two NPS 6 elbows and
two NPS 6 plug valves.

(a) Calculate the total equivalent length of all pipe valves and fittings.

(b) Consider an inlet pressure of 10.0 psig and calculate the total pressure
drop at a flow rate of 50,000 SCFH. The specific gravity of the gas is 1.52.

Solution

(a) The total equivalent length will be calculated using Table 8.5 for valves
and fittings:

Two NPS 6 90◦ elbows = 2 × 30 × 6
12

= 30 ft of NPS 6 pipe

Two NPS 6 plug valves = 2 × 18 × 6
12

= 18 ft of NPS 6 pipe

Total for all valves and fittings = 48 ft of NPS 6 pipe

Adding the 210 ft of straight pipe, the total equivalent length of straight pipe
and all fittings

Le = 210 + 48 = 258 ft

(b) Since this is not low pressure, we will use the Weymouth equation (8.5).
First we will calculate the parameter K from Eq. (8.2):

K =
√

6.0655

1 + (3.6/6.065) + (0.03 × 6.065)
= 67.99

The flow rate and pressure drop are related by Eq. (8.5):

50,000 = 3550 × 67.99

√
10 �P

1.52 × 258

In the preceding we have used the inlet pressure as the average pressure
since we need to calculate �P in order to determine the average pressure.

Solving for �P, we get

�P = 1.68 psig

With this pressure drop, the average pressure is

10 + 10 − 1.68
2

= 9.16 psig

Recalculating �P based on this average pressure, we get

50,000 = 3550 × 67.99

√
8.995 �P

1.52 × 258
= 1.87 psig

The process is repeated until successive values of �P are within 0.1 psi. This
is left as an exercise for the reader.
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Example 8.19 An LPG fuel gas distribution pipeline is 50 m of straight
DN 150 (6-mm wall thickness) pipe. The inlet pressure is 60 kPa and the
flow rate is 180 L/s. The piping includes four DN 150 elbows and two DN
150 plug valves.

(a) Calculate the total equivalent length of all pipe valves and fittings.

(b) Calculate the pressure drop if the specific gravity of gas is 1.52.

(c) If the quantity of LPG required is increased to 250 L/s and the inlet
pressure remains the same, what pipe size is required to limit the pressure
drop to 10 percent of the inlet pressure in a total equivalent length of 110 m
of piping?

Solution

(a) The total equivalent length will be calculated using Table 8.5 for valves
and fittings:

Four DN 150 90◦ elbows = 4 × 30 × 150
1000

= 18.00 m of DN 150 pipe

Two DN 150 plug valves = 2 × 18 × 150
1000

= 5.4 m of DN 150 pipe

Total for all valves and fittings = 23.4 m of DN 150 pipe

Adding the 50 m of straight pipe, the total equivalent length of straight pipe,
valves, and fittings is

Le = 50 + 23.4 = 73.4 m of DN 150 pipe

(b) Since the pressure is higher than 6.9 kPa, the Weymouth formula will
be used. First we calculate the value of the parameter K using Eq. (8.4):

K = (3.075 × 10−4)

√
1385

1 + (91.44/138) + 0.001181 × 138
= 50.91

We will assume a 10 percent pressure drop and calculate the average pipeline
pressure as

Average pressure = 60 + 54
2

= 57 kPa

From Eq. (8.6),

180 × 60 × 60
1000

= 8.0471 × 50.91

√
57�P

1.52 × 73.4

Solving for �P, we get

�P = 4.90 kPa

This is almost 9 percent of the inlet pressure we assumed at the start.

(c) When the flow rate is increased from 180 to 250 L/s, keeping the pressure
loss at 10 percent of the inlet pressure and increasing the equivalent length
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from 73.4 to 110 m, we will have to select a larger pipe size. Since calculation
of the diameter from the Weymouth equation is not straightforward, we will
assume a pipe size and check for the pressure drop to be within 10 percent
of the inlet pressure.

Initially, choose DN 200 pipe with 6-mm wall thickness.

Pipe inside diameter d = 200 − 12 = 188 mm

Next we calculate the value of the parameter K using Eq. (8.4):

K = (3.075 × 10−4)

√
1885

1 + (91.44/188) + 0.001181 × 188
= 114.01

We will assume a 10 percent pressure drop and calculate the average pipeline
pressure as

Average pressure = 60 + 54
2

= 57 kPa

From Eq. (8.6),

250 × 60 × 60
1000

= 8.0471 × 114.01

√
57 �P

1.52 × 110

Solving for �P, we get

�P = 2.83 kPa

This is almost 5 percent of the inlet pressure and therefore is acceptable.
Hence, the pipe size required for the increased flow rate is DN 200.



Chapter

9
Cryogenic and

Refrigeration Systems
Piping

Introduction

Cryogenic piping systems are those installations where the operating
temperature is below 20◦F. This limit is established on the basis of the
embrittlement point of most carbon-steel materials. Many industrial
gases such as oxygen, nitrogen, and argon are stored and transported
in cryogenic containers and piping systems, since this is more efficient
compared to storage in gaseous form that requires high pressures and
therefore stronger vessels and pipes, which increases costs. Although
cryogenic vessels do not have to withstand higher pressures, the low
temperatures cause embrittlement problems, resulting in larger ex-
pansion and contraction of piping systems. These storage containers
and piping are subject to larger temperature differentials which cause
structural problems. Nevertheless, cryogenic piping and storage are
preferred for many industrial gases since they are more efficient and
more economical in the long run.

Refrigeration piping systems are used with refrigeration equipment
to produce temperatures lower than normal for industrial and resi-
dential use. A refrigerant fluid is used to create the low temperature
by absorbing heat from the surroundings and in the process it evapo-
rates. The evaporated vapor is compressed and condensed by using a
compressor in the system. The condensed liquid is then reduced in pres-
sure through an expansion valve after which it enters the evaporator to
start the cycle over again. Many volatile substances such as ammonia
are used as refrigerants to produce the lower temperatures required.

519
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Several halogenated hydrocarbons are also used as refrigerants. Eth-
ylene glycol, propylene glycol, and brine are also used to produce lower
temperatures as secondary coolants. These fluids do not change from
the liquid to the vapor phase, however, as do other common refrigerants.

9.1 Codes and Standards

Cryogenic piping systems are designed and constructed in accordance
with the ASME B31.3 Process Piping Code. This code presents meth-
ods to size pipe considering stresses due to internal pressure, weight of
pipe, weight of liquid, and thermal expansion and contraction of pip-
ing. Piping material used for cryogenic piping systems must conform to
ASTM specifications which list material to be used based on operating
temperature and pressure.

Refrigeration piping is designed to the American Standard Safety
Code for Mechanical Refrigeration. This standard is sponsored by the
American Society of Heating, Refrigerating, and Air-Conditioning
Engineers (ASHRAE). Many state, city, and local codes also regulate
refrigeration piping, but most of these adopt the ASHRAE standards.
This code is also referred to as ANSI/ASHRAE 15. The American
National Standard Code for Pressure Piping, ASME B31.5, is also used
in structural design, construction, and testing of refrigeration piping.

9.2 Cryogenic Fluids and Refrigerants

Various cryogenic fluids such as helium and hydrogen are used in indus-
trial processes. Table 9.1 lists the properties of some common cryogenic
fluids.

Enthalpy and entropy versus pressure and temperature charts are
also used in conjunction with cryogenic piping calculations. One of the
properties used for cryogenic piping calculations is the density, which
is also the reciprocal of the specific volume. As an example, for nitro-
gen at a temperature of 200 K and a pressure of 0.1 MPa the den-
sity is 1.75 kg/m3. When a cryogenic liquid flows through a throttle
valve, flashing may occur. This flashing produces vapors resulting in
two-phase flow. Two-phase flow results in a larger pressure drop com-
pared to that of single-phase flow. Larger pressure drops require a larger
pipe size, and hence two-phase flow must be avoided. As far as possible,
cryogenic piping systems must be maintained in single-phase flow.

Refrigeration systems use secondary coolants and refrigerants. Brine
and glycol solutions such as ethylene glycol and propylene glycol are
secondary coolants. Refrigerants include ammonia and halogenated hy-
drocarbons. Table 9.2 lists commonly used refrigerants in refrigeration
systems.



TABLE 9.1 Properties of Common Cryogenic Fluids
Hydrogen Carbon Carbon

Helium normal Nitrogen monoxide Air Argon Oxygen Methane R-14 dioxide Propane Ammonia

Formula He n-H2 N2 CO Mixture Ar O2 CH4 CF4 CO2 C3H8 NH3
Molecular weight 4 2.02 28.01 28.01 28.96 39.95 32 16.04 88.01 44.01 44.1 17.03
Triple point

Temperature, K 13.95 63.15 68.15 83.81 54.36 90.68 89.52 216.58 85.47 195.41
Pressure, kPa 7.2 12.5 15.4 69.1 0.15 11.7 0.11 518 3.00E-07 6.1
Heat of fusion, J/g 58.1 25.74 30.0 29.58 13.9 58.6 7.95 204.9 79.9 332

Normal boiling point
Temperature, K 4.22 20.38 77.35 81.7 78.7/81.7 87.29 90.19 111.64 145.09 194.67 231.08 239.72
Density, kg/m3

Liquid 124.9 70.7 805.4 789 875.4 1394 1134 42.3 1633 581 682
Vapor 16.89 1.329 4.6 4.4 4.51 5.77 4.49 1818 7.74 2.42 0.89

Heat of vaporization, J/g 20.4 448 199.7 215.8 201.1 160.78 212.1 510 134.1 573 428 1371
Specific heat, J/(g · K)

Liquid 4.52 9.75 2.042 2.15 1.966 1.07 1.737 3.43 0.91 2.246 4.43
Vapor 9.08 12.2 1.34 1.22 1.13 0.56 0.971 2.15 0.51 1.46 2.24

Viscosity g/(m · s)
Liquid 0.0036 0.0133 0.17 0.17 0.18 0.27 0.189 0.12 0.32 0.199 0.262
Vapor 0.0012 0.0011 0.0052 0.0056 0.01 0.007 0.0074 0 0.01 0.0064 0.0081

Thermal conductivity,
W/(m · K)
Liquid 0.026 0.119 0.140 0.140 0.14 0.12 0.15 0.193 0.09 0.129 0.587
Vapor 0.009 0.017 0.0070 0.0069 0.01 0.0057 0.0076 0.01 0.01 0.01 0.114 0.0175

Critical point
Temperature, K 5.19 33.25 126.2 132.85 132.5 150.65 154.58 190.55 227.6 304.12 369.8 405.5
Pressure, kPa 227.5 1297 3400 3494 3766 4898 5043 4599 3740 7374 4240 11353
Density, kg/m3 69.64 31.0 313.1 303.9 316.5 535.7 436.2 162.7 629 467.8 220.5 235.2

Gas at 101.3 kPa, 294.6 K
Density, kg/m3 0.17 0.08 1.160 1.161 1.2 1.66 1.33 0.665 3.66 1.832 1.861 0.713
Specific heat, J/(g · K) 5.19 14.29 1.041 1.039 1.01 0.52 0.92 2.226 0.690 0.839 1.67 2.09
Specific heat ratio 1.67 1.407 1.401 1.402 1.4 1.67 1.4 1.31 1.16 1.316 1.14 1.32
Viscosity, g/(m · s) 0.02 0.0089 0.0174 0.0176 0.0183 0.02 0.0204 0.01 0.017 0.015 0.01 0.0101
Thermal conductivity,

W/(m · K) 0.15 0.183 0.0254 0.0247 0.0261 0.02 0.0263 0.033 0.0155 0.159 0.017 0.023521



TABLE 9.2 Commonly Used Refrigerants

ASHRAE Normal boiling Critical Critical Freezing Specific
refrigerant Chemical Chemical Molecular point, ◦F temperature, pressure, point, ◦F heat ratio

number name formulas weight at 14,696 psia ◦F psia at 14,696 psia k = Cp/Cv

11 Trichlorofluoromethane CCl3F 137.4 74.8 388.4 640 −168 1.13
114 Dichlorotetrafluoroethane CClF2OClF2 170.0 38.4 294.3 474 −137 1.09
12 Dichlorodifluoromethane CCl2F2 120.9 −21.6 233.6 597 −252 1.14
22 Chlorodifluoromethane CHClF2 86.5 −41.4 204.8 716 −256 1.18

600 n-Butane C4H10 58.1 31.1 305.6 550.7 −217 1.09
290 Propane C3H8 44.1 −43.7 206 616.3 −305 1.14

1270 Propylene C3H6 42.1 −53.9 197.1 667.2 −301 1.15
170 Ethane C2H6 30.1 −127.4 90.09 707.8 −297 1.19

1150 Ethylene C2H4 28.1 −154.8 48.6 731.1 −272 1.24
50 Methane CH4 16.0 −258.7 −111.7 667.8 −296 1.305

717 Ammonia NH3 17.0 −28.0 270.4 1636.0 −108 1.29

522
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9.3 Pressure Drop and Pipe Sizing

Pressure drop in cryogenic piping may be calculated based on single-
phase (liquid or gas) or two-phase flow (liquid and gas) depending upon
whether a single-phase or two-phase flow exists in the pipeline. Single-
phase liquid calculations are similar to that of water and oil piping
systems. Single-phase gas calculation systems follow the methods used
with flow of compressed gases in pipes. We will first address pressure
drop in cryogenic piping systems for the liquid phase followed by that
for the gas phase and finally that for two-phase flow. For more details
of single-phase liquid or gas flow, please refer to Chaps. 6 and 7.

9.3.1 Single-phase liquid flow

The density and viscosity of a liquid are important properties required
to calculate the pressure drop in liquid flow through pipes. The density
is the mass per unit volume of a liquid. For example, the density of
water is 62.4 lb/ft3at 60◦F. The density of liquid oxygen is 1134 kg/m3

at 54 K.
Viscosity is a measure of a liquid’s resistance to flow. Consider a liquid

flowing through a circular pipe. Each layer of liquid flowing through
the pipe exerts a certain amount of frictional resistance to the adjacent
layer. This is illustrated in Fig. 9.1, where a velocity gradient is shown
to exist across the pipe diameter.

According to Newton, the frictional shear stress between adjacent
layers of the liquid is related to the flowing velocity across a section of
the pipe as

Shear stress = µ × velocity gradient

or

τ = µ
dv
dy

(9.1)
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Figure 9.1 Viscosity and Newton’s law.
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The velocity gradient is defined as the rate of change of liquid velocity
along the pipe diameter. The proportionality constant µ in Eq. (9.1) is
referred to as the absolute viscosity or dynamic viscosity. In SI units µ

is expressed in poise [(dyne · s)/cm2 or g/(cm · s)] or centipoise (cP). In
U.S. Customary System (USCS) units absolute viscosity is expressed
as (lb · s)/ft2 or slug/(ft · s).

For example, water has a viscosity of 1 cP at 60◦F and liquid oxygen
has a viscosity of 0.189 cP. Another term known as the kinematic vis-
cosity of a liquid is defined as the absolute viscosity divided by the
density. It is generally represented by the symbol ν. Therefore,

Kinematic viscosity ν = absolute viscosity µ

density ρ
(9.2)

In USCS units, kinematic viscosity is measured in ft2/s. In SI units,
kinematic viscosity is expressed as m2/s, stokes (St), or centistokes (cSt).
One stoke equals 1 cm2/s.

We will next discuss some important parameters relating to liquid
flow and how they affect the pressure loss due to friction. Velocity of
liquid in a pipe, the dimensionless parameter known as the Reynolds
number, and the various flow regimes will be covered first. Next we will
introduce the Darcy equation and the Moody diagram for determining
the friction factor. The analytical method of calculating the friction fac-
tor using the Colebrook-White equation will be discussed, and examples
of pressure drop calculation and pipe sizing for single-phase liquid flow
will be shown.

Velocity. The speed at which a liquid flows through a pipe, also referred
to as velocity, is an important parameter in pressure drop calculations.
The velocity of flow depends on the pipe diameter and flow rate. If the
flow rate is constant through the pipeline (steady flow) and the pipe di-
ameter is uniform, the velocity at every cross section along the pipe will
be a constant value. However, there is a variation in velocity along the
pipe cross section. The velocity at the pipe wall will be zero, increasing
to a maximum at the centerline of the pipe. This is illustrated in Fig. 9.2.

Maximum
velocity

v
y

Laminar flow

Maximum
velocity

Turbulent flow

Figure 9.2 Velocity variation—
laminar and turbulent flow.

My pc
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We can define an average velocity of flow at any cross section of the
pipe as follows:

Average velocity = flow rate
area of flow

If the flow rate is in ft3/s and the pipe cross-sectional area is in ft2, the
velocity from the preceding equation is in ft/s.

Considering liquid flowing through a circular pipe of internal diam-
eter D at a flow rate of Q, the average flow velocity is

v = Q
π D2/4

(9.3)

where v = velocity, ft /s
Q = flow rate, ft3/s
D = pipe inside diameter, ft

Employing commonly used units of flow rate Q in ft3/s and pipe diameter
in inches, the velocity in ft/s is as follows:

v = 144Q
π D2/4

simplifying to

v = 183.3461
Q
D2 (9.4)

where the flow rate Q is in ft3/s and the pipe inside diameter is in inches.
Equation (9.4) for velocity can be modified in terms of flow rate in

gal/min as follows:

v = 0.4085
Q
D2 (9.5)

where v = velocity, ft /s
Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the velocity equation is as follows:

v = 353.6777
Q
D2 (9.6)

where v = velocity, m/s
Q = flow rate, m3/h
D = internal diameter, mm
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Example 9.1 Liquid flows through an NPS 16 (15.5-in inside diameter) pipe
at the rate of 4000 gal/min. Calculate the average velocity for steady-state
flow. (Note: The designation NPS 16 means nominal pipe size of 16 in.)

Solution From Eq. (9.5) the average flow velocity is

v = 0.4085
4000
15.52

= 6.80 ft/s

Example 9.2 A liquid flows through a DN 400 outside diameter (10-mm
wall thickness) pipeline at 200 L/s. Calculate the average velocity for steady
flow.

Solution The designation DN 400 in SI units corresponds to NPS 16 in USCS
units. DN 400 means a metric pipe size of 400-mm outside diameter. First
convert the flow rate in L/s to m3/h.

Flow rate = 200 L/s = 200 × 60 × 60 × 10−3 m3/h = 720 m3/h

From Eq. (9.6) the average flow velocity is

v = 353.6777
720
3802

= 1.764 m/s

The variation of flow velocity along the cross section of a pipe as depicted
in Fig. 9.2 depends on the type of flow. In laminar flow, the velocity variation
is parabolic. As the flow rate becomes turbulent, the velocity profile approxi-
mates a more trapezoidal shape as shown. Laminar and turbulent flows are
discussed after we introduce the concept of Reynolds number.

Reynolds number. The Reynolds number of flow is a dimensionless
parameter that depends on the pipe diameter, liquid flow rate, liquid
viscosity, and density. It is defined as follows:

Re = vDρ

µ
(9.7)

or

Re = vD
ν

(9.8)

where Re = Reynolds number, dimensionless
v = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = mass density of liquid, slug/ft3

µ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s
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In terms of more commonly used units, we have the following versions
of the Reynolds number equation:

Re = 3162.5
Q
Dν

(9.9)

where Re = Reynolds number, dimensionless
Q = flow rate, gal/min
D = inside diameter of pipe, in
ν = kinematic viscosity, centistokes (cSt)

In SI units, the Reynolds number is expressed as follows:

Re = 353,678
Q
νD

(9.10)

where Re = Reynolds number, dimensionless
Q = flow rate, m3/h
D = inside diameter of pipe, mm
ν = kinematic viscosity, cSt

Example 9.3 A liquid having a density of 70 lb/ft3 and a viscosity of 0.2 cP
flows through an NPS 10 (0.250-in wall thickness) pipeline at 1000 gal/min.
Calculate the average velocity and Reynolds number of flow.

Solution The NPS 10 (0.250-in wall thickness) pipeline has an inside
diameter = 10.75 − 2 × 0.25 = 10.25 in. From Eq. (9.5) the average velocity
is calculated first:

v = 0.4085
1000

10.252
= 3.89 ft/s

Liquid viscosity in cSt = viscosity in cP
density

= 0.2 × 6.7197 × 10−4

70

= 1.9199 × 10−6 ft2/s

= 1.9199 × 10−6 × (0.3048)2 m2/s

= 1.7837 × 10−7 m2/s = 1.7837 × 10−7

10−6
cSt

= 0.1784 cSt

using conversion factors from App. A.
From Eq. (9.9) the Reynolds number is therefore

Re = 3162.5
1000

(10.25 × 0.1784)
= 1.73 × 106

Example 9.4 A liquid having a density of 1120 kg/m3 and a viscosity of
0.2 cSt flows through a DN 200 (6-mm wall thickness) pipeline at 200 m3/h.
Calculate the average flow velocity and the Reynolds number of flow.
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Solution The DN 200 (6-mm wall thickness) pipe has an inside diameter =
200 − 2 × 6 = 188 mm. From Eq. (9.6) the average velocity is therefore

v = 353.6777
200
1882

= 2.00 m/s

Next, from Eq. (9.10) the Reynolds number is

Re = 353,678
200

188 × 0.2
= 1.88 × 106

Types of flow. Flow through a pipe is classified as laminar flow, turbu-
lent flow, or critical flow depending on the magnitude of the Reynolds
number of flow. If the Reynolds number is less than 2100, the flow is
said to be laminar. When the Reynolds number is greater than 4000,
the flow is considered to be turbulent. Critical flow occurs when the
Reynolds number is in the range of 2100 to 4000. Laminar flow is char-
acterized by smooth flow in which no eddies or turbulence is visible.
The flow is also said to occur in laminations. If dye was injected into
a transparent pipeline, laminar flow would be manifested in the form
of smooth streamlines of dye. Turbulent flow occurs at higher veloci-
ties and is accompanied by eddies and other disturbances in the liquid.
More energy is lost in friction in the critical flow and turbulent flow
regions as compared to the laminar flow region.

The three flow regimes characterized by the Reynolds number of
flow are

Laminar flow: Re ≤ 2100
Critical flow: 2100 < Re ≤ 4000
Turbulent flow: Re > 4000

In the critical flow regime, where the Reynolds number is between 2100
and 4000, the flow is undefined and unstable, as far as pressure drop
calculations are concerned. In the absence of better data, it is customary
to use the turbulent flow equation to calculate pressure drop in the
critical flow regime as well.

Pressure drop due to friction. As a liquid flows through a pipe, energy is
lost due to resistance between the flowing liquid layers as well as due to
the friction between the liquid and the pipe wall. One of the objectives
of pipeline calculation is to determine the amount of energy and hence
the pressure lost due to friction as the liquid flows from the source
to the destination. We will begin by discussing the Darcy equation for
pressure drop calculations.

Darcy equation. As a liquid flows through a pipe from point A to point B
the pressure along the pipe decreases due to frictional loss between the
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flowing liquid and the pipe. The extent of pressure loss due to friction
depends on various factors such as the liquid flow rate, liquid density,
liquid viscosity, pipe inside diameter, pipe length, and internal condition
of the pipe (rough, smooth, etc.) The Darcy equation is used to calculate
the pressure drop in a pipeline as follows:

h = f
L
D

v2

2g
(9.11)

where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = inside diameter of pipe, ft
v = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

The Darcy equation gives the frictional pressure loss in feet of liquid
head, which can be converted to pressure loss in psi using the following
equation:

�P = h × ρ

144
(9.12)

where �P = pressure loss, psi
h = pressure loss, ft of liquid head
ρ = liquid density, lb/ft3

In SI units Eq. (9.12) becomes

�P = h × ρ

101.94
(9.13)

where �P = pressure loss, kPa
h = pressure loss, m of liquid head
ρ = liquid density, kg/m3

The term v2/2g in the Darcy equation is the velocity head, and it rep-
resents the kinetic energy of the liquid. The term velocity head will be
used in subsequent sections of this chapter when analyzing frictional
loss through pipe fittings and valves.

The following form of the Darcy equation is represented in terms of
commonly used units.

h = 0.1863
f Lv2

D
(9.14)
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where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = pipe inside diameter, in
v = average flow velocity, ft/s

Another form of the Darcy equation with frictional pressure drop ex-
pressed in psi/ft and using the flow rate instead of velocity is as follows:

Pf = (2.1635 × 10−4)
f Q2ρ

D5 (9.15)

where Pf = frictional pressure loss, psi/ft
f = Darcy friction factor, dimensionless

Q = flow rate, gal/min
D = pipe inside diameter, in
ρ = liquid density, lb/ft3

In SI units, the Darcy equation may be written as

h = 50.94
f Lv2

D
(9.16)

where h = frictional pressure loss, m of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
v = average flow velocity, m/s

Another version of the Darcy equation in SI units is as follows:

Pm = (6.2475 × 104)
(

f Q2 ρ

D5

)
(9.17)

where Pm = frictional pressure loss, kPa/m
Q = liquid flow rate, m3/h
f = Darcy friction factor, dimensionless
ρ = liquid density, kg/m3

D = pipe inside diameter, mm

The friction factor f in the Darcy equation is the only unknown on
the right-hand side of Eqs. (9.14) through (9.17). This friction factor
is a nondimensional number between 0.0 and 0.1 that depends on the
internal roughness of the pipe, the pipe diameter, and the Reynolds
number of flow.
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In laminar flow, the friction factor f depends only on the Reynolds
number and is calculated from

f = 64
R

(9.18)

where f is the friction factor for laminar flow and Re is the Reynolds
number for laminar flow (Re ≤ 2100) (dimensionless). Therefore, if a
particular flow has a Reynolds number of 1800, we can conclude that in
this laminar flow condition the friction factor f to be used in the Darcy
equation is

f = 64
1800

= 0.0356

Some pipeline hydraulics texts may refer to another friction factor
called the Fanning friction factor. This is numerically equal to one-
fourth the Darcy friction factor. In the preceding example the Fanning
friction factor can be calculated as

0.0356
4

= 0.0089

To avoid any confusion, throughout this chapter we will use only the
Darcy friction factor as defined in Eq. (9.11).

Example 9.5 A cryogenic liquid with a density of 70 lb/ft3 flows through
an NPS 6 (0.250-in wall thickness) pipeline at a flow rate of 500 gal/min.
Calculate the average flow velocity and pressure loss due to friction in 200 ft
of pipe length, using the Darcy equation. Assume a friction factor f = 0.02.

Solution

Pipe inside diameter = 6.625 − 2 × 0.250 = 6.125 in

Using Eq. (9.5), the velocity is

v = 0.4085 × 500
6.1252

= 5.44 ft/s

The pressure drop is calculated using Eq. (9.15) as follows:

Pf = (2.1635 × 10−4)
0.02 × 5002 × 70

6.1255
= 0.0088 psi/ft

Therefore, the total pressure drop in 200 ft of pipe is

�P = 200 × 0.0088 = 1.75 psi

Colebrook-White equation. We have seen that in laminar flow (Re ≤
2100) the friction factor f is easily calculated from the Reynolds num-
ber as shown in Eq. (9.18). In turbulent flow (Re > 4000), the friction
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factor f depends on the pipe inside diameter, the pipe roughness, and
the Reynolds number. The following empirical equation, known as the
Colebrook-White equation (also simply called the Colebrook equation)
is used to calculate the friction factor in turbulent flow.

1√
f

= −2 log10

(
e

3.7D
+ 2.51

Re
√

f

)
(9.19)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in

Re = Reynolds number, dimensionless

The absolute pipe roughness or internal pipe roughness may range from
0.0 to 0.01 depending on the internal condition of the pipe. It is listed
for common piping systems in Table 9.3. The ratio e/D is termed the
relative roughness and is dimensionless.

In SI units, we can use the same form of the Colebrook equation. The
absolute pipe roughness e and the pipe diameter D are both expressed
in millimeters. All other terms in the equation are dimensionless.

It can be seen from the Colebrook-White equation that the calcu-
lation of the friction factor f is not straightforward since it appears
on both sides of the equation. This is known as an implicit equation
in f , compared to an explicit equation. An explicit equation in f will
have the unknown quantity f only on one side of the equation. In the
present case, a trial-and-error approach is used to solve for the friction
factor. First an initial value for f is assumed (for example, f = 0.02) and
substituted in the right-hand side of the Colebrook equation. This will
result in a new calculated value of f , which is used as the next approxi-
mation, and f will be recalculated based on this second approximation.
The process is continued until successive values of f calculated by such
iterations are within a small value such as 0.001. Usually three or four

TABLE 9.3 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0
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iterations will yield a satisfactory solution. Example 9.6 illustrates the
method.

Moody diagram. A graphical method of determining the friction factor
for turbulent flow is available using the Moody diagram as shown in
Fig. 9.3. This graph is based on the Colebrook equation and is much
easier to use compared to calculating the value of the friction factor
from the implicit equation (9.19).

First the Reynolds number is calculated from the liquid properties,
flow rate, and pipe diameter. This Reynolds number is used to locate
the ordinate on the horizontal axis of the Moody diagram. A vertical
line is drawn up to the curve representing the relative roughness e/D
of the pipe. The friction factor is then read off on the vertical axis to the
left. From the Moody diagram it is seen that the turbulent region is fur-
ther divided into two regions: the “transition” zone and the “complete
turbulence in rough pipes” zone. The lower boundary is designated as
“smooth pipes.” The transition zone extends up to the dashed line, be-
yond which is known as the zone of complete turbulence in rough pipes.
In the zone of complete turbulence in rough pipes, the friction factor
depends very little on the Reynolds number and more on the relative
roughness.

Example 9.6 A cryogenic liquid with a density of 70 lb/ft3 and 0.2 cSt viscos-
ity flows through an NPS 10 (0.250-in wall thickness) pipeline at a flow rate
of 1500 gal/min. The absolute roughness of the pipe may be assumed to be
0.002 in. Calculate the Darcy friction factor and pressure loss due to friction
in 500 ft of pipe length, using the Colebrook-White equation.

Solution The inside diameter of an NPS 10 (0.250-in wall thickness) pipe is

10.75 − 2 × 0.250 = 10.25 in

Next we will calculate the Reynolds number Re to determine the flow regime
(laminar or turbulent). The Reynolds number from Eq. (9.9) is

Re = 3162.5
1500

10.25 × 0.2
= 2.31 × 106

Since Re > 4000, the flow is turbulent and we can use the Colebrook-White
equation to calculate the friction factor. We can also use the Moody diagram
to read the friction factor based on Re and the pipe relative roughness e/D.

From the Colebrook-White equation (9.19), the friction factor f is calcu-
lated from

1√
f

= −2 log10

[
0.002

3.7 × 10.25
+ 2.51

(2.31 × 106)
√

f

]

This equation must be solved for f by trial and error.
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First assume that f = 0.02. Substituting in the preceding equation, we get
a better approximation for f as follows:

1√
f

= −2 log10

[
0.002

3.7 × 10.25
+ 2.51

(2.31 × 106)
√

0.02

]
= 0.0140

Recalculating using this value

1√
f

= −2 log10

[
0.002

3.7 × 10.25
+ 2.51

(2.31 × 106)
√

0.0140

]
= 0.0141

And finally

1√
f

= −2 log10

[
0.002

3.7 × 10.25
+ 2.51

(2.31 × 106)
√

0.0141

]
= 0.0141

Thus f = 0.0141 is the solution.
The pressure loss due to friction can now be calculated using the Darcy

equation (9.15), considering a 500-ft length of pipe:

�P = (2.1635 × 10−4)
0.0141 × 15002 × 70

10.255
× 500

= 150.59 psi in 500 ft of pipe length

Example 9.7 A DN 300 (8-mm wall thickness) steel pipe is used to transport
a cryogenic liquid from a plant to a storage facility 1500 m away. Calculate
the friction factor and pressure loss due to friction (kPa/m) at a flow rate of
190 m3/h. Assume an internal pipe roughness of 0.05 mm. A delivery pressure
of 140 kPa must be maintained at the delivery point which is at an elevation
of 200 m above that of the plant. Calculate the pump pressure required at the
plant to transport the given volume of liquid to the storage facility. Density
of liquid = 800 kg/m3 and viscosity = 0.17 cSt.

Solution The pipe designated as DN 300 and 8-mm wall thickness has an
inside diameter of

D = 300 − 2 × 8 = 284 mm

First calculate the Reynolds number from Eq. (9.10):

Re = 353,678
190

284 × 0.17
= 1.39 × 106

Therefore the flow is turbulent and we can use the Colebrook-White equation
or the Moody diagram to determine the friction factor.

Relative roughness
e
D

= 0.05
284

= 0.0002

Using the determined values for relative roughness and the Reynolds
number, from the Moody diagram we get f = 0.0142.
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The pressure drop due to friction can now be calculated using the Darcy
equation (9.17):

Pm = (6.2475 × 104)

(
0.0142 × 1902 800

2845

)
= 0.0139 kPa/m

Total pressure loss in 1500 m = 0.0139 × 1500 = 20.8 kPa

The pressure required at the plant is calculated by adding the pressure drop
due to friction to the delivery pressure required and the static elevation head
between the plant and storage facility.

The static head difference is 200 m. This is converted to pressure in
kilopascals, using Eq. (9.13):

Pressure drop due to friction in 1500 m of pipe = 20.8 kPa

Pressure due to elevation head = 200 × 800
101.94

= 1569.6 kPa

Minimum pressure required at delivery point = 140 kPa

Therefore adding all three numbers, the total pressure required at the plant is

Pt = Pf + Pelev + Pdel

where Pt = total pressure required at plant
Pf = frictional pressure drop

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage facility

Therefore,

Pt = 20.8 + 1569.6 + 140.0 = 1730.4 kPa

Thus, the pump pressure required at the plant is 1730.4 kPa.

Minor losses. So far, we have calculated the pressure drop per unit
length in straight pipes. We also calculated the total pressure drop con-
sidering several feet of pipe from a plant to a storage facility. Minor
losses in a liquid pipeline are classified as those pressure drops that
are associated with piping components such as valves and fittings. Fit-
tings include elbows and tees. In addition there are pressure losses
associated with pipe diameter enlargement and reduction. A pipe noz-
zle exiting from a storage tank will have entrance and exit losses. All
these pressure drops are called minor losses, as they are relatively small
compared to friction loss in a straight length of pipe. Generally, minor
losses are included in calculations by using the equivalent length of the
valve or fitting or using a resistance factor K multiplied by the velocity
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head v2/2g discussed earlier. The term minor losses can be applied only
where the pipeline lengths and the friction losses are relatively large
compared to the pressure drops in the fittings and valves. In a situa-
tion such as plant piping and tank farm piping the pressure drop in the
straight length of pipe may be of the same order of magnitude as that
due to valves and fittings. In such cases the term minor losses is really
a misnomer. Regardless, the pressure losses through valves, fittings,
etc., can be accounted for approximately using the equivalent length or
K times the velocity head method.

Valves and fittings. Table 9.4 shows the equivalent lengths of commonly
used valves and fittings in a liquid pipeline system. It can be seen from
this table that a gate valve has an L/D ratio of 8 compared to straight
pipe. Therefore a 14-in-diameter gate valve may be replaced with a
14 × 8 = 112 in long piece of pipe that will have the same frictional
pressure drop as the valve.

Example 9.8 A piping system is 600 ft of NPS 14 pipe with two 14-in gate
valves, three 14-in ball valves, and four 90◦ standard elbows. Using the
equivalent length concept, calculate the total pipe length that will include
all straight pipe, valves, and fittings.

TABLE 9.4 Equivalent Lengths of
Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60
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Solution Using Table 9.4, we can convert all valves and fittings in terms of
14-in pipe as follows,

Two 14-in gate valves = 2 × 14 × 8 = 224 in of 14-in pipe

Three 14-in ball valves = 3 × 14 × 3 = 126 in of 14-in pipe

Four 90◦elbows = 4 × 14 × 30 = 1680 in of 14-in pipe

Total for all valves and fittings = 2030 in of 14-in pipe

= 169.17 ft of 14-in pipe

Adding the 600 ft of straight pipe, the total equivalent length of straight pipe
and all fittings is

Le = 600 + 169.17 = 769.17 ft

The pressure drop due to friction in the preceding piping system can now be
calculated based on 769.17 ft of NPS 14 pipe. It can be seen in this example
that the valves and fittings represent roughly 22 percent of the total pipeline
length.

Resistance coefficient. Another approach to accounting for minor losses
is using the resistance coefficient or K factor. The K factor and the
velocity head approach to calculating the pressure drop through valves
and fittings can be analyzed as follows using the Darcy equation. From
the Darcy equation (9.11), the pressure drop in a straight length of pipe
is given by

h = f
L
D

v2

2g

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and the preceding equation then
becomes

h = K
v2

2g
(9.20)

In Eq. (9.20), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head v2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(v2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 9.5. It can be seen that the K factor depends on the
nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.



TABLE 9.5 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L/D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72
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From Table 9.5 it can be seen that a 6-in gate valve has a K value of
0.12, while a 14-in gate valve has a K factor of 0.10. However, both sizes
of gate valves have the same equivalent length–to–diameter ratio of 8.
The head loss through the 6-in valve can be estimated to be 0.12 (v2/2g)
and that in the 14-in valve is 0.10 (v2/2g). The velocity v in both cases
will be different due to the difference in diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

v6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 14-in valve will be
approximately

v6 = 0.4085
1000
13.52 = 2.24 ft/s

Therefore,

Head loss in 6-in gate valve = 0.12 (10.89)2

64.4
= 0.22 ft

and

Head loss in 14-in gate valve = 0.10 (2.24)2

64.4
= 0.008 ft

These head losses appear small since we have used a relatively low flow
rate in the 14-in valve. In reality the flow rate in the 14-in valve may be
as high as 3000 gal/min and the corresponding head loss will be 0.07 ft.

Pipe enlargement and reduction. Pipe enlargements and reductions con-
tribute to head loss that can be included in minor losses. For sudden
enlargement of pipes, the following head loss equation may be used:

hf = (v1 − v2)2

2g
(9.21)

where v1 and v2 are the velocities of the liquid in the two pipe sizes, D1
and D2, respectively. This is illustrated in Fig. 9.4. Writing Eq. (9.21) in
terms of pipe cross-sectional areas A1 and A2 for sudden enlargement,
we get

hf =
(

1 − A1

A2

)2

v1
2
√

2g (9.22)
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D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 9.4 Sudden pipe enlargement and pipe reduction.

For sudden contraction or reduction in pipe size as shown in Fig. 9.4,
the head loss is calculated from

hf =
(

1
Cc

− 1
)2 v2

2

2g
(9.23)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 9.4.

Gradual enlargement and reduction of pipe size, as shown in Fig. 9.5,
cause less head loss than sudden enlargement and sudden reduction.

D1

D1
D2

D2

Figure 9.5 Gradual pipe enlargement and pipe reduction.

Next Page
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Figure 9.6 Gradual pipe expansion head loss coefficient.

For gradual expansions, the following equation may be used:

hf = Cc(v1 − v2)2

2g
(9.24)

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 9.6.

Pipe entrance and exit losses. The K factors for computing the head loss
associated with the pipe entrance and exit are as follows

K =



0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

Complex piping systems. So far we have discussed straight length of
pipe with valves and fittings. Complex piping systems include pipes of
different diameters in series and parallel configurations.

Series piping. Series piping in its simplest form consists of two or more
different pipe sizes connected end to end as illustrated in Fig. 9.7. Pres-
sure drop calculations in series piping may be handled in one of two
ways. The first approach is to calculate the pressure drop in each pipe
size and add them together to obtain the total pressure drop. Another
method is to consider one of the pipe diameters as the base size and con-
vert other pipe sizes into equivalent lengths of the base pipe size. The
resultant equivalent lengths are added together to form one long piece

Previous Page
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L1

D1 D2 D3

L2 L3

Figure 9.7 Series piping.

of pipe of constant diameter equal to the base diameter selected. The
pressure drop can then be calculated for this single-diameter pipeline.
Of course, all valves and fittings will also be converted to their respec-
tive equivalent pipe lengths using the L/D ratios from Table 9.4.

Consider three sections of pipes joined together in series. Using sub-
scripts 1, 2, and 3 and denoting the pipe length as L, inside diameter
as D, flow rate as Q, and velocity as v, we can calculate the equivalent
length of each pipe section in terms of a base diameter. This base diam-
eter will be selected as the diameter of the first pipe section D1. Since
equivalent length is based on the same pressure drop in the equivalent
pipe as in the original pipe, the equivalent length of section 2 is calcu-
lated by finding that length of diameter D1 that will match the pressure
drop in a length L2 of pipe diameter D2. Using the Darcy equation, the
equivalent lengths of the two pipes with diameter D2 and D3 are calcu-
lated in terms of the diameter D1. For series pipes, the flow rate is the
same through each pipe. The pressure drop is inversely proportional to
the fifth power of the diameter, from the Darcy equation (9.15). Con-
sidering friction factors to be approximately the same for all pipes, we
get the total equivalent length Lt of all three pipe sections based on
diameter D1 as follows:

Lt = L1 + L2

(
D1

D2

)5

+ L3

(
D1

D3

)5

(9.25)

The total pressure drop in the three sections of pipe can now be calcu-
lated based on a single pipe of diameter D1 and length Lt.

Example 9.9 Three pipes, 10-, 12-, and 8-in diameters, respectively, are con-
nected in series with pipe reducers, fittings, and valves as follows:

10-in pipeline, 0.250-in wall thickness, 200 ft long

12-in pipeline, 0.250-in wall thickness, 300 ft long

8-in pipeline, 0.250-in wall thickness, 500 ft long

Two 10-in 90◦ elbows

Four 12-in 90◦ elbows

Six 8-in 90◦ elbows

One 10-in gate valve
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One 12-in ball valve

One 8-in gate valve

(a) Use the Darcy equation to calculate the total pressure drop in the series
piping system at a flow rate of 1200 gal/min. The liquid transported has a
density of 50 lb/ft3 and a viscosity of 0.20 cSt. Flow starts in the 10-in piping
and ends in the 8-in piping. Assume a friction factor f = 0.02.
(b) If the flow rate is increased to 1500 gal/min, estimate the new total
pressure drop in the piping system, keeping everything else the same.

Solution

(a) Since we are going to use the Darcy equation, the pipes in series analysis
will be based on the pressure loss being inversely proportional to D5 where
D is the inside diameter of pipe, per Eq. (9.25).

We will first calculate the total equivalent lengths of all 10-in pipe, fittings,
and valve in terms of the 10-in diameter pipe.

Straight pipe: 10 in, 200 ft = 200 ft of 10-in pipe

Two 10-in 90◦ elbows = 2 × 30 × 10
12

= 50 ft of 10-in pipe

One 10-in gate valve = 1 × 8 × 10
12

= 6.67 ft of 10-in pipe

Therefore, the total equivalent length of 10-in pipe, fittings, and valve =
256.67 ft of 10-in pipe.

Similarly we get the total equivalent length of 12-in pipe, fittings, and
valve as follows:

Straight pipe: 12-in, 300 ft = 300 ft of 12-in pipe

Four 12-in 90◦ elbows = 4 × 30 × 12
12

= 120 ft of 12-in pipe

One 12-in ball valve = 1 × 3 × 12
12

= 3 ft of 12-in pipe

Therefore, the total equivalent length of 12-in pipe, fittings, and valve =
423 ft of 12-in pipe.

Finally, we calculate the total equivalent length of 8-in pipe, fittings, and
valve as follows:

Straight pipe: 8-in, 500 ft = 500 ft of 8-in pipe

Six 8-in 90◦ elbows = 6 × 30 × 8
12

= 120 ft of 8-in pipe

One 8-in gate valve = 1 × 8 × 8
12

= 5.33 ft of 8-in pipe

Therefore, the total equivalent length of 8-in pipe, fittings, and valve =
625.33 ft of 8-in pipe.

Next we convert all the preceding pipe lengths to the equivalent 10-in pipe
based on the fact that the pressure loss is inversely proportional to D5 where
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D is the inside diameter of pipe, according to Eq. (9.25):

Lt = 256.67 +
(

10.25
12.25

)5

× 423 +
(

10.25
8.125

)5

× 625.33

= 2428.24 ft of 10-in pipe

Total equivalent length in terms of 10-in pipe = 2428.24 ft of 10-in pipe

We still have to account for the 12 × 10 in and 12 × 8 in reducers. The reduc-
ers can be considered as sudden enlargements for approximate calculation
of the head loss, using the K factor and velocity head method. For sudden
enlargements, the resistance coefficient K is found from Eq. (9.22):

K =
[

1 −
(

D1

D2

)2
]2

where the area ratios have been replaced with the square of the ratio of the
diameters and D1 is the smaller diameter and D2 is the larger diameter.

For the 12 × 10 in reducer,

K =
[

1 −
(

10.25
12.25

)2
]2

= 0.0899

And for the 12 × 8 in reducer,

K =
[

1 −
(

8.125
12.25

)2
]2

= 0.3137

The head loss through the reducers will then be calculated based on K(v2/2g).
Flow velocities in the three different pipe sizes at 1200 gal/min will be

calculated using Eq. (9.5):

Velocity in 10-in pipe: v10 = 0.4085 × 1200
(10.25)2

= 4.67 ft/s

Velocity in 12-in pipe: v12 = 0.4085 × 1200
(12.25)2

= 3.27 ft/s

Velocity in 8-in pipe: v8 = 0.4085 × 1200
(8.125)2

= 7.43 ft/s

The head loss through the 12 × 10 in reducer is

hf = 0.0899 × 4.672

64.4
= 0.0304 ft

and the head loss through the 12 × 8 in reducer is

hf = 0.3137 × 7.432

64.4
= 0.2689 ft

These head losses in the reducers are insignificant and hence can be neglected
in comparison with the head loss in straight length of pipe. Therefore, the
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total head loss in the entire piping system will be based on a total equivalent
length of 2428.24 ft of 10-in pipe.

Using the Darcy equation (9.15) the pressure drop at 1200 gal/min is

Pf = (2.1635 × 10−4)
0.02 × (1200)2 × 50

(10.25)5
= 0.0028 psi per ft of pipe

Therefore,

Total pressure drop in 2428.24 ft = 0.0028 × 2428.24 = 6.8 psi

(b) When the flow rate is increased to 1500 gal/min, we can use proportions
to estimate the new total pressure drop in the piping as follows:

Pf =
(

1500
1200

)2

× 0.0028 = 0.0044 psi per ft of pipe

Therefore,

Total pressure drop in 2428.24 ft = 0.0044 × 2428.24 = 10.62 psi

Parallel piping. Liquid pipelines in parallel are so configured that mul-
tiple pipes are connected so that the liquid flow splits into the multiple
pipes at the beginning and the separate flow streams subsequently re-
join downstream into another single pipe as depicted in Fig. 9.8.

Figure 9.8 shows a parallel piping system in the horizontal plane
with no change in pipe elevations. Liquid flows through a single pipe
AB, and at the junction B the flow splits into two pipe branches BCE
and BDE. At the downstream end at junction E, the flows rejoin to the
initial flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, shown in Fig. 9.8, two main principles of parallel
piping must be followed. These are flow conservation at any junction
point and common pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE. Thus,

Q = QBCE + QBDE (9.26)

A B E F

C

D

Figure 9.8 Parallel piping.
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where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = incoming flow at junction B

The other requirement in parallel pipes relates to the pressure drop
in each branch piping. Accordingly, the pressure drop due to friction
in branch BCE must exactly equal that in branch BDE. This is be-
cause both branches have a common starting point (B) and a common
ending point (E). Since the pressure at each of these two points is a
unique value, we can conclude that the pressure drop in branch pipe
BCE and that in branch pipe BDE are both equal to PB − PE, where
PB and PE represent the pressure at the junction points B and E,
respectively.

Using these principles the flow rate in each branch and the common
pressure drop for both branches can be calculated from a set of simulta-
neous equations in QBCE and QBDE by substituting the pipe diameters,
lengths, etc., in the Darcy equation.

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 9.8, if pipe AB has a diameter of 14 in and branches BCE and
BDE have diameters of 10 and 12 in, respectively, we can find some
equivalent diameter pipe of the same length as one of the branches
that will have the same pressure drop between points B and C as the
two branches. An approximate equivalent diameter can be calculated
using the Darcy equation.

We can solve for the equivalent diameter De as follows:

De
2.5 = D1

2.5 + D2
2.5
(

L1

L2

)0.5

(9.27)

If both branches are of equal length, Eq. (9.27) reduces to

De
2.5 = D1

2.5 + D2
2.5 (9.27a)

Example 9.10 A cryogenic liquid pipeline consists of 800 ft of NPS 10
(0.250-in wall thickness) pipe starting at point A and terminating at point B.
At point B, two pieces of pipe (each 400 ft long and NPS 8 pipe with 0.250-in
wall thickness) are connected in parallel and rejoin at point D. From D, 500 ft
of NPS 10 (0.250-in wall thickness) pipe extends to point E. Using the equiv-
alent diameter method calculate the pressures and flow rate through the sys-
tem when transporting a liquid (density = 55 lb/ft3 and viscosity = 0.12 cSt)
at 1200 gal/min. Use a pipe roughness of 0.002 in. Compare the results by
calculating the pressures and flow rates in each branch.

Solution Since the pipe loops between Band D are each NPS 8 and 400 ft long,
the flow will be equally split between the two branches. Each branch pipe will
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carry 600 gal/min. Each branch has an inside diameter = 8.625 − 2 × 0.25 =
8.125 in.

The equivalent diameter for section BD is found from Eq. (9.27a):

De
2.5 = 8.1252.5 + 8.1252.5 = 376.347

Therefore,

De = 10.72 in

Thus, we can replace the two 400-ft NPS 8 pipes between B and D with a
single 400-ft-long pipe with a 10.72-in inside diameter.

The Reynolds number for this pipe at 1200 gal/min is found from Eq. (9.9):

Re = 3162.5 × 1200
10.72 × 0.12

= 2.95 × 106

Considering that the pipe roughness is 0.002 in for all pipes:

Relative roughness
e
D

= 0.002
10.72

= 0.0002

From the Moody diagram, the friction factor f = 0.0141. The pressure drop
in section BD, using Eq. (9.15), is

Pf = (2.1635 × 10−4)
0.0141 × 12002 × 55

10.725
= 0.0017 psi/ft

Therefore,

Total pressure drop in BD = 0.0017 × 400 = 0.68 psi

For section AB we have,

Re = 3162.5 × 1200
10.25 × 0.12

= 3.085 × 106

Relative roughness
e
D

= 0.002
10.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0140. The pressure drop
in section AB is

Pf = (2.1635 × 10−4)
0.0140 × 12002 × 55

10.255
= 0.0021 psi/ft

Therefore,

Total pressure drop in AB = 0.0021 × 800 = 1.697 psi

Finally, for section DE,

Re = 3162.5 × 1200
10.25 × 0.12

= 3.085 × 106

Relative roughness
e
D

= 0.002
10.25

= 0.0002
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From the Moody diagram, the friction factor f = 0.0140. The pressure drop
in section DE is

Pf = (2.1635 × 10−4)
0.0140 × 12002 × 55

10.255
= 0.0021 psi/ft

Therefore,

Total pressure drop in DE = 0.0021 × 500 = 1.05 psi

Finally,

Total pressure drop in entire piping system = 0.68 + 1.697 + 1.05

= 3.43 psi

Next, for comparison we will analyze the branch pressure drops consider-
ing each 8-in branch separately flowing at 600 gal/min.

Re = 3162.5 × 600
8.125 × 0.12

= 1.946 × 106

Relative roughness
e
D

= 0.002
8.125

= 0.0002

From the Moody diagram, the friction factor f = 0.0148. The pressure drop
in section BD is

Pf = (2.1635 × 10−4)
0.0148 × 6002 × 55

8.1255
= 0.00179 psi/ft

This compares with the pressure drop of 0.0017 psi/ft we calculated using an
equivalent diameter of 10.72. It can be seen that the difference between the
two pressure drops is approximately 5 percent.

Total pressure required. In the previous sections, we examined the fric-
tional pressure drop in a liquid piping system consisting of pipe, valves,
fittings, etc. The total pressure required at the beginning of a pipeline
for a specified flow rate consists of three distinct components:

1. Frictional pressure drop, Pf

2. Elevation head Pelev

3. Delivery pressure Pdel

This can be stated as follows

Pt = Pf + Pelev + Pdel (9.28)

where Pt is the total pressure required at the beginning of the pipe.
The first item on the right-hand side of Eq. (9.28) is simply the total

frictional head loss in all straight pipe, fittings, valves, etc. The last
item is the delivery pressure required at the end of the pipeline to sat-
isfy tank or some other back pressure requirement at the terminus.



550 Chapter Nine

The second item accounts for the pipeline elevation difference between
the origin of the pipeline and the delivery terminus. If the origin of the
pipeline is at a lower elevation than that of the pipeline terminus or
delivery point, a certain amount of positive pressure is required to com-
pensate for the elevation difference. On the other hand, if the delivery
point were at a lower elevation than the beginning of the pipeline, grav-
ity will assist the flow and the pressure required at the beginning of
the pipeline will be reduced by this elevation difference. The third com-
ponent, delivery pressure at the terminus, simply ensures that a cer-
tain minimum pressure is maintained at the delivery point, such as a
storage tank.

For example, if a liquid pipeline requires 50 psi to compensate for
frictional losses and the minimum delivery pressure required is 20 psi,
the total pressure required at the beginning of the pipeline is calculated
as follows. If there were no elevation difference between the beginning of
the pipeline and the delivery point, the elevation head is zero. Therefore,
the total pressure Pt required is

Pt = 50 + 0 + 20 = 70 psi

Next consider elevation changes. If the elevation at the beginning is
100 ft, the elevation at the delivery point is 150 ft, and the density of
liquid is 50 lb/ft3, the total pressure required is

Pt = 50 + (150 − 100) × 50
144

+ 20 = 87.36 psi

The middle term represents the static elevation head difference con-
verted to psi, using Eq. (9.12). Finally, if the elevation at the beginning
is 100 ft and the elevation at the delivery point is 70 ft,

Pt = 50 + (70 − 100) × 50
144

+ 20 = 59.58 psi

It can be seen from the preceding that the 30-ft advantage in eleva-
tion in the final case reduces the total pressure required by approxi-
mately 10.42 psi compared to the situation where there was no eleva-
tion difference between the beginning of the pipeline and delivery point
(70 versus 59.58 psi).

Pumping horsepower. In the section on total pressure required, we cal-
culated the total pressure required at the beginning of the pipeline
to transport a given volume of liquid over a certain distance. We will
now calculate the pumping horsepower (HP) required to accomplish
this.
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The brake horsepower (BHP) required to pump a liquid can be calcu-
lated from the following equation:

BHP = (Pd − Ps) × Q
1714 × effy

(9.29)

where BHP = brake horsepower
Pd = pump discharge pressure, psi
Ps = pump suction pressure, psi
Q = liquid flow rate, gal/min

effy = pump efficiency, decimal value

We define the hydraulic horsepower (HHP) as the horsepower when the
pump efficiency is taken as 100 percent.

Consider an example in which the total pressure required to pump
liquid from a pump station to a storage tank is 129 psi. If the flow rate
is 500 gal/min and the liquid density is 50 lb/ft3, we can calculate the
pumping horsepower at 75 percent pump efficiency as follows:

BHP = (129 − 25) × 500
1714 × 0.75

= 40.45

(The hydraulic horsepower for this result is 40.45 × 0.75 = 30.34 HP.)
In the preceding calculation we assumed the suction pressure at

the pump to be 25 psi. If the pump is driven by an electric motor
with a motor efficiency of 95 percent, the drive motor HP required
will be

Motor HP = 40.45
0.95

= 42.58 HP

The nearest standard size motor of 50 HP would be adequate for this
application.

In SI units, the pumping power is expressed in kilowatts. If pressures
are in kilopascals and the liquid flow rate is in m3/h, the pumping power
required is calculated from the following:

Power in kW = pressure (kPa) × flow rate (m3/h)
3600

Therefore, the power equation for pumping a liquid, Eq. (9.29) can be
modified for SI units as follows:

Power = (Pd − Ps) × Q
(3600 × effy)

(9.29a)
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where Power = pump power required, kW
Pd = pump discharge pressure, kPa
Ps = pump suction pressure, kPa
Q = liquid flow rate, m3/h

effy = pump efficiency, decimal value

9.3.2 Single-phase gas flow

Cryogenic fluids may be treated as pure gas if no liquid or two-phase
condition exists. In such instances the flow of cryogenic fluid may be
treated as that of any other compressible fluid such as air or gas. At
low pressures the gas may be assumed to obey the ideal gas equation
and Boyle’s and Charles’s laws. At higher pressures, calculations must
account for compressibility effects. The fundamental gas flow equation
may be used to calculate the friction loss using a friction factor based
on the Moody diagram or the Colebrook-White equation.

We will briefly introduce the concepts for calculating pressure drop
using the preceding methods for a cryogenic fluid in the gaseous state.
For details of compressible fluid flow please refer to Chaps. 5 and 7.

Gas properties

Mass. Mass is defined as the quantity of matter. It is measured in
slugs (slug) and pounds (lb) in USCS units and kilograms in SI units.
A given mass of gas will occupy a certain volume at a particular tem-
perature and pressure. For example, a mass of gas may be contained
in a volume of 500 ft3 at a temperature of 60◦F and a pressure of 100
psi. If the temperature is increased to 100◦F, pressure remaining the
same, the volume will change according to Charles’s law. Similarly, if the
volume remains the same, the pressure will increase with temperature.
The mass always remains constant as long as gas is neither added nor
subtracted from the system. This is referred to as conservation of mass.

Volume. Volume is defined as the space occupied by a given mass of gas
at a specified temperature and pressure. Since gas expands to fill the
container, volume varies with pressure and temperature. Thus a large
volume of a given mass of gas at low pressure and temperature can be
compressed to a small volume at a higher pressure and temperature.
Volume is measured in ft3 in USCS units and m3 in SI units.

Density. Density of gas is defined as mass per unit volume. Thus,

Density ρ = m
V

(9.30)

where ρ = density of gas
m= mass of gas
V = volume of gas



Cryogenic and Refrigeration Systems Piping 553

Density is expressed in slug/ft3or lb/ft3 in USCS units and kg/m3 in
SI units.

When a gas flows through a pipe under steady flow conditions, the
mass flow rate at any cross section of the pipe is constant as long as
no gas enters or leaves the pipe between the inlet and the outlet of the
pipe. Mass is the product of volume and density. The volume flow rate
may be expressed as the average velocity times the cross-sectional area
of the pipe. Therefore,

Volume flow rate = average velocity ×
pipe cross-sectional area (9.31)

Mass flow rate = volume flow rate × density (9.32)

or

M = ρ Av (9.33)

where M = mass flow rate, lb/s
ρ = density of gas, lb/ft3

A = pipe cross-sectional area, ft2

v = velocity of flow, ft/s

If the density is in slug/ft3, the mass flow rate is in slug/s.

Specific gravity. The specific gravity, or simply the gravity, of gas is
measured relative to the density of air at a particular temperature as
follows:

Gas gravity = density of gas
density of air

Both densities are measured at the same temperature and pressure. For
example, a gas may be referred to as having a specific gravity of 0.65
(air = 1.00) at 60◦F. This means that the gas is 65 percent as heavy as
air.

The specific gravity of a gas can also be represented as a ratio of its
molecular weight to that of air.

Specific gravity = Mg

Mair

or

G = Mg

28.9625
(9.34)

where G = specific gravity of gas
Mg = molecular weight of gas

Mair = molecular weight of air
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In Eq. (9.34) we have used 28.9625 for the apparent molecular weight
of air. Sometimes the molecular weight of air is rounded off to 29.0 and
therefore the gas gravity becomes Mg/29.0. Nitrogen has a molecular
weight of 28.0134. Therefore, the gravity of N2 is 28.0134/28.9625 =
0.9672 relative to air = 1.00.

Viscosity. The viscosity of a fluid is defined as its resistance to flow. For
gases, the viscosity is very low compared to that of liquids. (For example,
water has a viscosity of 1.0 cP compared to a nitrogen gas viscosity of
0.0174 cP). However, the viscosity of a gas is an important property in
the study of gas flow in pipes. Two types of viscosities are used. Dynamic
viscosity µ, also known as the absolute viscosity, is expressed in lb/(ft · s)
in USCS units and poise (P) in SI units. The kinematic viscosity ν is
calculated by dividing the dynamic viscosity by the density. Thus the
relationship between the two viscosities is expressed as follows:

Kinematic viscosity ν = dynamic viscosity µ

density

Kinematic viscosity is measured in ft2/s in USCS units and stokes (St)
in SI units. Other units of viscosity include centipoise (cP) and centi-
stokes (cSt). The viscosity of a pure gas such as air or methane depends
only on its temperature and pressure. Viscosities of common gases at
atmospheric conditions are shown in Fig. 9.9.
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Ideal gases. An ideal gas is one in which the volume occupied by its
molecules is negligible compared to that of the total gas. In addition
there is no attraction or repulsion between the gas molecules and the
container. The molecules of an ideal gas are considered to be perfectly
elastic, and there is no loss in internal energy due to collision between
the gas molecules. Ideal gases follow Boyle’s and Charles’s laws and can
be represented by the ideal gas equation or the perfect gas equation.
We will discuss the behavior of ideal gases first followed by that of real
gases.

The molecular weight M of a gas represents the weight of one mole-
cule of gas. The given mass m of gas will thus contain m/M number of
moles. Therefore,

n = m
M

(9.35)

For example, the molecular weight of methane is 16.043 and that of
nitrogen N2 is 28.0134. Then 100 lb of N2 will contain approximately
4 moles.

The ideal gas law states that the pressure, volume, and temperature
of a given quantity of gas are related by the ideal gas equation as follows:

PV = nRT (9.36)

where P = absolute pressure, psia
V = gas volume, ft3

n = number of lb moles as defined in Eq. (9.35)
R = universal gas constant
T = absolute temperature of gas, ◦R (◦F + 460)

In USCS units R has a value of 10.732 psia ft3/(lb · mol · ◦R)
Using Eq. (9.35) we can restate the ideal gas equation as follows:

PV = mRT
M

(9.37)

where m represents the mass and M is the molecular weight of gas.
The ideal gas equation is only valid at pressures near atmospheric
pressure. At high pressures it must be modified to include the effect of
compressibility.

Two other equations used with gases are called Boyle’s law and
Charles’s law. Boyle’s law states that the pressure of a given quantity
of gas varies inversely as its volume provided the temperature is kept
constant. Mathematically, Boyle’s law is expressed as

P1

P2
= V2

V1
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or

P1V1 = P2V2 (9.38)

where P1 and V1 are the initial pressure and volume, respectively, at
condition 1, and P2 and V2 refer to condition 2. In other words, PV =
constant.

Charles’s law relates to volume-temperature and pressure-
temperature variations for a given mass of gas. Thus keeping the pres-
sure constant, the volume of gas will vary directly with the absolute
temperature. Similarly, keeping the volume constant, the absolute pres-
sure will vary directly with the absolute temperatures. These are rep-
resented mathematically as follows:

V1

V2
= T1

T2
for constant pressure (9.39)

P1

P2
= T1

T2
for constant volume (9.40)

Note that in the preceding discussions, the gas temperature is always
expressed in absolute scale. In USCS units, the absolute temperature
is stated as degrees Rankine (◦R) equal to ◦F + 460.

In SI units the absolute temperature is expressed in kelvin (K) equal
to ◦C + 273.

Thus 60◦F is 60 + 460 = 520◦R and 20◦C is 20 + 273 = 293 K.
Pressures used in Eqs. (9.38) and (9.40) must also be in absolute units,

such as lb/in2absolute or kilopascals absolute. The absolute pressure is
obtained by adding the atmospheric base pressure (usually 14.7 psia in
USCS units or 101 kPa in SI units) to the gauge pressure. Other units
of pressure in SI units include megapascals (MPa) and bars. Refer to
App. A for conversion factors between various units.

psia = psig + base pressure

kPa (abs) = kPa (gauge) + base pressure

Real gases. The ideal gas equation is applicable only when the pressure
of the gas is very low or near atmospheric pressure. When gas pressures
and temperatures are higher, the ideal gas equation will not give ac-
curate results. The calculation errors may be as high as 500 percent.
An equation of state is generally used for calculating the properties of
gases at higher temperatures and pressures.

Real gases behave according to a modified version of the ideal gas law
discussed earlier. The modifying factor is known as the compressibility
factor Z. This is also called the gas deviation factor. Z is a dimensionless
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number less than 1.0 and varies with the temperature, pressure, and
physical properties of the gas.

The real gas equation can be written as follows:

PV = ZnRT (9.41)

where P = absolute pressure, psia
V = gas volume, ft3

Z = gas deviation factor or compressibility factor,
dimensionless

T = absolute temperature of gas, ◦R
n = number of lb moles as defined in Eq. (9.35)
R = universal gas constant, 10.732 psia ft3/(lb · mol · ◦R)

Critical properties. The critical temperature of a pure gas is the temper-
ature above which it cannot be liquefied regardless of the pressure. The
critical pressure of a pure substance is defined as the pressure above
which liquid and gas cannot coexist, regardless of the temperature. The
reduced temperature is simply the temperature of the gas divided by its
critical temperature. Similarly, the reduced pressure is simply the pres-
sure of the gas divided by its critical pressure, both temperature and
pressure being in absolute units. Table 9.1 lists critical properties of
common gases used in cryogenic piping systems.

The reduced temperature is defined as the ratio of the temperature
of the gas to its critical temperature. Similarly, the reduced pressure is
defined as the pressure of the gas divided by its critical pressure. Both
reduced temperature and reduced pressure are dimensionless terms.
For example, nitrogen has a critical temperature of −232.48◦F and a
critical pressure of 492.8 psia. If the gas temperature and pressure are
100◦F and 200 psia, respectively, the reduced temperature and pressure
are calculated as follows:

Tr = 100 + 460
−232.48 + 460

= 2.46

Pr = 200
492.8

= 0.406

Compressibility factor. The compressibility factor, or gas deviation, fac-
tor is a measure of how close a real gas is to an ideal gas. The compress-
ibility factor Z is a dimensionless number close to 1.00. It is independent
of the quantity of gas. It depends on the gravity of gas, its temperature,
and pressure. For example, a sample of natural gas may have a Z value
of 0.8595 at 1000 psia and 70◦F. Charts are available that show the
variation of Z with temperature and pressure. At pressures close to
atmospheric pressure the value of Z is almost 1.00.
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Many researchers have correlated the compressibility factor Z
against reduced temperatures and pressures. It has been found that
gases such as carbon dioxide and nitrogen follow approximately the
same variation in compressibility factors with respect to the reduced
temperatures and pressures as shown in Fig. 9.10.

Several methods are available to calculate the value of Z at tempera-
ture T and pressure P. One approach requires knowledge of the critical
temperature and critical pressure of the gas. The reduced temperature
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Tr and pressure Pr are then calculated from the critical temperature
and pressure as follows:

Tr = T
Tc

(9.42)

Pr = P
Pc

(9.43)

Temperatures and pressures in these equations are in absolute units.
The value of the compressibility factor Z is then calculated from

the reduced pressures Pr using Fig. 9.10. For example, if the reduced
temperature and pressure of the gas calculated above is Tr = 1.5 and
Pr = 2.0, from the chart we get Z = 0.825.

In the case of a gas flowing through a pipeline, since the pressure
varies along the pipeline, the compressibility factor Z must be cal-
culated based on an average pressure at a particular location on the
pipeline. If two locations have pressures of P1 and P2, we could use a
simple average pressure of (P1 + P2)/2. However, a more accurate value
of the average pressure is calculated using the following equation:

Pavg = 2
3

(
P1 + P2 − P1 × P2

P1 + P2

)
(9.44)

Pressure drop due to friction. As gas flows through a pipeline, energy is
lost due to friction between the gas molecules and the pipe wall. This
is evident in the form of a pressure gradient along the pipeline. Before
we introduce the various equations to calculate the amount of pressure
drop due to friction, we will discuss a couple of important parameters
related to the flow of gas in a pipeline. The first of these is the velocity
of flow and the other is the Reynolds number.

Velocity. When gas flows at a particular volume flow rate Q through
a pipeline of inside diameter D, the average velocity of the gas can be
calculated knowing the cross sectional area of the pipe as follows:

v = Q
A

(9.45)

Since the flow rate Q is a function of the gas pressure and temperature,
we must relate the velocity to the volume flow at standard conditions
(such as 60◦F and 14.7 psia). If the density of gas at the flowing temper-
ature is ρ and the density at standard conditions is ρb from the law of
conservation of mass, the mass flow rate at standard conditions must
equal the mass flow rate at flowing conditions. Therefore,

ρbQb = ρQ (9.46)

Next Page
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Using the real gas equation, Eq. (9.46) can be simplified as

ρb = PbM
ZbRTb

(9.47)

ρb

ρ
= Pb

P
Z
Zb

T
Tb

(9.48)

Q = Qb
Pb

P
T
Tb

Z
Zb

= Qb
T
P

Pb

Tb

Z
Zb

(9.49)

v = 4 × 10−6

86,400π(D/12)2 Qb
T
P

Pb

Tb

Z
Zb

= (2.653 × 10−9)
Qb

D2

T
P

Pb

Tb

Z
Zb

(9.50)

where v = velocity of flowing gas, ft/s
D = pipe inside diameter, in
T = temperature of flowing gas, ◦R
P = pressure of gas, psia

Qb = flow rate at standard conditions, standard ft3/day (SCFD)
Pb = base pressure, psia
Tb = base temperature, ◦R

Example 9.11 Calculate the gas velocity in a pipeline at 1000 psig pressure
and 80◦F temperature. The pipeline is NPS 16, 0.250-in wall thickness. The
flow rate is 80 million SCFD (MMSCFD). Use Z = 0.89.

Solution

Diameter D = 16 − 0.5 = 15.5 in

P = 1000 + 14.7 = 1014.7 psia

T = 80 + 460 = 540◦R

The gas velocity is calculated from Eq. (9.50) as

v = (2.653 × 10−3)
80 × 106

(15.5)2
540

1014.7
14.7
520

0.89
1.0

= 11.83 ft/s

Reynolds number. The Reynolds number of flow was introduced earlier
in Sec. 9.3.1. It is a dimensionless parameter that depends on the flow
rate, pipe diameter, and gas properties such as density and viscosity.
The Reynolds number is used to characterize flow type such as laminar
flow and turbulent flow. It was defined in Eq. (9.7) as Re = vDρ/µ. The
Reynolds number for gas flow is calculated from a modified version of
this equation as follows:

Re = 0.0004778
Pb

Tb

GQ
µD

(9.51)

Previous Page
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where Pb = base pressure, psia
Tb = base temperature, ◦R
G = gas gravity (air = 1.0)
Q = gas flow rate, SCFD
D = pipe internal diameter, in
µ = gas viscosity, lb/(ft · s)

In SI units the Reynolds number is given by

Re = 0.5134
Pb

Tb

GQ
µD

(9.52)

where Pb = base pressure, kPa
Tb = base temperature, K
G = gas gravity (air = 1.0)
Q = gas flow rate, m3/day
D = pipe internal diameter, mm
µ = gas viscosity, P

Laminar flow is defined as flow that causes the Reynolds number to
be below a threshold value such as 2000 to 2100. Turbulent flow is
defined as a Reynolds number greater than 4000. The range of Reynolds
numbers between 2000 and 4000 characterizes an unstable flow regime
known as critical flow.

Example 9.12 Calculate the Reynolds number of flow for an NPS 16
(0.375-in wall thickness) gas pipeline at a flow rate of 150 MMSCFD. Flowing
temperature = 80◦F, gas gravity = 0.6, viscosity = 0.000008 lb/(ft · s), base
pressure = 14.73 psia, and base temperature = 60◦F.

Solution Using Eq. (9.51) the Reynolds number is

Re = 0.0004778
Pb

Tb

GQ
µD

= 0.0004778
14.73

460 + 80
× 0.6 × 150 × 106

0.000008 × 15.25
= 9,614,746

Therefore, the flow is turbulent since Re > 4000.

Isothermal flow. Isothermal gas flow occurs at constant temperature.
Therefore, the gas pressure, volume, and density change, but the gas
temperature remains the same. To maintain the constant temperature,
isothermal flow requires heat to be transferred out of the gas. Gas flow-
ing in long pipes can be considered to be under isothermal flow. In such
cases, the pressure, flow rate, and temperature of a gas flowing through
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a pipe are related by the following equation:

P1
2 − P2

2 = M2 RT
gA2

(
f

L
D

+ 2 loge
P1

P2

)
(9.53)

where P1 = upstream pressure at point 1
P2 = downstream pressure at point 2
M = mass flow rate of gas
R = gas constant
T = absolute temperature of gas
g = acceleration due to gravity
A = cross-sectional area of pipe
f = friction factor, dimensionless
L = pipe length
D = inside diameter of pipe

Equation (9.53) can be used for small pressure drops and when eleva-
tion differences between points along the pipe are ignored. The friction
factor f used in Eq. (9.53) is a dimensionless number that depends
upon the pipe diameter, the pipe roughness, and the Reynolds number
of flow. Knowing the Reynolds number, the friction factor is found from
the Moody diagram (Fig. 9.3).

A consistent set of units must be used in Eq. (9.53). An example will
illustrate the use of the isothermal flow equation.

Example 9.13 Air flows at 50 ft/s through a 2-in inside diameter pipe at
80◦F at an initial pressure of 100 psig. If the pipe is horizontal and 1000 ft
long, calculate the pressure drop considering isothermal flow. Use a friction
factor f = 0.02.

Solution First calculate the density of air at 80◦F. From Chap. 5, Table 5.1,

Density of air at 80◦F = 0.0736 lb/ft3

This density is at the standard condition of 14.7 psia. Using Eq. (9.38) we
calculate the density at 100 psig as

ρ = 100 + 14.7
14.7

× 0.0736 = 0.5743 lb/ft3

The cross-sectional area of the pipe is

A = 0.7854 ×
(

2
12

)2

= 0.0218 ft2

Next, the mass flow rate can be calculated from the density, velocity, and the
pipe cross-sectional area using Eq. (9.33) as follows:

M = ρ Av = 0.5743 × 0.0218 × 50 = 0.6265 lb/s
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Using Eq. (9.53) we can write

[(100 + 14.7)2 − P2
2] × (144)2 = (0.6265)2 × (53.3) × (80 + 460)

× (0.02 × 1000 × 12/2) + 2 loge(114.7/P2)
32.2 × 0.0218 × 0.0218

Simplifying we get

13,156.09 − P2
2 = 35.6016

(
120.0 + 2 loge

114.7
P2

)
We will first calculate P2 by ignoring the second term containing P2 on the
right-hand side of the equation. This is acceptable since the term being ig-
nored is a much smaller value compared to the first term of 120.0 within the
parentheses.

Therefore the first approximation to P2 is calculated from

13,156.09 − P2
2 = 35.6016 × 120

or

P2 = 94.25 psia

We can recalculate a better solution for P2 by substituting the value just
calculated in the preceding equation, this time including the loge(114.7/P2)
term:

13,156.09 − P2
2 = 35.6016 ×

(
120 + 2 loge

114.7
94.25

)
Solving for P2 we get

P2 = 94.18 psia

which is quite close to our first approximation of P2 = 94.25. Therefore

Pressure drop = P1 − P2 = 114.7 − 94.18 = 20.52 psig

Example 9.14 Air flows through a 2000-ft-long NPS 6 pipeline at an ini-
tial pressure of 150 psig and a temperature of 80◦F. If the flow is consid-
ered isothermal, calculate the pressure drop due to friction at a flow rate of
5000 SCFM. Assume smooth pipe.

Solution We start by calculating the Reynolds number from the flow rate.
Assuming a 6-in inside diameter pipe:

Cross-sectional area A = 0.7854

(
6

12

)2

= 0.1964 ft2

Velocity v = flow rate
area

= 5000
60 × 0.1964

= 424.3 ft/s

Next we need to find the density and viscosity of air at 80◦F and 150 psig
pressure. From Chap. 5, Table 5.1, at 80◦F, the density of air ρ = 0.0736 lb/ft3

at 14.7 psia and the viscosity µ = 3.85 × 10−7 lb/ft2.
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The density must be corrected for the higher pressure of 150 psig.

ρ = 0.0736 × 164.7
14.7

= 0.8246 lb/ft3 at 150 psig

The Reynolds number from Eq. (9.7) is

Re = 424.3 × 0.5 × 0.8246
32.2 × 3.85 × 10−7

= 1.41 × 107

From the Moody diagram, for smooth pipe, the friction factor is

f = 0.0077

The mass flow rate will be calculated first from the given volume flow rate
and density:

M = volume rate × density

From Chap. 5, Table 5.1, the density of air at 60◦F (standard condition) is

Density = 0.0764 lb/ft3

Therefore, the mass flow rate is

M = 5000 × 0.0764 = 382 lb/min = 6.367 lb/s

Using Eq. (9.53) for isothermal flow

[
(164.7)2 − P2

2]× (144)2 = (6.367)2 × 53.3 × 540
32.2 × (0.1964)2

×
(

0.0077 × 2000
0.5

+ 2 loge
164.7

P2

)

This equation for P2 must be solved by trial and error, as in Example 9.14.
Solving, we get P2 = 160.4 psia. Thus

Pressure drop due to friction = P1 − P2 = 164.7 − 160.4 = 4.3 psi

Example 9.15 Air flows through a 500-m-long, 200-mm inside diameter
pipeline at 20◦C. The upstream and downstream pressures are 1035 and
900 kPa, respectively. Calculate the flow rate through the pipeline assum-
ing isothermal conditions. Pressures are in absolute values, and the relative
roughness of pipe is 0.0003.

Solution We will use the isothermal equation (9.53) for calculating the flow
rate through the pipeline. The friction factor f depends on the Reynolds
number which in turn depends on the flow rate which is unknown. Therefore,
we will assume an initial value for the friction factor f and calculate the mass
flow rate from Eq. (9.53). This mass flow rate will then be used to calculate
the flow velocity and hence the corresponding Reynolds number. From this
Reynolds number using the Moody diagram the friction factor will be found.
The mass flow rate will be recalculated from the newly found friction factor.
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The process is continued until successive values of the mass flow rate are
within 1 percent or less.

Assume f = 0.01 initially. From Eq. (9.53) we get

(1035)2 − (900)2 = M2 × 29.3 × 293
9.81 × (0.7854 × 0.04)2

(
0.01 × 500

0.2
+ 2 loge

1035
900

)

Solving for M, we get

M = 0.108 kN/s

Next, calculate the density at 20◦C from the perfect gas equation.

ρ = P
RT

= 1035
29.3 × 293

= 0.1206 kN/m3

The viscosity of air from Chap. 5, Table 5.1,

µ = 1.81 × 10−5 Pa · s

The flow velocity is calculated from the mass flow rate as follows:

M = ρ Av

Therefore

0.108 = 0.1206 × (0.7854 × 0.04) v

Thus, velocity is

v = 28.505 m/s

The Reynolds number is calculated from Eq. (9.7) as

Re = 0.1206
9.81

× 28.505 × 0.2
1.81 × 10−8

= 3.87 × 106

For this Reynolds number, from the Moody diagram we get the friction factor
for a relative roughness e/d = 0.0003 as follows,

f = 0.0151

Using this value of f , we recalculate the mass flow rate as follows:

(1035)2 − (900)2 = M2 × 29.3 × 293
9.81 × (0.7854 × 0.04)2

(
0.0151 × 500

0.2
+ 2 loge

1035
900

)

Solving for M, we get

M = 0.088 kN/s

The earlier value was M = 0.108 kN/s. This represents a 22 percent differ-
ence, and hence we must recalculate the friction factor and repeat the process
for a better value of M. Based on the recently calculated value of M = 0.088
we will recalculate the velocity and the Reynolds number as follows. Using



566 Chapter Nine

proportions, the new velocity is

v = 0.088
0.108

× 28.505 = 23.226 m/s

The new Reynolds number is

Re = 23.226
28.505

× 3.87 × 106 = 3.15 × 106

Next from the Moody diagram for this Reynolds number we get a friction
factor

f = 0.0152

Using this value of f in the isothermal flow equation, we get a new value of
mass flow rate as follows:

(1035)2 − (900)2 = M2 × 29.3 × 293
9.81 × (0.7854 × 0.04)2

(
0.0152 × 500

0.2
+ 2 loge

1035
900

)

Solving for M, we get

M = 0.0877 kN/s

The earlier value was M = 0.088 kN/s. This represents a difference of
0.34 percent, and hence we stop iterating any further. The flow rate through
the pipeline is 0.0877 kN/s.

Example 9.16 Air flows through a 1500-ft-long NPS 10 (0.25-in wall thick-
ness) pipeline at a mass flow rate of 23 lb/s. What pressure is required at
the upstream end to provide a delivery pressure of 80 psig? The air flow
temperature is 80◦F. Consider isothermal flow. Assume the friction factor is
0.02.

Solution

Mass flow rate M = 23.0 lb/s f = 0.02

The cross-sectional area of pipe, with a 10.75-in outside diameter and a
0.25-in wall thickness, is

A = 0.7854

(
10.25

12

)2

= 0.573 ft2

From the isothermal flow Eq. (9.53) and substituting the given values, we get

[(P1)2 − (94.7)2] × (144)2 = 232 × 53.3 × 540
32.2 × (0.573)2

×
(

0.02 × 1500 × 12
10.25

+ 2 loge
P1

94.7

)

Assume P1 = 100 psig initially and substitute this value on the right-hand
side of the preceding equation to calculate the next approximation for P1.
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Continue this process until successive values of P1 are within 1 percent or
less. Solving we get P1 = 106.93 psia by successive iteration.

Therefore, the upstream pressure required is 106.93 − 14.7 = 92.23 psig.
The pressure loss in the 1500-ft-long pipe is 92.23 − 80 = 12.23 psi.

Example 9.17 Consider isothermal flow of air in a 6-in inside diameter pipe
at 60◦F. The upstream and downstream pressures for a 500-ft section of
horizontal length of pipe are 80 and 60 psia, respectively. Calculate the mass
flow rate of air assuming the pipe is smooth.

Solution From Eq. (9.53) for isothermal flow, we get

P1
2 − P2

2 = M2 RT
gA2

(
f

L
D

+ 2 loge
P1

P2

)
We must first calculate the Reynolds number Re and the friction factor f .

Since Re depends on the flow rate (unknown), we will assume a value of f
and calculate the flow rate from the preceding equation. We will then verify
if the assumed f was correct. Some adjustment may be needed in the f value
to get convergence.

Assume f = 0.01 in the preceding pressure drop equation. Substituting
the given value, we get

(144)2(802 − 602) = M2 × 53.3 × 520
32.2 (0.7854 × 0.5 × 0.5)2

(
0.01

500
0.5

+ 2 loge
80
60

)
Solving for the mass flow rate,

M = 15.68 lb/s

The gas density ρ is

ρ = P
RT

= 80 × 144
53.3 × 520

= 0.4156 lb/ft3

The mass flow rate is then calculated from Eq. (9.33).

Mass flow = density × volume flow rate = density × area × velocity

Therefore,

M = ρ Av

Substituting the calculated values in Eq. (9.33) we get

15.68 = (0.4156)(0.7854 × 0.5 × 0.5) v

Flow velocity v = 192.15 ft/s

The Reynolds number is then

Re = ρdv
µ

= 0.4156
32.2

(0.5)
192.15

3.78 × 10−7
= 3.28 × 106

From the Moody diagram (Fig. 9.3), the Darcy friction factor f = 0.0096. We
assumed f = 0.01 initially. This is quite close to the newly calculated value
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of f . If we use the value of f = 0.0096 and recalculate the mass flow rate,
we get M = 15.99 lb/s.

Adiabatic flow. Adiabatic flow of gas occurs when there is no heat trans-
fer between the flowing gas and its surroundings. Adiabatic flow gen-
erally includes friction. When friction is neglected, the flow becomes
isentropic.

Isentropic flow. When gas flows through a conduit such that it is adia-
batic and frictionless, the flow is termed isentropic flow. This type of flow
also means that the entropy of the gas is constant. If the flow occurs very
quickly such that heat transfer does not occur and the friction is small,
the flow may be considered isentropic. In reality, high-velocity flow oc-
curring over short lengths of pipe with low friction and low heat transfer
may be characterized as isentropic flow. The pressures, velocities, and
gas density in isentropic flow are related by the following equation:

v2
2 − v1

2

2g
= P1

ρ1

k
k − 1

[
1 −
(

P2

P1

)(k−1)/k
]

(9.54)

or

v2
2 − v1

2

2g
= P2

ρ2

k
k − 1

[(
P1

P2

)(k−1)/k

− 1

]
(9.55)

where v1 = velocity at upstream location
v2 = velocity at downstream location
P1 = pressure at upstream location
P2 = pressure at downstream location
k = specific heat ratio
g = acceleration of gravity

ρ1 = density at upstream location
ρ2 = density at downstream location

It can be seen from Eqs. (9.54) and (9.55) that the pressure drop P1 − P2
between the upstream and downstream locations in a pipe depends
only on the pressures, velocities, and specific heat ratio of air. Unlike
isothermal flow, discussed earlier, no frictional term exists in the isen-
tropic flow equation. This is because, by definition, isentropic flow is
considered to be a frictionless process.

Example 9.18 Isentropic flow of air occurs in a 6-in inside diameter pipeline.
If the upstream pressure and temperature are 50 psig and 70◦F, respectively,
and the velocity of air at the upstream and downstream locations are 50 and
120 ft/s, respectively, calculate the pressure drop assuming k = 1.4.
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Solution We will use Eq. (9.54) for isentropic flow of air. First let us calculate
the ratio k/(k − 1) and its reciprocal.

k
k − 1

= 1.4
0.4

= 3.5

k − 1
k

= 0.4
1.4

= 0.2857

The term P1/ρ1 in Eq. (9.54) may be replaced with the term RT1 using the
perfect gas equation. Substituting the given values in Eq. (9.54), we get

(120)2 − (50)2

2 × 32.2
= 53.3 × (70 + 460) × 3.5 ×

[
1 −
(

P2

150 + 14.7

)0.2857
]

Simplifying and solving for P2 we get

P2 = 163.63 psia

Therefore the pressure drop is

P1 − P2 = 164.7 − 163.63 = 1.07 psig

Pressure drop calculations. In the previous sections we discussed flow
and pressure drops considering ideal gas and low pressures. In reality
at high pressures, the ideal gas equation is not correct. We must include
the effect of the compressibility factor in the flow equation. This section
will introduce pressure drop calculations in a flowing gas pipeline, using
the general flow equation. This is also referred to as the fundamental
flow equation. It relates the flow rate, gas properties, pipe size, and
flowing temperature to the upstream and downstream pressures in a
pipeline segment. The internal roughness of the pipe is used to calculate
a friction factor using the Moody diagram or the Colebrook equation
based on the Reynolds number.

General flow equation. The general flow equation for the steady-state
isothermal flow in a gas pipeline is as follows;

Q = 77.54
1√

f

Tb

Pb

(
P1

2 − P2
2

GTf LZ

)0.5

D2.5 (9.56)

where Q = volume flow rate, SCFD
Pb = base pressure, psia
Tb = base temperature, ◦R
P1 = upstream pressure, psia
P2 = downstream pressure, psia
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f = Darcy friction factor, dimensionless
G = gas gravity (air = 1.00)
Tf = average gas flow temperature, ◦R
L = pipe segment length, mi
Z = gas compressibility factor, dimensionless
D = pipe inside diameter, in

Since the pressure at the inlet of the pipe segment is P1 and that at
the outlet is P2, an average pressure must be used to calculate the gas
compressibility factor Z at the average flowing temperature Tf . Instead
of an arithmetic average (P1 + P2)/2 the following formula is used to
calculate the average gas pressure in the pipe segment:

Pavg = 2
3

(
P1 + P2 − P1 P2

P1 + P2

)
(9.57)

It must be noted that Eq. (9.56) does not include any elevation effects.
The effect of elevation difference between the upstream and down-
stream ends of the pipe segment is taken into account by modifying
the pipe segment length L and the term P1

2 − P2
2 in Eq. (9.56). If the

elevation of the upstream end is H1 and at the downstream end is H2,
the length of the pipe segment L is replaced with an equivalent length
Le as follows:

Le = L(es − 1)
s

(9.58)

where Le = equivalent length of pipe, mi
L = length of pipe between upstream and downstream

ends, mi
s = elevation correction factor, dimensionless

The parameter s depends on the elevation difference H2 − H1 and in
USCS units is calculated as follows:

s = 0.0375G (H2 − H1)
Tf Z

(9.59)

The calculation for Le shown in Eq. (9.58) is correct only if we assume
a single slope between point 1 (upstream) and point 2 (downstream). If
instead a series of slopes are to be considered, we define a parameter j
as follows:

j = es − 1
s

(9.60)

The term j must be calculated for each slope of each pipe segment of
length L1, L2, etc., that make up the length L. The equivalent length



Cryogenic and Refrigeration Systems Piping 571

then must be calculated as follows:

Le = j1L1 + j2L2es1 + j3L3es2 + · · · (9.61)

where j1, j2, etc., are calculated for each rise or fall in the elevation
for pipe segments between the upstream and downstream ends. The
parameters s1, s2, etc., are calculated for each segment in accordance
with Eq. (9.59).

Finally, the term P1
2 − P2

2 in Eq. (9.56) is modified to P1
2 − es P2

2 as
follows:

Q = 77.54
1√

f

Tb

Pb

(
P1

2 − es P2
2

GTf Le Z

)0.5

D2.5 (9.62)

where s and Le are defined by

s = 0.0375 G (H2 − H1)
Tf Z

(9.63)

Le = L(es − 1)
s

(9.64)

In SI units, Eq. (9.62) becomes

Q = (11.4946 × 10−4)
1√

f

Tb

Pb

(
P1

2 − es P2
2

GTf Le Z

)0.5

D2.5 (9.65)

and the elevation adjustment term s is given by

s = 0.0684G (H2 − H1)
Tf Z

(9.66)

where Q = gas flow rate at standard conditions, m3/day
Tb = base temperature, K (273 + ◦C)
Pb = base pressure, kPa
Tf = average gas flow temperature, K (273 + ◦C)
P1 = upstream pressure, kPa
P2 = downstream pressure, kPa
H1 = upstream elevation, m
H2 = downstream elevation, m
Le = equivalent length of pipe, km
L = pipe length, km

Other terms are the same as those for USCS units.

Friction factor. The friction factor f introduced earlier depends on the
type of flow (such as laminar or turbulent) and on the pipe diameter
and internal roughness. For laminar flow (Re ≤ 2100) the friction factor
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is calculated from

f = 64
Re

(9.67)

Depending on the value of Re, flow is laminar or turbulent.

For laminar flow: Re ≤ 2100
For turbulent flow: Re > 4000

The region for Re between the above two values is termed the critical
flow regime.

The turbulent flow region is further subdivided into three separate
regions:

1. Turbulent flow in smooth pipes

2. Turbulent flow in fully rough pipes

3. Transition flow between smooth pipes and rough pipes

This is shown in the Moody diagram (Fig. 9.3).
In the smooth pipe zone of turbulent flow, the pipe friction factor is not

affected significantly by the pipe internal roughness. The friction factor
f in this region depends only on the Reynolds number Re according to
the following equation:

1√
f

= −2 log10

(
2.51

Re
√

f

)
(9.68)

In the zone of turbulent flow of fully rough pipes the friction factor f
depends less on the Reynolds number and more on the pipe roughness
and diameter. It is calculated using the equation

1√
f

= −2 log10
e

3.7D
(9.69)

where f = Darcy friction factor
D = pipe inside diameter, in
e = absolute pipe roughness, in

See Table 9.3 for typical values of pipe roughness.
In the transition zone between the smooth pipes zone and fully rough

pipes zone, the friction factor is calculated using the Colebrook-White
equation as follows:

1√
f

= −2 log10
e

3.7D
+ 2.51

Re
√

f
(9.70)
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It can be seen from Eq. (9.70) that the solution of friction factor f is not
straightforward. This equation is an implicit equation and therefore
has to be solved by successive iteration.

It can be seen that the friction factor for laminar flow depends only
on the Reynolds number and is independent of pipe roughness. It must
be noted that the Reynolds number does depend on the pipe diameter
and gas properties.

The friction factor is calculated using either the Colebrook-White
equation (9.7) or is found from the Moody diagram. It is then used
in the general flow equation (9.56) to calculate the pressure drop.

Example 9.19 Calculate the flow rate through a 20-mi-long NPS 20
(0.500-in wall thickness) pipeline using the general flow equation. Gas
gravity = 0.6, flowing temperature = 80◦F, inlet pressure = 1000 psig, outlet
pressure = 800 psig, compressibility factor = 0.85, base temperature = 60◦F,
and base pressure = 14.7 psia. Assume the friction factor is 0.02.

Solution

Pipe inside diameter D = 20 − 2 × 0.5 = 19.00 in

P1 = 1000 + 14.7 = 1014.7 psia

P2 = 800 + 14.7 = 814.7 psia

Tf = 80 + 460 = 540◦R

Tb = 60 + 460 = 520◦R

Z = 0.85

Pb = 14.7 psia

L = 20 mi

From the general flow equation (9.56), we calculate the flow rate as

Q = 77.54 ×
(

1
0.02

)0.5 520
14.7

[
(1014.7)2 − (814.7)2

0.6 × 540 × 20 × 0.85

]0.5

(19.0)2.5

= 248,744,324 SCFD

= 248.74 MMSCFD

Example 9.20 Calculate the friction factor using the Colebrook-White
equation for a 16-in (0.250-in wall thickness) gas pipeline at a flow rate of
100 MMSCFD. Flowing temperature = 80◦F, gas gravity = 0.6, viscosity =
0.000008 lb/(ft · s), base pressure = 14.73 psia, and base temperature = 60◦F.
Assume a pipe internal roughness of 600 microinches (µin).
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Solution Using Eq. (9.51), the Reynolds number is

Re = 0.0004778
Pb

Tb

GQ
µD

= 0.0004778
14.73

460 + 80
× 0.6 × 100 × 106

0.000008 × 15.5
= 6,306,446

Since the flow is turbulent, we use the Colebrook-White equation (9.70) to
calculate the friction factor f as follows:

1√
f

= −2 log

(
e

3.7D
+ 2.51

Re
√

f

)

= −2 log

(
0.0006

3.7 × 15.5
+ 2.51

6,306,446
√

f

)

This equation must be solved by trial and error. Initially, assume f = 0.02
and calculate the next approximation as follows:

1√
f

= −2 log

[
0.0006

3.7 × 15.5
+ 2.51

6,306,446 × (0.02)1/2

]
= 9.7538

f = 0.0105

Using this value of f , the next approximation is

1√
f

= −2 log

[
0.0006

3.7 × 15.5
+ 2.51

6,306,446 × (0.0105)1/2

]

f = 0.0107

After a few more trials we get

friction factor f = 0.0107

Work done in compressing gas. The work done to compress a given quan-
tity of gas from a suction pressure P1 to the discharge pressure P2, based
upon isothermal compression or adiabatic compression, can be calcu-
lated as follows.

Isothermal compression. The work done in isothermal compression of
1 lb of gas is calculated using the following equation:

Work done Wi = 53.28
G

T1 loge
P2

P1
(9.71)
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where Wi = isothermal work done, (ft · lb)/lb of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, ◦R
P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia

loge = natural logarithm to base e (e = 2.71828)

The ratio P2/P1 is called the compression ratio.
In SI units the isothermal compression equation (9.71) is as follows:

Work done Wi = 159.29
G

T1 loge
P2

P1
(9.72)

where Wi = isothermal work done, J/kg of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, K
P1 = suction pressure of gas, kPa
P2 = discharge pressure of gas, kPa

loge = natural logarithm to base e(e = 2.71828)

Adiabatic compression. In the adiabatic compression process the pres-
sure and volume of gas follow the adiabatic equation PVγ = constant
where γ is the ratio of the specific heats Cp and Cv, such that

γ = Cp

Cv
(9.73)

The work done in adiabatic compression of 1 lb of gas is given by the
following equation:

Wa = 53.28
G

T1
γ

γ − 1

[(
P2

P1

)(γ−1)/γ

− 1

]
(9.74)

where Wa = adiabatic work done, (ft · lb)/lb of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, ◦R
γ = ratio of specific heats of gas, dimensionless

P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia

In SI units the adiabatic compression equation is as follows:

Wa = 159.29
G

T1
γ

γ − 1

[(
P2

P1

)(γ−1)/γ

− 1

]
(9.75)
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where Wa = adiabatic work done, J/kg of gas
G = gas gravity, dimensionless
T1 = suction temperature of gas, K
γ = ratio of specific heats of gas, dimensionless

P1 = suction pressure of gas, kPa
P2 = discharge pressure of gas, kPa

Example 9.21 A compressor compresses a gas (G = 0.6) from the suction
temperature of 60◦F and 800 to 1400 psia discharge. If isothermal compres-
sion is assumed, what is the work done by the compressor?

Solution Using Eq. (9.71) for isothermal compression, the work done is

Wi = 53.28
0.6

(520) × loge
1400
800

= 25,841 (ft · lb)/lb

Example 9.22 In Example 9.21, if the compression were adiabatic
(γ = 1.29), calculate the work done per pound of gas.

Solution From Eq. (9.74) for adiabatic compression, the work done is

Wa = 53.28
0.6

× 520 × 1.29
1.29 − 1

[(
1400
800

)(1.29−1)/1.29

− 1

]
= 27,537 (ft · lb)/lb

It can be seen by comparing results with those of Example 9.21 that the
adiabatic compressor requires more work than an isothermal compressor.

Discharge temperature of compressed gas. When gas is compressed adia-
batically according to the adiabatic process PVγ = constant, the dis-
charge temperature of the gas can be calculated as follows:

T2

T1
=
(

P2

P1

)(γ−1)/γ

(9.76)

where T1 = suction temperature of gas, ◦R
T2 = discharge temperature of gas, ◦R
P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia
γ = ratio of specific heats of gas, dimensionless

Example 9.23 What is the final temperature of gas in Example 9.22 for
adiabatic compression?

Solution We get the discharge temperature by using Eq. (9.76):

T2 = 520 ×
(

1400
800

)0.29/1.29

= 589.7◦R or 129.7◦F
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Compressor horsepower. Compressor head measured in (ft · lb)/lb of gas
is the energy added to the gas by the compressor. In SI units it is referred
to in J/kg. The horsepower necessary for compression is calculated from

HP = mass flow of gas × head
efficiency

It is common practice to refer to compression HP per MMSCFD of gas.
Using the perfect gas equation modified by the compressibility factor
[Eq. (9.41)], we can state that the compression HP is

HP = 0.0857
γ

γ − 1
T1

Z1 + Z2

2
1
ηa

[(
P2

P1

)(γ−1)/γ

− 1

]
(9.77)

where HP = compression HP per MMSCFD
γ = ratio of specific heats of gas, dimensionless

T1 = suction temperature of gas, ◦R
P1 = suction pressure of gas, psia
P2 = discharge pressure of gas, psia
Z1 = compressibility of gas at suction conditions,

dimensionless
Z2 = compressibility of gas at discharge conditions,

dimensionless
ηa = compressor adiabatic (isentropic) efficiency,

decimal value

In SI units, the power equation is as follows:

Power = 4.0639
γ

γ − 1
T1

Z1 + Z2

2
1
ηa

[(
P2

P1

)(γ−1)/γ

− 1

]
(9.78)

where HP = compression power, kW per Mm3/day (million m3/day)
γ = ratio of specific heats of gas, dimensionless

T1 = suction temperature of gas, K
P1 = suction pressure of gas, kPa
P2 = discharge pressure of gas, kPa
Z1 = compressibility of gas at suction conditions,

dimensionless
Z2 = compressibility of gas at discharge conditions,

dimensionless
ηa = compressor adiabatic (isentropic) efficiency,

decimal value

The adiabatic efficiency ηa is usually between 0.75 and 0.85. We can
incorporate a mechanical efficiency ηm of the driver unit to calculate
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the brake horsepower (BHP) of the driver as follows:

BHP = HP
ηm

(9.79)

The driver efficiency ηm may range from 0.95 to 0.98. The adiabatic
efficiency ηa may be expressed in terms of the suction and discharge
pressures and temperatures and the specific heat ratio γ as follows:

ηa = T1

T2 − T1

[(
P2

P1

)(γ−1)/γ

− 1

]
(9.80)

All symbols in Eq. (9.80) are as defined earlier.
It can be seen from the preceding that the efficiency term ηa modifies

the discharge temperature T2 given by Eq. (9.76).

Example 9.24 Calculate the compressor HP required in Example (9.23) if
Z1 = 1.0, Z2 = 0.85, and ηa = 0.8. What is the BHP if the mechanical
efficiency of the driver is 0.95?

Solution From Eq. (9.77), the HP required per MMSCFD is

HP = 0.0857
1.29
0.29

(520)
1 + 0.85

2
1

0.8

[(
1400
800

)0.29/1.29

− 1

]

= 30.73 per MMSCFD

Using Eq. (9.79) for a mechanical efficiency of 0.95, we get

BHP required = 30.73
0.95

= 32.35 HP per MMSCFD

9.3.3 Two-phase flow

One of the problems of cryogenic piping systems is heat leakage due to
the absorption of heat. A portion of the cryogenic liquid may evaporate
resulting in both liquid and vapor present in the piping system. Also,
throttling of the cryogenic liquid through a valve can cause flashing
or formation of vapor. In both cases two-phase flow would result. The
calculation of pressure drop in two-phase flow is more complex than in
single-phase liquid flow discussed in Sec. 9.3.2. It is found that the pres-
sure drop in two-phase flow is larger than that of single-phase liquid
flow. Larger pressure drop means larger pipe size and hence more cost.
Because of these reasons, we must as far as possible maintain single-
phase flow of cryogenic fluids. Subcooling of the liquid before a throttle
valve can prevent flashing. Use of proper insulation around the cryo-
genic piping can minimize heat leaks into the system, thereby prevent-
ing vaporization of the liquid.
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When two-phase flow is present, we must calculate the pressure drop
due to friction using one of the many correlations and empirical formu-
las such as Lockhart-Martinelli or Dukler. These correlations are only
approximate, and the calculated results may be off by 20 to 30 percent
compared to actual pressure drops measured in the field. Therefore,
to be conservative, pipe sizing for two-phase flow is based on increas-
ing the calculated value of pressure drop by as much as 30 percent in
some cases. In this section we will discuss the approach to calculating
the pressure drop using the Lockhart-Martinelli method, as described
in M. L. Nayyar, Piping Handbook, 7th ed., New York, McGraw-Hill,
2000.

The total pressure drop in two-phase flow can be considered to be the
sum of three components.

1. Frictional

2. Gravitational

3. Accelerational

or mathematically,

(
�P
�z

)
T

=
(

�P
�z

)
F

+
(

�P
�z

)
G

+
(

�P
�z

)
A

(9.81)

where
(

�P
�z

)
T

= total pressure drop per unit length in two-phase
flow, psi/ft(

�P
�z

)
F

= frictional pressure drop per unit length, psi/ft

(
�P
�z

)
G

= gravitational pressure drop per unit length, psi/ft

(
�P
�z

)
A

= accelerational pressure drop per unit length, psi/ft

The frictional component is calculated from the individual pressure
drops considering each phase (liquid or gas) flowing separately and
alone in the pipe.

The gravitational component depends on the elevation of the pipe
with respect to the horizontal and is calculated taking into account the
inclination of the pipe, the gas density, and the void fraction (explained
later). Obviously, if the pipe is horizontal, the gravitational component
is zero.
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The acceleration component of the pressure drop in two-phase flow is
generally negligible for cryogenic fluids. However, it can be calculated
from a complex equation that depends on the void fraction, liquid and
gas densities, and the flow rates.

The frictional component is calculated, as indicated earlier, by treat-
ing the liquid flow separately from the gas flow. We calculate the
Reynolds number for the liquid and gas phase separately using the
following equations:

ReL = MLD
ALµL

for liquid phase (9.82)

Reg = Mg D
Agµg

for gas phase (9.83)

where subscripts L and g refer to the liquid and gas phases,
respectively, and

where Re = Reynolds number, dimensionless
M = mass flow rate
D = pipe inside diameter
A = pipe cross-sectional area
µ = dynamic viscosity

Consistent units must be used for all of these terms so as to make the
Reynolds number dimensionless. If the pipe diameter is in feet, pipe
area is in ft2, and mass flow rate is in lb/s, then the viscosity must be
in lb/(ft · s).

Knowing the Reynolds number for each phase from Eqs. (9.82) and
(9.83), we can calculate the parameters k, n, and m for each phase from
the values shown in Table 9.6.

Laminar flow is said to occur for Reynolds numbers less than 1000 and
turbulent flow for Reynolds numbers larger than 2000. This is slightly
different from the Reynolds number boundaries for single-phase
flow.

TABLE 9.6 Parameters for Two-Phase Flow Pressure Drop

Liquid Vapor RL Rg kL kg n m

Turbulent Turbulent >2000 >2000 0.046 0.046 0.2 0.2
Laminar Turbulent <1000 >2000 16.0 0.046 1.0 0.2
Turbulent Laminar >2000 <1000 0.046 16.0 0.2 1.0
Laminar Laminar <1000 <1000 16.0 16.0 1.0 1.0

SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York,
McGraw-Hill, 2000.
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The individual pressure drop due to friction for each phase is then
calculated using the following equations:(

�Pf

�z

)
L

= 2kL(ReL)−nρL

D

(
ML

AρL

)2

(9.84)

(
�Pf

�z

)
g

= 2kg(Reg)−nρg

D

(
Mg

Aρg

)2

(9.85)

where subscripts Land g refer to the liquid and gas phases, respectively;
�Pf /�z is the frictional pressure drop per unit length of pipe; and ρ is
the density of fluid. Other symbols are as defined earlier.

Once we calculate the frictional pressure drop for the liquid phase and
gas phase separately, the Lockhart-Martinelli parameter X is found by
the following equation:

X 2 = (�Pf /�z)L

(�Pf /�z)g
(9.86)

Using the Lockhart-Martinelli parameter X calculated from Eq. (9.86),
we go to Fig. 9.11 to obtain the parameters φL, φg and the void fraction α.

The frictional pressure drop for two-phase flow is then calculated
from one of the following equations:(

�P
�z

)
F

= φL
2
(

�Pf

�z

)
L

(9.87)

(
�P
�z

)
F

= φg
2
(

�Pf

�z

)
g

(9.88)

As indicated earlier, the calculated frictional pressure drop using
Eqs. (9.87) or (9.88) is within plus or minus 30 percent of actual field
test results.

The gravitational component of the total pressure drop in two-phase
flow, the second item on the right-hand side of Eq. (9.81), is calculated
as follows: (

�P
�z

)
G

= g sin θ [αρg + (1 − α)ρL] (9.89)

where
(

�P
�z

)
G

= gravitational pressure drop per unit length, psi/ft

g = acceleration due to gravity, ft/s2

α = void fraction, from the graph in Fig. 9.11
θ = angle of inclination of pipe to the horizontal, degrees
ρ = density of fluid

Subscripts L and g refer to the liquid and gas phases, respectively.
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Figure 9.11 Lockhart-Martinelli correlation parameters.

The accelerational pressure drop component, the last term on the
right-hand side of Eq. (9.81), can be calculated from(

�P
�z

)
A

= 1
A2

d
dz

(
Mg

2

αρg
+ ML

2

(1 − α)ρL

)
(9.90)

The maximum mass flow rate of the two-phase flow mixture must be
compared with the critical flow rate for choked flow at the downstream
end of the pipe. Several equations are available for determining the
choked or maximum flow rate. These require knowledge of the ther-
modynamic properties of the cryogenic fluid. One such equation is as
follows:

Mc =
[

A2

(∂v/∂p)S

]0.5

(9.91)
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where Mc = critical mass flow rate of fluid, lb/s
v = specific volume of fluid mixture, ft3/lb
A = pipe cross-sectional area, ft2

The partial derivative in the denominator is calculated for isentropic
conditions at the downstream end of the pipe from the thermodynamic
properties.

If the actual flow rate is greater than the critical mass flow rate, the
pipe size must be increased or the mass flow rate should be reduced
and the pressure drop recalculated.

Example 9.25 A cryogenic piping system is composed of a 200-ft-long
(horizontal) NPS 6 (0.250-in wall thickness) pipe. Calculate the pressure drop
in two-phase flow, considering an inlet pressure of 300 psia, liquid viscosity
of 0.2 cP, and vapor viscosity of 0.012 cP. The liquid flow rate is 12 ft3/min,
and the vapor flow rate is 200 ft3/min. The liquid and vapor densities are 50
and 0.8 lb/ft3, respectively, at the operating temperature.

Solution

Mass flow rate of liquid ML = 12 × 50
60

= 10 lb/s

Mass flow rate of vapor Mg = 200 × 0.8
60

= 2.667 lb/s

Pipe inside diameter = 6.625 − 2 × 0.250 = 6.125 in

Pipe cross-sectional area A = 0.7854

(
6.125

12

)2

= 0.2046 ft2

Liquid viscosity = 0.2 cP = 0.2 × 6.7197 × 10−4

= 1.3439 × 10−4 lb/(ft · s)

Gas viscosity = 0.012 cP = 0.012 × 6.7197 × 10−4)

= 8.064 × 10−6 lb/(ft · s)

The Reynolds number for liquid and gas are calculated next, using Eqs. (9.82)
and (9.83):

ReL = 10 × (6.125/12)
0.2046 × 1.3439 × 10−4

= 1.856 × 105

Reg = 2.667 × (6.125/12)
0.2046 × 8.064 × 10−6

= 8.25 × 105

Since both Reynolds numbers are greater than 2000, the flow is turbulent in
both phases. From Table 9.6 we get the following values:

kL = kg = 0.046 and n = m = 0.2

Next Page
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Next, the frictional pressure drop for each phase flowing alone in the pipe is
calculated using Eqs. (9.84) and (9.85) as follows:(

�Pf

�z

)
L

= 2 × 0.046 × (1.856 × 105)−0.2 × 50
6.125/12

(
10

0.2046 × 50

)2

= 0.7610

= 0.7610
32.2 × 144

= 0.0002 psi/ft

(
�Pf

�z

)
g

= 2 × 0.046 × (8.25 × 105)−0.2 × 0.8
6.125/12

(
2.667

0.2046 × 0.8

)2

= 2.5103

= 2.5103
32.2 × 144

= 0.0005 psi/ft

Next we calculate the Lockhart-Martinelli correlation parameter X using
Eq. (9.86):

X =
(

0.7610
2.5103

)0.5

= 0.5506

Using Fig. 9.11 we get

φL = 6.0

Therefore, the frictional pressure drop for the two-phase flow from Eq. (9.87)
is (

�P
�z

)
F

= 36 × 0.002 = 0.0072 psi/ft

The total pressure drop in 200 ft of pipe is

200 × 0.0072 = 1.44 psi

9.3.4 Refrigeration piping

In this section we will briefly review a typical refrigeration cycle and
discuss the approach used in sizing the suction, discharge, and liquid
line piping in a typical refrigeration system. The refrigeration capacity
is generally measured in tons or British thermal units per hour (Btu/h).
In SI units it is measured in kilowatts (kW). One ton of refrigeration is
defined as the equivalent of 200 Btu/min or 12,000 Btu/h. This is also
equal to 3.517 kW.

In a typical compression refrigeration cycle, shown in Fig. 9.12, the
refrigerant absorbs heat from the area to be cooled and evaporates in
the process. This is shown as 1–2 in the figure.

From 2–3 the suction line carries the refrigerant vapor into the com-
pressor where it is compressed to point 4 at a higher temperature and
pressure. The compressed gas then flows through the discharge piping

Previous Page
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Figure 9.12 Typical compression refrigeration cycle.

from 4–5 and enters the condenser. In the condenser, the hot gas is
condensed to liquid refrigerant at the condensing temperature. The
condensed liquid then flows from receiver 6 to the expansion valve at
7, where the liquid expands to a lower pressure at 8 and then enters
the evaporator at point 1 to start the refrigeration cycle all over. The
difference in enthalpy of the refrigerant before the expansion valve and
after the evaporator represents the amount of refrigeration per unit
weight of refrigerant.

The suction line 2–3 is designed as a low-pressure, single-phase gas
line. The discharge piping 4–5 is designed as a high-pressure, single-
phase gas line. The liquid line 6–7 from the receiver to the inlet of the
expansion valve is designed as a single-phase, high-pressure liquid line.

In order to determine the pipe sizes for the suction and discharge
lines of a refrigeration piping system, tables are generally used to cal-
culate the pressure drop based on the total equivalent length of pipe,
valves, and fittings. Tables 9.7 and 9.8 show the pipeline capacity at
specified temperatures for R-717 (ammonia) and R-22 refrigerants. As
an example, using ammonia as the refrigerant, an NPS 4 suction line
at a saturation temperature of −60◦F has a pressure drop of 0.046 psi
per 100 ft and a temperature gradient of 0.025◦F per 100 ft with a line
capacity of 14.77 tons.

Generally, suction lines are sized such that the pressure drop equates
to a temperature loss of 4◦F in saturation temperature for most refrig-
erants except ammonia. For ammonia, the recommended temperature
drop is 2◦F in the suction line.



TABLE 9.7 Suction Piping Capacity for R-717

Saturated suction temperature, ◦F

−60 −40 −20 0 20 40

�T = �T = �T = �T = �T = �T = �T = �T = �T = �T = �T = �T =Steel
0.25◦F 0.50◦F 0.25◦F 0.50◦F 0.25◦F 0.50◦F 0.25◦F 0.50◦F 0.25◦F 0.50◦F 0.25◦F 0.50◦F

line size
�P = �P = �P = �P = �P = �P = �P = �P = �P = �P = �P = �P =

NPS SCH 0.046 0.092 0.077 0.155 0.123 0.245 0.184 0.368 0.265 0.530 0.366 0.582

3
8 80 0.03 0.05 0.06 0.09 0.11 0.16 0.18 0.26 0.28 0.40 0.41 0.53
1
2 80 0.06 0.10 0.12 0.18 0.22 0.32 0.36 0.52 0.55 0.80 0.82 1.05
3
4 80 0.15 0.22 0.28 0.42 0.50 0.73 0.82 1.18 1.26 1.83 1.87 2.38
1 80 0.30 0.45 0.57 0.84 0.99 1.44 1.62 2.34 2.5 3.60 3.68 4.69

1 1
4 40 0.82 1.21 1.53 2.24 2.65 3.84 4.30 6.21 6.63 9.52 9.76 12.42

1 1
2 40 1.25 1.83 2.32 3.38 4.00 5.80 6.49 9.34 9.98 14.34 14.68 18.64

2 40 2.43 3.57 4.54 6.59 7.79 11.26 12.57 18.12 19.35 27.74 28.45 36.08

2 1
2 40 3.94 5.78 7.23 10.56 12.50 18.03 20.19 28.94 30.98 44.30 45.37 57.51

3 40 7.10 10.30 13.00 18.81 22.23 32.09 35.87 51.35 54.98 78.50 80.40 101.93
4 40 14.77 21.21 26.81 38.62 45.66 65.81 73.56 105.17 112.34 160.57 164.44 208.34
5 40 26.66 38.65 48.68 70.07 82.70 119.60 133.12 190.55 203.53 289.97 296.88 376.18
6 40 43.48 62.83 79.18 114.26 134.37 193.44 216.05 308.62 329.59 469.07 480.96 609.57
8 40 90.07 129.79 163.48 235.38 277.80 397.55 444.56 633.82 676.99 962.47 985.55 1250.34
10 40 164.26 236.39 297.51 427.71 504.98 721.08 806.47 1148.72 1226.96 1744.84 1786.55 2263.99
12 40 264.07 379.88 477.55 686.10 808.93 1157.59 1290.92 1839.28 1964.56 2790.37 2862.23 3613.23
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TABLE 9.8 Suction Piping Capacity for R-22 (Single- or High-Stage Applications)
Saturated suction temperature, ◦F

Line size
−40 −20 0 20 40

type L
�T = 1.0◦F �T = 0.50◦F �T = 1.0◦F �T = 0.50◦F �T = 1.0◦F �T = 0.50◦F �T = 1.0◦F �T = 0.50◦F �T = 1.0◦F �T = 0.50◦F

NPS SCH �P = 0.393 �P = 0.197 �P = 0.577 �P = 0.289 �P = 0.813 �P = 0.406 �P = 1.104 �P = 0.552 �P = 1.455 �P = 0.727

Copper (outside diameter)
1
2 0.07 0.05 0.12 0.08 0.18 0.12 0.27 0.19 0.4 0.27
5
8 0.13 0.09 0.22 0.15 0.34 0.23 0.52 0.35 0.75 0.51
3
4 0.22 0.15 0.37 0.25 0.58 0.39 0.86 0.59 1.24 0.85
7
8 0.35 0.24 0.58 0.4 0.91 0.62 1.37 0.93 1.97 1.35

1 1
8 0.72 0.49 1.19 0.81 1.86 1.27 2.77 1.9 3.99 2.74

1 3
8 1.27 0.86 2.09 1.42 3.25 2.22 4.84 3.32 6.96 4.78

1 5
8 2.02 1.38 3.31 2.26 5.16 3.53 7.67 5.26 11 7.57

2 1
8 4.21 2.88 6.9 4.73 10.71 7.35 15.92 10.96 22.81 15.73

2 5
8 7.48 5.13 12.23 8.39 18.97 13.04 28.19 19.40 40.38 27.84

3 1
8 11.99 8.22 19.55 13.43 30.31 20.85 44.93 31 64.3 44.44

3 5
8 17.89 12.26 29.13 20 45.09 31.03 66.81 40.11 95.68 66.09

4 1
8 25.29 17.36 41.17 28.26 63.71 43.85 94.25 65.12 134.81 93.22

Steel
3
8 80 0.06 0.04 0.1 0.07 0.15 0.1 0.21 0.15 0.3 0.21
1
2 80 0.12 0.08 0.19 0.13 0.29 0.2 0.42 0.3 0.6 0.42
3
4 80 0.27 0.18 0.43 0.3 0.65 0.46 0.95 0.67 1.35 0.95
1 80 0.52 0.36 0.84 0.59 1.28 0.89 1.87 1.31 2.64 1.86

1 1
4 40 1.38 0.96 2.21 1.55 3.37 2.36 4.91 3.45 6.93 4.88

1 1
2 40 2.08 1.45 3.32 2.33 5.05 3.55 7.38 5.19 10.42 7.33

2 40 4.03 2.81 6.41 4.51 9.74 6.85 14.22 10.01 20.07 14.14
2 1

2 40 6.43 4.49 10.23 7.19 15.56 10.93 42.65 15.95 31.99 12.53
3 40 11.38 7.97 18.11 12.74 27.47 19.34 40.1 28.23 56.52 39.79
4 40 23.24 16.3 36.98 26.02 56.12 39.49 81.73 57.53 115.24 81.21
5 40 42.04 29.5 66.73 47.05 101.16 71.27 147.36 103.82 207.59 146.38
6 40 68.04 47.86 108.14 76.15 163.77 115.21 238.29 168.07 335.71 236.7
8 40 139.48 98.06 221.17 155.78 334.94 236.21 488.05 344.19 686.71 484.74

10 40 252.38 177.75 400.53 282.05 606.74 427.75 881.59 622.51 124.64 876.79
12 ID 403.63 284.69 639.74 451.09 969.02 683.22 1410.3 995.8 1987.29 1402.63
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Discharge lines are sized such that the temperature loss is 2◦F.
Tables 9.9 and 9.10 list refrigeration capacities for different pipe sizes
based on a 1◦F temperature drop per 100 ft of pipe. Based on the ac-
tual total length of piping, which includes the equivalent length of all
pipe, fittings, and valves, the table value for the temperature drop
is adjusted in direct proportion to the pipe length. The adjustment
for refrigeration capacity from the table values is performed in ac-
cordance with the following equation for temperature drop in steel
pipe:

�T = (table �T) × Le

100
×
(

QA

QT

)1.96

(9.92)

where �T = actual temperature drop, ◦F
table �T = temperature drop from table, ◦F per 100 ft length of pipe

Le = equivalent length of pipe including valves and fittings, ft
QA = actual refrigeration capacity, tons
QT = table refrigeration capacity, tons

For copper tubing, the index 1.96 in Eq. (9.92) is replaced with 1.85.
For example, suppose the table shows a temperature drop of 2◦F per
100 ft and a capacity of 125 tons for a particular pipe size. If the actual
capacity is 100 tons and the pipe equivalent length is 250 ft, the actual
temperature drop will be

�T = 2.0 × 250
100

×
(

100
125

)1.96

= 3.23◦F

Tables 9.10 and 9.11 also list the pressure drop per 100 ft of pipe and
corresponding capacities for a particular pipe size. Similar to the adjust-
ment for temperature drop previously discussed, the actual pressure
drop for steel pipe can be calculated from the following:

�P = (table �P) × Le

100
×
(

QA

QT

)1.96

(9.93)

where �P is the actual pressure drop (psi) and table �P is the pressure
drop from the table (psi per 100-ft length of pipe). Other symbols are as
defined earlier.

In the preceding example if the corresponding pressure drop from the
table is 3.5 psi, the adjusted value for equivalent length and capacity
is

�P = 3.5 × 250
100

×
(

100
125

)1.96

= 5.65 psi



TABLE 9.9 Suction, Discharge, and Liquid Line Capacity for R-717

Suction lines (�T = 1◦F per 100 ft) at
Discharge

Steel saturated suction temperature, ◦F
lines

Steel Liquid lines
line size −40 −20 0 20 40 (�T = 1.0◦F,

line size
Velocity = �T = 0.7◦F

NPS SCH �P = 0.31 �P = 0.49 �P = 0.73 �P = 1.06 �P = 1.46 �P = 2.95) IPS SCH 100 ft/min �P = 2.0 psi

3
8 80 3

8 80 8.6 12.1
1
2 80 3.1 1

2 80 14.2 24
3
4 80 2.6 3.8 7.1 3

4 80 26.3 54.2
1 80 2.1 3.4 5.2 7.6 13.9 1 80 43.8 106.4

1 1
4 40 3.2 5.6 8.9 13.6 19.9 36.5 1 1

4 80 78.1 228.6

1 1
2 40 4.9 8.4 13.4 20.5 29.9 54.8 1 1

2 80 107.5 349.2
2 40 9.5 16.2 26.0 39.6 57.8 105.7 2 40 204.2 811.4

2 1
2 40 15.3 25.9 41.5 63.2 92.10 168.5 2 1

2 40 291.1 1292.6
3 40 27.1 46.1 73.5 111.9 163.00 297.6 3 40 449.6 2287.8
4 40 55.7 94.2 150.1 228.7 333.0 606.2 4 40 774.7 4662.1
5 40 101.1 170.4 271.1 412.4 600.90 1095.2 5 40
6 40 164.0 276.4 439.2 667.5 971.6 1771.2 6 40
8 40 337.2 566.8 901.1 1366.6 1989.4 3623.0 8 40

10 40 611.6 1027.2 1634.3 2474.5 3598.0 10 40
12 40 981.6 1644.5 2612.4 3963.5 5764.6 12 ID
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TABLE 9.10 Suction, Discharge, and Liquid Line Capacity for R-22

Suction lines (�T = 2◦F per 100 ft) at Discharge lines
saturated suction temperature, ◦F (�T = 1.0◦F, �P = 3.05 psi)

(Corresponding, �P in psi per 100 ft) at saturated suction Liquid lines

Line size −40 −20 0 20 40
temperature, ◦F

Velocity = �T = 0.1◦F
type L (�P = 0.79) (�P = 1.15) (�P = 1.16) (�P = 2.22) (�P = 2.91) −40 40 100 fpm �P = 3.05 psi

Copper (Outside diameter)

1
2 0.4 0.6 0.75 0.85 2.3 3.6
5
8 0.32 0.51 0.76 1.1 1.4 1.6 3.7 6.7
7
8 0.52 0.86 1.3 2 2.9 3.7 4.2 7.8 18.20

1 1
8 1.1 1.7 2.7 4 5.8 7.5 8.5 13.2 37

1 3
8 1.9 3.1 4.7 7 10.1 13.1 14.8 20.2 64.7

1 5
8 3 4.8 7.5 11.1 16 20.7 23.4 28.5 102.50

2 1
8 6.2 10 15.6 23.1 33.1 42.8 48.5 49.6 213

2 5
8 10.9 17.8 27.5 40.8 58.3 75.4 85.4 76.5 376.90

3 1
8 17.5 28.4 44 65 92.9 120.2 136.2 109.2 601.50

3 5
8 26 42.3 65.4 96.6 137.8 178.4 202.1 147.8 895.70

4 1
8 36.8 59.6 92.2 136.3 194.3 251.1 284.4 192.1 1263.20

Steel

1
2 40 0.38 0.58 0.85 1.2 1.5 1.7 3.8 5.7
3
4 40 0.5 0.8 1.2 1.8 2.5 3.3 3.7 6.9 12.8
1 40 0.95 1.5 2.3 3.4 4.8 6.1 6.9 7.5 25.2

1 1
4 40 2 3.2 4.8 7 9.9 12.6 14.3 20.6 54.1

1 1
2 40 3 4.7 7.2 10.5 14.8 19 21.5 28.3 82.6

2 40 5.7 9.1 13.9 20.2 28.5 36.6 41.4 53.8 192
2 1

2 40 9.2 14.6 22.1 32.2 45.4 58.1 65.9 76.7 305.8
3 40 16.2 25.7 39 56.8 80.1 102.8 116.4 118.5 540.3
4 40 33.1 52.5 79.5 115.9 163.2 209.5 237.3 204.2 1101.2
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For a particular refrigeration capacity we can determine the quantity
of refrigerant required in lb/min from a table such as Table 9.11. For
example, using R-717 (ammonia) with a 14◦F evaporating temperature
and a 104◦F condensing temperature, the quantity of refrigerant re-
quired is 0.434 lb/min per ton of refrigeration. Therefore, for a 100-ton
refrigeration capacity, the mass flow rate of R-717 is 43.4 lb/min. The
volume flow rate of refrigerant vapor in the suction and discharge pip-
ing can be calculated from the mass flow rate using the specific volume
of the vapor. The thermodynamic properties of refrigerants are avail-
able in charts, similar to Table 9.12 for R-717. From the table value of
specific volume of the saturated vapor and the mass flow rate we can
calculate the volume flow rate of the refrigerant in the suction line as
follows:

Volume flow rate = mass flow rate × specific volume

or

Vs = M × vs (9.94)

where Vs = suction line volume flow rate, ft3/min
M = refrigerant mass flow rate, lb/min
vs = specific volume of refrigerant at evaporation temperature,

ft3/lb

The discharge volume flow rate in the discharge line can be calculated
approximately from the following equation:

Vd = Vs × P1

P2
× 1.2 (9.95)

where Vd = discharge line volume flow rate, ft3/min
Vs = suction line volume flow rate, ft3/min
P1 = compressor suction pressure, psia
P2 = compressor discharge pressure, psia

Once the suction and discharge piping are selected and the pressure
drops calculated, we can calculate the actual compressor suction and
discharge pressures by adjusting the pressures P1 and P2 as follows:

Compressor suction pressure = P1 − �Ps (9.96)

Compressor discharge pressure = P2 + �Pd (9.97)

where �Ps and �Pd represent the suction and discharge piping losses,
respectively.



TABLE 9.11 Refrigerant Flow Rates for Condensing Temperatures

Refrigerant (chemical formula) [common name]

R717 R134a R22
(NH3) (CH2FCF3) (CHCLF2)

[Ammonia] [1,1,1,2-Tetrafluoroethane] [Chlorodifluoromethane]

30◦C 35◦C 40◦C 30◦C 35◦C 40◦C 30◦C 35◦C 40◦C
(86◦F) (95◦F) (104◦F) (86◦F) (95◦F) (104◦F) (86◦F) (95◦F) (104◦F)

Evaporating temp. Flow rate in lb/min per ton

0◦C (32◦F) 0.410 0.420 0.429 2.89 3.02 3.17 2.70 2.81 2.92
−10◦C (14◦F) 0.415 0.424 0.434 3.00 3.14 3.31 2.76 2.87 3.00
−20◦C (−4◦F) 0.420 0.429 0.44 3.12 3.28 3.46 2.84 2.95 3.08
−30◦C (−22◦F) 0.422 0.432 0.442 3.26 3.44 3.63 2.91 3.04 3.17

Flow rate in CFM/ton (suction line)

0◦C (32◦F) 1.95 2.0 2.04 3.23 3.38 3.56 2.09 2.80 2.27
−10◦C (14◦F) 2.85 2.9 2.99 4.87 5.11 5.38 2.97 3.09 3.22
−20◦C (−4◦F) 4.31 4.4 4.51 7.52 7.91 8.37 4.32 4.50 4.69
−30◦C (−22◦F) 6.68 6.8 7.00 12.04 12.69 13.43 6.50 6.77 7.08
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TABLE 9.12 Thermodynamic Properties of Refrigerant R717 (Ammonia)

Specific volume, ft3/lbm Enthalpy, Btu/lbm Entropy, Btu/(lbm · R)

Temperature, Pressure, Saturated Saturated Saturated Saturated Saturated Saturated
◦F psia liquid vapor liquid Evap. vapor liquid Evap. vapor

−60 5.55 0.02278 44.73 −21.2 610.8 589.6 −0.0517 1.5286 1.4769
−50 7.67 0.02299 33.08 −10.6 604.3 593.7 −0.0256 1.4753 1.4497
−40 10.41 0.02322 24.86 0 597.6 597.6 0.0 1.4242 1.4242
−30 13.90 0.02345 18.97 10.7 590.7 601.4 0.0250 1.3751 1.4001
−20 18.30 0.02369 14.68 21.4 583.6 605.0 0.0497 1.3277 1.3774
−10 23.74 0.02393 11.50 32.1 576.4 608.5 0.0738 1.282 1.3558

0 30.42 0.02419 9.116 42.9 568.9 611.8 0.0975 1.2377 1.3352
5 34.27 0.02432 8.150 48.3 565.0 613.3 0.1092 1.2161 1.3253

10 38.51 0.02446 7.304 53.8 561.1 614.9 0.1208 1.1949 1.3157
20 48.21 0.02474 5.910 64.7 553.1 617.8 0.1437 1.1532 1.2969
30 59.74 0.02503 4.825 75.7 544.8 620.5 0.1663 1.1127 1.279
40 73.32 0.02533 3.971 86.8 536.2 623.0 0.1885 1.0733 1.2618
50 89.19 0.02564 3.294 97.9 527.3 625.2 0.2105 1.0348 1.2453
60 107.60 0.02597 2.751 109.2 518.1 627.3 0.2322 0.9972 1.2294
70 128.80 0.02632 2.312 120.5 508.6 629.1 0.2537 0.9603 1.2140
80 153.00 0.02668 1.955 132.0 498.7 630.7 0.2749 0.9242 1.1991
86 169.20 0.02691 1.772 138.9 492.6 631.5 0.2875 0.9029 1.1904
90 180.60 0.02707 1.661 143.5 488.5 632.0 0.2958 0.8888 1.1846

100 211.90 0.02747 1.419 155.2 477.8 633.0 0.3166 0.8539 1.1705
110 247.00 0.02790 1.217 167.0 466.7 633.7 0.3372 0.8194 1.1566
120 286.40 0.02836 1.047 179.0 455.0 634.0 0.3576 0.7851 1.1427
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Example 9.26 Calculate the pipe sizes required for the suction line, dis-
charge line, and liquid line for a refrigeration system using R-22 refrigerant.
The refrigeration capacity is 120 tons. The evaporating temperature is 25◦F,
and the water cooled condensing temperature is 104◦F. The suction piping
consists of 65-ft-long pipe, two angle valves, one swing check valve, and two
elbows. The discharge line consists of 100 ft of pipe with one globe valve, one
check valve, and two elbows. The liquid line is 200 ft long and has two angled
valves and two elbows.

Solution From Table 9.11 for R-22 refrigerant the flow rate is by interpolation
2.95 lb/(min · ton). Therefore, for a 120-ton system, the refrigerant flow rate is

w = 120 × 2.95 = 354 lb/min

At suction conditions, 25◦F the specific volume of R-22 from Table 9.13 is

Vs = 0.8532 ft3/lb

Therefore, the suction volume flow rate is

Vs = 354 lb/min × 0.8532 ft3/lb = 302.03 ft3/min

The inlet and outlet pressures of the compressor are found by interpolation
from Table 9.14:

P1 = 63.66 psia at 25◦F

P2 = 222.5 psia at 104◦F

The approximate discharge volume due to compression can be calculated as
follows:

Discharge volume = 302.03 × 63.66
222.5

× 1.2 = 103.7 ft3/min

At a condensing temperature of 104◦F, using Table 9.13 for R-22, the liquid
density by interpolation is 70.44 lb/ft3. Therefore,

Liquid volume = 354 lb/min

70.44 lb/ft3
= 5.03 ft3/min

For the suction line we will assume NPS 4 steel pipe. First we will calculate
the equivalent length of the suction line including pipe, valves, and fittings:

Pipe 65 ft

Two angle valves 94 ft

One swing check valve 40 ft

Two elbows 13.4 ft

Total 212.4 ft



TABLE 9.13 Thermodynamic Properties of Refrigerant R22

Specific volume, ft3/lbm Enthalpy, Btu/lbm Entropy, Btu/(lbm · ◦R)

Temperature, Pressure, Saturated Saturated Saturated Saturated Saturated Saturated
◦F psia liquid vapor liquid Evap. vapor liquid vapor

−40 15.222 0.0114 3.2957 0.0 100.257 100.257 0 0.2389
−30 19.573 0.0115 2.6049 2.547 98.801 101.348 0.0060 0.2359
−20 24.845 0.0116 2.0826 5.131 97.285 102.415 0.0119 0.2332
−10 31.162 0.0118 1.6825 7.751 95.704 103.455 0.0178 0.2306

0 38.657 0.0119 1.3723 10.409 94.056 104.465 0.0236 0.2282
10 47.464 0.0121 1.1290 13.104 92.338 105.442 0.0293 0.2259
20 57.727 0.0123 0.9363 15.837 90.545 106.383 0.0350 0.2238
30 69.591 0.0124 0.7821 18.609 88.674 107.284 0.0407 0.2218
40 83.206 0.0126 0.6575 21.422 86.720 108.142 0.0463 0.2199
50 98.727 0.0128 0.5561 24.275 84.678 108.953 0.0519 0.2180
60 116.31 0.0130 0.4727 27.172 82.540 109.712 0.0575 0.2163
70 136.12 0.0133 0.4037 30.116 80.298 110.414 0.0630 0.2146
80 158.33 0.0135 0.3462 33.109 77.943 111.052 0.0685 0.2129
90 183.09 0.0138 0.2979 36.158 75.461 111.619 0.0739 0.2112

100 210.60 0.0140 0.2570 39.267 72.838 112.105 0.0794 0.2096
110 241.04 0.0144 0.2222 42.446 70.052 112.498 0.0849 0.2079
120 274.60 0.0147 0.1924 45.705 67.077 112.782 0.0904 0.2061
130 311.50 0.0151 0.1666 49.059 63.877 112.936 0.0960 0.2043
140 351.94 0.0155 0.1442 52.528 60.403 112.931 0.1016 0.2024
150 396.19 0.0160 0.1245 56.143 56.585 112.728 0.1074 0.2002
160 444.53 0.0166 0.1070 59.948 52.316 112.263 0.1133 0.1978
170 497.26 0.0174 0.0913 64.019 47.419 111.438 0.1196 0.1949
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TABLE 9.14 Temperature Pressure Data for Refrigerants

Pressure, psia

Temp, ◦C R717 R134a R22 R507 R290 R744 Temp, ◦F

−90 0.222 0.696 1.049 0.933 −130
−80 0.535 1.501 2.197 1.887 −112
−70 1.5825 1.162 2.965 4.228 3.532 −94
−65 2.2608 1.738 4.2 5.704 4.856 −85
−60 3.1688 2.312 5.434 7.571 6.18 −76
−55 4.3636 3.294 7.394 9.899 8.2 80.47 −67
−50 5.9112 4.276 9.354 12.76 10.22 90.03 −58
−45 7.8870 5.852 12.02 16.24 13.16 120.8 −49
−40 10.376 7.429 15.26 20.42 16.1 145.8 −40
−35 13.473 9.832 19.16 25.41 19.9 174.5 −31
−30 17.281 12.26 23.76 31.27 24.32 207.1 −22
−25 21.915 15.45 29.23 38.16 29.5 244.1 −13
−20 27.498 19.25 35.58 46.11 35.45 285.7 −4
−15 34.163 23.77 42.99 55.30 42.29 332.3 5
−10 42.05 29.08 51.46 65.12 50.07 484.2 14
−5 51.311 35.3 61.21 77.75 58.9 441.8 23

0 62.102 42.45 72.24 91.23 68.79 505.5 32
5 74.591 50.72 84.77 106.4 79.94 575.7 41

10 88.95 60.12 98.8 123.4 92.32 653 50
15 105.36 70.84 115.9 142.5 106.1 737.7 59
20 124.01 82.9 132 163.5 121.3 803.8 68
25 145.09 96.52 151.6 186.8 138.1 933.2 77
30 168.80 111.7 172.9 212.5 156.5 1045.9 86
35 195.35 128.6 196.7 240.8 176.7 95
40 224.94 147.4 222.5 271.8 198.6 104
45 257.80 168.2 250.9 305.7 222.5 113
50 294.15 191.2 281.8 342.7 248.6 122
55 334.21 216.4 315.5 383.3 276.6 131
60 378.23 243.9 352 427.7 306.9 140
65 426.45 247.1 391.7 476.3 339.8 149
70 479.12 306.9 434.7 375.1 158
80 598.88 381.9 531.3 454.3 176
90 739.77 470.5 644.3 545.9 194

100 904.32 576.1 212
110 1095.5 230

From Table 9.10 by interpolation, the capacity for a suction line temperature
drop of 2◦F per 100 ft for NPS 4 steel pipe at 25◦F is

115.9 + (163.2 − 115.9) × 5
20

= 127.73 tons

We will now adjust the temperature drop from Table 9.10 for the equivalent
length of 212.4 previously calculated and for 120-ton actual capacity.

�T = 2 × 212.4
100

×
(

120
127.73

)1.96

= 3.67◦F

This temperature drop is less than the 4◦F recommended. Hence this pipe
size is fine.
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Similarly, the pressure drop is interpolated from Table 9.10 at 25◦F as
follows:

2.22 + (2.91 − 2.22) × 5
20

= 2.4 psi

Adjusting for the equivalent length and capacity we get

�P = 2.4 × 212.4
100

×
(

120
127.73

)1.96

= 4.51 psi

Next, we will choose NPS 3 steel pipe for the discharge line. We will calculate
the equivalent length of the discharge line including pipe, valves, and fittings:

Pipe 100 ft

One globe valve 84 ft

One check valve 84 ft

Two elbows 10 ft

Total 278 ft

From Table 9.10, the capacity of NPS 3 steel pipe at a temperature drop of
1◦F per 100 ft and a condensing temperature of 105◦F is 116.4 tons. Adjusting
for the equivalent length and capacity we get

�T = 1.0 × 278
100

×
(

120
116.4

)1.96

= 2.95◦F

This is larger than the 2◦F recommended for discharge piping. We can reduce
the equivalent length and thereby reduce the temperature difference using
angle valves and a swing check valve as follows:

Revised equivalent length = 100 + 2 × 35 + 30 + 10 = 210 ft

Therefore, the revised temperature drop is

�T = 2.95 × 210
278

= 2.23◦F

which is close enough to the 2◦F recommended for discharge piping.
The pressure drop in the discharge line is calculated by using Table 9.10

and adjusting for the equivalent length and capacity as follows. From
Table 9.10, the pressure drop is 3.05 psi per 100 ft at a capacity of 116.4
tons. Adjusting the pressure drop from Table 9.10 for the equivalent length
of 278 previously calculated and for 120-ton actual capacity, we obtain

�P = 3.05 × 210
100

×
(

120
116.4

)1.96

= 6.8 psi

Next, the condenser drain according to Table 9.10 at a velocity of 100 ft/min
for NPS 3 steel pipe has a capacity of 118.5 tons. Since our capacity is 120 tons,
using NPS 3 pipe would cause the velocity to increase to 100 × 120/118.5 =
102 ft/min, which is acceptable. Therefore, use NPS 3 steel pipe for the con-
denser drain.
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Next we will size the liquid line from the receiver to the evaporator. Assume
NPS 2 steel pipe and calculate the total equivalent length as follows:

Pipe 200 ft

Two angle valves 48 ft

Two elbows 6.6 ft

Total 254.6 ft

From Table 9.10 the liquid line had a 1◦F temperature drop per 100 ft for
NPS 2 pipe and a capacity of 192 tons. Adjusting for equivalent length and
capacity, we get

�T = 1.0 × 254.6
100

×
(

120
192

)1.96

= 1.01◦F

Also the pressure drop from Table 9.10 is 3.05 psi per 100 ft. Adjusting for
equivalent length and capacity, we get

�P = 3.05 × 254.6
100

×
(

120
192

)1.96

= 3.1 psi

The compressor suction and discharge pressures have to be adjusted for
the pressure losses in the suction and discharge piping.

Compressor suction pressure = 63.66 − 4.51 = 59.15 psia

Compressor discharge pressure = 222.5 + 6.8 = 229.3 psia

Compression ratio = 229.3
59.15

= 3.88

Flow rate at suction = 302.03 ft3/min

Suction piping: Use NPS 4.

Discharge piping: Use NPS 3.

Condenser drain line: Use NPS 3.

Receiver to the evaporator: Use NPS 2.

9.4 Piping Materials

The ASME Code for Pressure Piping, Section B31.5, covers the require-
ment for design, construction, installation, and testing of refrigeration
piping systems. Because of the nature of different refrigerants certain
piping material cannot be used with some refrigerants. For example,
carbon-steel material can be used with refrigerants such as R-22, 134A,
290, 400, 500, 717, and 744. Wrought iron may also be used with these
refrigerants. Cast iron pipe is not allowed in any refrigerant system.
Copper or brass piping may be used with all refrigerants except R-717
(ammonia). Table 9.15 lists the materials used and the levels of com-
patibility.
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TABLE 9.15 Piping Materials and Refrigerant Compatibility

Refrigerant number

Material 22 134a 290 All 400s All 500s 717 744

Carbon steel S S S S S S S
Wrought iron S S S S S S S
Cast iron pipe NP NP NP NP NP NP NP
Copper or brass S S S S S NS S
Aluminum Q Q Q Q Q Q NS
Zinc NS NS NS NS NS NS NS
Magnesium NS NS NS NS NS NS NS
ASHRAE 15-94 group A1 A1 A1 A1 A1 B2 A1

NOTES: NP—not permitted by ASME B31.5 Code; NS—not satisfactory; Q—qualified,
moist refrigerant may corrode (consult supplier); S—satisfactory.

SOURCE: Reproduced from M. L. Nayyar, Piping Handbook, 7th ed., New York,
McGraw-Hill, 2000.

TABLE 9.16 Allowable Working Pressures for Carbon-Steel Piping

Pipe size Schedule Allowable internal Allowable external
NPS DN number working pressure, psig working pressure, psig

1
8 3 40 1890 2070

80 3510 2860
1
4 6 40 1490 2000

80 2880 2700
3
8 10 40 1300 1660

80 2500 2280
1
2 15 40 1126 1580

80 2210 2140
3
4 20 40 994 1320

80 1890 1800
1 25 40 866 1210

80 1680 1670
1 1

4 32 40 773 980
80 1470 1410

1 1
2 40 40 740 890

80 1390 1270
2 50 40 670 750

2 1
2 65 40 665 810

3 80 40 624 700
3 1

2 90 40 600 640
4 100 40 580 580
6 150 40 534 450
8 200 40 515 390

10 250 40 496 340
12 300 40 436 260



TABLE 9.17 Allowable Working Pressures for Copper Tubing

Rated internal working pressure, psig

100◦F (38◦C) 200◦F (93◦C) 300◦F (149◦C) 400◦F (204◦C)
Pipe size, Wall thickness,

in in Annealed Drawn Annealed Drawn Annealed Drawn Annealed or Drawn

1
8 0.030 3130 3090 2620 1310
3
16 0.030 1990 1950 1650 820
1
4 0.030 1450 1420 1200 600
15
16 0.032 1230 1200 1020 510
3
8 0.030 900 1350 880 1300 740 1180 370
3
8 0.032 1010 990 840 420
1
2 0.032 740 730 610 300
1
2 0.035 800 1200 780 1150 660 1060 330
5
8 0.035 640 630 530 260
5
8 0.040 740 1110 720 1060 610 980 300
3
4 0.042 650 980 630 930 530 850 260
7
8 0.045 590 890 570 840 480 770 240

1 1
8 0.050 510 770 490 720 420 670 210

1 3
8 0.030 460 690 440 650 370 590 180

1 5
8 0.030 430 650 410 600 350 560 170

2 1
8 0.030 370 560 360 530 300 480 150

2 5
8 0.030 350 530 340 500 280 450 140

3 1
8 0.030 330 500 320 470 270 430 130

3 5
8 0.030 320 480 300 440 260 420 130

4 1
8 0.030 300 450 290 430 240 380 120

600
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Steel pipe used must be schedule 40 or heavier. Butt-welded carbon-
steel pipe is not used. However, electric resistance welded (ERW) pipe
is allowed. Copper or brass tubing, type K, L, or ACR, can be used with
any refrigerants.

Tables 9.16 and 9.17 show the allowable working pressures for carbon
steel and copper tubing type ACR used in refrigerant piping systems.
For more details on piping materials and allowable pressures refer to
the ASHRAE and ASME standards discussed in Sec. 9.1.



Chapter

10
Slurry and Sludge

Systems Piping

Introduction

A slurry consists of solid particles suspended in a liquid. A slurry
pipeline is used to transport slurries from the source such as a coal mine
to its destination such as a coal power plant. In this case the coal slurry
will be a mixture of coal and water, which is a transportation medium
used to propel the combined solid-liquid mass through the pipeline us-
ing centrifugal pumps to provide the required pressure. Slurry pipelines
pose many challenges including daunting rheological issues, the avail-
ability of water as a medium of transport, and pumping equipment.
Slurries may be newtonian or nonnewtonian in nature. When the par-
ticle concentration of solid within the liquid is less than 10 percent
by volume, the slurry may be considered newtonian. When the slurry
concentration is higher than 10 percent, it is generally regarded as
nonnewtonian.

10.1 Physical Properties

Since the slurry consists of solid particles suspended in a liquid, the
properties of a slurry mixture will depend upon those of the constituents.
The density of slurry can be calculated from the following equation:

ρm = 100
(Cw/ρs) + [(100 − Cw)/ρL]

(10.1)

where ρm = density of slurry mixture, lb/ft3

Cw = solids concentration by weight, %

603
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ρs = density of solid in mixture, lb/ft3

ρL = density of liquid in mixture, lb/ft3

The variable Cw represents the amount of solid in the mixture by weight.
The term Cv is a corresponding value in terms of volume. Thus Cw may
be 50 percent solids by weight, whereas Cv may be 15 percent solids by
volume. The term volume fraction represented by the symbol � is equal
to Cv/100. The term volume ratio represents the ratio of the volume of
solid to the volume of liquid. Thus we get the following equations for
the volume fraction and volume ratio:

Volume fraction � = Cv

100
(10.2)

Volume ratio = �

1 − �
(10.3)

where Cv is the concentration of solids by volume (%) and � is the
volume fraction.

The concentration of solids by volume Cv and the concentration of
solids by weight Cw are related to the solid density and the mixture
density by the following equation:

Cv = Cw
ρm

ρs
(10.4)

where Cv = solid concentration by volume, %
Cw = solid concentration by weight, %
ρm = density of slurry mixture, lb/ft3

ρs = density of solid, lb/ft3

The viscosity of a dilute suspension consisting of solids in a liquid can be
calculated approximately from the volume fraction � and the viscosity
of the liquid using the following equation:

µm = µL(1 + 2.5�) (10.5)

where µm = viscosity of slurry mixture, centipoise (cP)
µL = viscosity of liquid, cP
� = volume fraction of slurry, dimensionless

The preceding calculation of the mixture viscosity applies only to lami-
nar flow and to spherical particles. Also Eq. (10.5) does not apply for
solid concentrations exceeding 1 percent by volume.



Slurry and Sludge Systems Piping 605

For higher-concentration suspensions the viscosity of the mixture can
be calculated using a modified form of Eq. (10.5) attributed to D. G.
Thomas.

µm = µL[1 + 2.5� + 10.05�2 + 0.00273 exp (16.6�)] (10.6)

where µm = viscosity of slurry mixture, cP
µL = viscosity of liquid, cP
� = volume fraction of slurry, dimensionless

Example 10.1 If the volume concentration of a slurry mixture is 15 percent
and the solid viscosity is 3 cP, calculate the mixture viscosity if the liquid is
water and the flow is laminar.

Solution

Cv = 15% µs = 3.0

Since the solid concentration is 15 percent, we need to use Eq. (10.6) to
calculate the mixture viscosity µm. First, calculate the volume fraction,

� = Cv

100
= 15

100
= 0.15

µm = 3[1 + 2.5 (0.15) + 10.05 (0.15)2 + 0.00273 exp (16.6 × 0.15)]

Solving we get

µm = 4.902 cP

Example 10.2 A slurry mixture consisting of magnetite in water has a con-
centration of 65 percent solids by weight, and the specific gravity of the solids
is 5.2. Calculate the specific gravity, volume fraction, and volume ratio of the
slurry mixture.

Solution

Cw = 65% ρs = 5.2

The specific gravity of the slurry mixture is calculated from Eq. (10.1) as
follows:

Sgm = 100
(65/5.2) + (35/1.0)

= 2.10

Therefore, the specific gravity of the slurry mixture is 2.10.
The concentration by volume Cv is given by Eq. (10.4).

Cv = 65

(
2.1
5.2

)
= 26.25%
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Next we calculate the volume fraction,

� = 26.25
100

= 0.2625

and then we obtain

Volume ratio = 0.2625
1 − 0.2625

= 0.3559

Example 10.3 A slurry consists of raw salt in a brine solution. Experiments
indicate that this slurry weighs 95 pounds per cubic foot (lb/ft3). Calculate
the concentration of solids by weight and by volume and the volume ratio.
Use 130 lb/ft3 for the density of salt and 80 lb/ft3 for the density of brine.

Solution

Slurry density ρm = 95 lb/ft3

Liquid density ρL = 80 lb/ft3

Solid density ρs = 130 lb/ft3

From the slurry density Eq. (10.1) we get

95 = 100
(Cw/130) + [(100 − Cw)/80]

Solving for the solids concentration by weight,

Cw

130
+ 100

80
− Cw

80
= 100

95

Cw

(
1

130
− 1

80

)
= 100

(
1

95
− 1

80

)
Cw (0.000481) = 0.1974

Cw = 41.05%

The concentration by volume Cv from Eq. (10.4) is

Cv = 41.05
95
130

= 29.998%

Using Cv we calculate

Volume fraction � = 29.998
100

= 0.30

Volume ratio = 0.3
1 − 0.3

= 0.3
0.7

= 0.4286

Example 10.4 Calculate the viscosity of a slurry mixture consisting of salt
(50 percent by weight) in saturated brine assuming a newtonian fluid. The
viscosity of brine is 2.0 cP, and the density of brine is 75 lb/ft3 and that of
salt is 130 lb/ft3.
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Solution We calculate the density of slurry first from Eq. (10.1)

ρm = 100
(50/130) + (50/75)

= 95.12 lb/ft3

The volume fraction � is calculated from Cv. Using Eq. 10.4,

Cv = 50
95.12
130

= 36.58%

Therefore,

Volume fraction � = 36.58
100

= 0.3658

The viscosity of the slurry mixture can then be calculated from Eq. (10.6) as
follows:

µm = 2.0 [1 + 2.5 (0.3658) + 10.05 (0.3658)2 + 0.00273 exp (16.6 × 0.3658)]

= 13.55 cP

10.2 Newtonian and Nonnewtonian Fluids

Fluids may be characterized as newtonian or nonnewtonian. The dis-
tinction is based on how the fluid viscosity (resistance to flow) varies
with the velocity gradient in a pipe. A newtonian fluid is one in which
the shear stress between adjacent layers of the flowing fluid is propor-
tional to the velocity gradient. The constant of proportionality is known
as the absolute or dynamic viscosity µ of the fluid. This is illustrated in
Fig. 10.1.

In Fig. 10.1 we have plotted the velocity gradient dV/dy along the
x axis and shear stress τ along the y axis. The velocity gradient is
defined as the rate of change of velocity V with respect to distance y
measured along the pipe radius as shown in Fig. 10.1. The velocity at
the pipe wall (y = 0) is zero. This linear relationship between shear
stress and velocity gradient (sometimes also known as the shear rate)

Maximum
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Laminar flow
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Figure 10.1 Newtonian flow.
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is the classical Newton’s equation for newtonian fluids as follows:

τ = µ
dV
dy

(10.7)

where τ = shear stress at a vertical distance y from pipe wall
µ = viscosity of fluid

dV
dy

= velocity gradient, also known as shear rate

Since the viscosity µ of a newtonian fluid is constant at a particular
temperature and pressure, the slope of the shear stress versus velocity
gradient is constant. Also for newtonian fluids, at zero shear rate, the
shear stress is zero and hence the straight line passes through the origin
as indicated in Fig. 10.1. For nonnewtonian fluids this is not the case.
Hence the shear stress versus velocity gradient will not be a straight
line and will not pass through the origin for most nonnewtonian fluids.

Graphs showing the shear stress τ versus velocity gradient dV/dy
are known as rheograms. The rheogram of a nonnewtonian fluid is not
a straight line and may not start at y = 0, dV/dy = 0. It is generally
curved and may have a positive shear stress at a zero velocity gradi-
ent. This is illustrated in Fig. 10.2, which shows rheograms of both
newtonian and nonnewtonian fluids.

It can be seen from Fig. 10.2 that newtonian, pseudo-plastic, and
dilatant fluids all have zero shear stress at a zero velocity gradient.
Bingham plastic, yield pseudo-plastic, and yield dilatant fluids have
positive shear stress at a zero velocity gradient. The pseudo-plastic
and dilatant fluids have curved rheograms indicating that the dynamic
viscosity is not a constant, unlike newtonian or Bingham plastic fluids.
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Shear rate or velocity gradient, dV
dy

Dilatant

Newtonian

Pseudo-plastic

Yield dilatant

Yield pseudo-plastic

Bingham plastic

Figure 10.2 Newtonian and nonnewtonian fluids.
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Since a minimum shear stress is required to cause flow in Bingham
plastic, yield pseudo-plastic, and yield dilatant fluids, it is said that
these fluids exhibit yield stress. As the shear stress is increased beyond
the yield stress (τ0) the Bingham fluid behaves like a newtonian fluid
exhibiting constant slope or constant dynamic viscosity. Fluids that
have curved rheograms are said to have an apparent viscosity µ equal to
the slope of the rheograms at a particular velocity gradient. Thus, these
fluids have an apparent viscosity which depends on the shear rate.

Petroleum liquids (such as oil, gasoline, and diesel) and water
are considered newtonian liquids. Slurries are generally considered
nonnewtonian; however, depending on the concentration, some slurries
may behave as a newtonian fluid. Thus slurries at low concentration
may be considered newtonian and become nonnewtonian as the slurry
concentration increases.

10.2.1 Bingham plastic fluids

The shear stress τ for a Bingham plastic fluid can be represented in
terms of the apparent viscosity and the velocity gradient by the follow-
ing equation:

τ = τ0 + η
dV
dy

(10.8)

where τ = shear stress at distance y from pipe wall
τ0 = yield stress
η = coefficient of rigidity

dV
dy

= velocity gradient

The term η is referred to as the coefficient of rigidity or plastic viscosity
and has units of absolute viscosity µ. Examples of Bingham plastic
fluids are clay suspended in water, sewage sludge, fly ash, paint, and
coal slurry.

10.2.2 Pseudo-plastic fluids

For nonnewtonian fluids other than Bingham plastic fluids, the power
law model is used to define the shear stress versus velocity gradient
relationship. The power law equation is as follows:

τ = K
(

dV
dy

)n

(10.9)

where τ = shear stress at distance y from pipe wall
K = power law coefficient or consistency index
n = power law exponent or flow behavior index

dV
dy

= velocity gradient
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In Eq. (10.9) the term K is known as the power law coefficient or con-
sistency index and the constant n is known as the power law exponent
or flow behavior index. For pseudo-plastic fluids n < 1, and for dilatant
fluids n > 1. Since the apparent viscosity µ is the slope of the shear
stress τ versus velocity gradient plot, we can calculate the apparent
viscosity of a nonnewtonian fluid that follows the power law from
Eq. (10.9) as follows:

µ = K
(

dV
dy

)n−1

(10.10a)

where µ = absolute viscosity of liquid
K = power law coefficient
n = power law exponent

dV
dy

= velocity gradient

Pseudo-plastic fluids include water mixtures of limestone and hydro-
carbon grease.

10.2.3 Yield pseudo-plastic fluids

Yield pseudo-plastic and yield dilatant fluids obey the power law and
have a positive intercept on the τ axis, representing the yield stress τ0.
The following shear stress versus velocity gradient relationship exists
for these fluids:

τ = τ0 + K
(

dV
dy

)n

(10.10b)

where τ = shear stress at distance y from pipe wall
τ0 = yield stress
K = power law coefficient or consistency index
n = power law exponent or flow behavior index

dV
dy

= velocity gradient

It can be seen from Eq. (10.10b) that n = 1 and K = η will give us the
Bingham plastic fluid equation (10.8).

Most nonnewtonian fluids have apparent viscosity that does not
change with time. However, the viscosity of thixotropic fluids decreases
with time. In the petroleum industry the drilling fluid known as ben-
tonitic clay is considered a thixotropic fluid. Also some crude oils may
exhibit thixotropic behavior at low temperatures. Some nonnewtonian
fluids show another form of thixotropic behavior, where the viscosity of
fluid under shear increases with time. Such fluids with viscosity that
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increases with time are termed rheopectic fluids. These fluids are also
said to be negative thixotropic fluids.

As discussed earlier, newtonian fluids at a particular pressure and
temperature have a fixed viscosity that represents the proportionality
constant in the shear stress versus velocity gradient relationship.

Example 10.5 A slurry mixture follows the power law model and has the
following shear stress versus shear rate characteristics: 20 dynes per square
centimeter (dyne/cm2) at a shear rate of 10 and 39 dyne/cm2 at a shear rate
of 25. Calculate the index n and the coefficient K.

Solution Representing shear stress by τ and the velocity gradient (shear
rate) by γ ,

τ1 = 20 dyne/cm2 γ1 = 10 s−1

τ2 = 39 dyne/cm2 γ2 = 25 s−1

The power law model [Eq. (10.9)] is

τ = K

(
dv
dy

)n

Substituting the two pairs of values for shear stresses and shear rates given,
we get

20 = K(10)n (10.11a)

39 = K(25)n (10.11b)

Dividing one equation by the other, eliminating K we get(
25
10

)n

= 39
20

= 1.95

Solving for n by taking the log on both sides,

n log 2.5 = log 1.95

n = log 1.95
log 2.5

= 0.29003
0.39794

= 0.7288

The coefficient K can then be found from either Eq. (10.11a) or (10.11b):

K = 20
10n = 20

100.7288
= 3.7345

The power law equation is then

τ = 3.7345

(
dv
dy

)0.7288
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10.3 Flow of Newtonian Fluids

We will first discuss the flow of newtonian fluids and how pressure loss
due to friction is calculated from the pipe size and fluid properties.
For a newtonian fluid, under steady-state flow through a pipeline, the
average velocity is given by

V = Q
A

(10.12)

where V = average velocity of flow
Q = flow rate, ft3/s
A = area, ft2

The dimensionless parameter called the Reynolds number of flow is
defined as a function of flow velocity, pipe inside diameter, liquid density,
and viscosity as follows:

Re = VDρ

µ
(10.13)

where Re = Reynolds number of flow, dimensionless
V = velocity of flow
D = pipe inside diameter
ρ = density of liquid
µ = absolute viscosity of liquid

Consistent units are used to ensure that the resulting value of Re is
dimensionless.

When the Reynolds number < 2100 approximately, the flow is termed
laminar. When the Reynolds number > 4000, the flow is considered
turbulent. If Re falls between these two numbers (2100 and 4000), the
flow is termed critical. In laminar flow, the friction factor f (also known
as the Darcy friction factor) depends only on the Reynolds number as
follows:

f = 64
Re

(10.14)

where f is the Darcy friction factor and Re is the Reynolds number
(dimensionless).

For turbulent flow, f depends not only on the Reynolds number but
on the pipe diameter and internal pipe roughness as well. The friction
factor for turbulent flow is generally calculated from the Colebrook-
White formula as follows:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

Re
√

f

)
(10.15)
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where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in

Re = Reynolds number, dimensionless

The Moody diagram, based on the Colebrook-White formula, shown in
Fig. 10.3 can also be used to determine the friction factor for turbulent
flow. In the critical flow regime (2100 < Re < 4000), the flow is unstable
and hence there is no reliable method to calculate the friction factor.
Sometimes, the turbulent flow friction factor is used in the critical flow
regime also.

Once the friction factor is known, the pressure drop due to friction in a
newtonian flow can be calculated using the Darcy equation, sometimes
also called the Darcy-Weisbach equation, as follows:

h = f LV2

2gD
(10.16)

where h = frictional pressure loss, ft of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, ft
V = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

D = inside pipe diameter, in

It must be noted that the friction factor discussed earlier is more cor-
rectly called the Darcy friction factor. Some texts refer to another fric-
tion factor called the Fanning friction factor which is numerically equal
to one-fourth the Darcy friction factor. Throughout this chapter we will
use the Darcy friction factor except in a few instances where experi-
mental data are plotted against the Fanning friction factor.

The Darcy equation is used to calculate the pressure loss due to fric-
tion in feet of liquid head. The corresponding pressure drop in U.S.
Customary System (USCS) units of in pounds per square inch (lb/in2

or psi), or in Système International (SI) units of kilopascals, may be
calculated by factoring in the liquid specific gravity as follows:

�P = h × Sg
2.31

psi (10.17)

where �P = pressure drop, psi
h = head loss due to friction, ft of liquid

Sg = liquid specific gravity

Similarly, in SI units,

�P = 9.7955 × h × Sg (10.18)
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where �P = pressure drop, kPa
h = head loss due to friction, m

Sg = liquid specific gravity

10.4 Flow of Nonnewtonian Fluids

For nonnewtonian fluids, the discussion that follows will employ equa-
tions similar to that used for newtonian fluids. However, we will in-
troduce several modified versions of the Reynolds number and friction
factor to calculate the friction loss in laminar and turbulent flows of
nonnewtonian fluids, such as slurries.

10.4.1 Laminar flow of nonnewtonian fluids

Since nonnewtonian fluids may be Bingham plastic, pseudo-plastic, or
yield pseudo-plastic, we have to treat each type separately. As the ve-
locity of flow of a fluid in a pipeline is increased, the pressure loss due
to friction increases. The critical velocity at which the flow ceases to
be laminar is termed the transition velocity. For newtonian fluids this
velocity corresponds to that at which the Reynolds number equals ap-
proximately 2100.

Thus for newtonian fluids the transition velocity VT can be calculated
from

2100 = VT Dρ

µ
(10.19)

where VT = laminar-turbulent transition velocity
D = pipe inside diameter
ρ = density
µ = viscosity

If a slurry mixture is approximately newtonian, we can calculate the
transition velocity using Eq. (10.19) by substituting the slurry mixture
density ρ and the slurry viscosity µ.

Bingham plastic fluids. The transition velocity for Bingham plastic flu-
ids must be calculated using both the Reynolds number and another
dimensionless parameter called the Hedstrom number. The Reynolds
number is first calculated from

Re = VDρ

η
(10.20)

where Re = Reynolds number, dimensionless
V = flow velocity, ft/s
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D = pipe inside diameter
ρ = density of fluid
η = plastic viscosity or coefficient of rigidity as defined in

Eq. (10.8).

Next, the dimensionless Hedstrom number He is defined as

He = ρD2τ0

η2 (10.21)

where He = Hedstrom number, dimensionless
D = pipe inside diameter
ρ = density of fluid
τ0 = yield stress
η = plastic viscosity of liquid

Consistent units are used to ensure that the resulting value of He is
dimensionless.

Once He is calculated based upon pipe size and fluid properties us-
ing Eq. (10.21) the critical Reynolds number Rec (corresponding to the
laminar-turbulent transition velocity) is found using the graph shown
in Fig. 10.4. Having found the critical Reynolds number Rec we can
then calculate the transition velocity VT using Eq. (10.20).

n = 1.0

n = 0.9

n = 0.8

n = 0.7

n = 0.6

n = 0.5

n = 0.4

n = 0.3

0.4, 0.5

0.3
0.6

0.7
0.8
0.9
1.0

1.00E + 05

1.00E + 04

1.00E + 03

C
rit

ic
al

 R
ey

no
ld

s 
nu

m
be

r

1.00E + 03 1.00E + 04 1.00E + 05 1.00E + 06 1.00E + 07 1.00E + 08

Hedstrom number

Figure 10.4 Critical Reynolds number versus Hedstrom number for Bingham plastic
fluids.
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Another approach to calculating the transition velocity VT for
Bingham plastics is using an effective viscosity calculated as follows:

µe = η

(
1 + τ0 D

6ηV

)
(10.22)

where µe = effective viscosity, cP
η = coefficient of rigidity
τ0 = yield stress
D = pipe inside diameter, in
V = flow velocity, ft/s

Neglecting the number 1 in comparison with the much larger second
term in Eq. (10.22) and using VT as the transition velocity, the effective
viscosity becomes

µe = τ0 D
6VT

(10.23)

where µe = effective viscosity
τ0 = yield stress
D = pipe inside diameter

VT = transition velocity

We can now calculate the transition velocity VT from the critical
Reynolds number as follows:

VT =
√

τ0(Rec)
6ρ

(10.24)

A variation of Eq. (10.24) for calculating transition velocity VT is as
follows:

VT = 19
√

τ0

ρ
(10.25)

where VT = transition velocity
τ0 = yield stress

Rec = critical Reynolds number at velocity VT
ρ = fluid density

Equations (10.24) and (10.25) assume that the transition occurs at a
Reynolds number of 2100. If we use a critical Reynolds number of 3000
instead, the constant 19 in Eq. (10.25) must be changed to 22.
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Another equation proposed by R. Durand for calculating the transi-
tion velocity is

VT = 1000
Dρ


1 +
√

1 + D2τ0ρ

3000η


 (10.26)

All symbols in Eq. (10.26) are as defined before.
Comparison of results shows that a better correlation with field data

is found using the Hedstrom number approach than using Eq. (10.26).
Nevertheless, Eqs. (10.24) and (10.25) do give an idea of the approxi-
mate value of transition velocity for Bingham plastic fluids. The friction
factor in laminar flow of Bingham plastic fluids is calculated from the
Reynolds number and Hedstrom number using the following equation.

f
64

= 1
Re

+ He

6Re2 − 64He4

3 f 3Re8 (10.27)

where f is the Darcy friction factor. Since f appears on both sides of
Eq. (10.27), it must be calculated by trial and error. A plot of the Fanning
friction factor (equal to f/4) versus the Reynolds number for various
values of the Hedstrom number is shown in Fig. 10.5.

It must be noted that the Fanning friction factor obtained from
Fig. 10.5 is equal to one-fourth the Darcy friction factor we have used
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Figure 10.5 Fanning friction factor versus Reynolds number for Bingham plastic fluids.
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so far. Once the friction factor is calculated either from Eq. (10.27) or
from Fig. 10.5, we can calculate the head loss due to friction using the
Darcy equation (10.16).

Pseudo-plastic fluids. Pseudo-plastic fluids that obey the power law
model have the shear stress versus shear rate relationship described by
Eq. (10.9). The Reynolds number for a nonnewtonian fluid that exhibits
the power law behavior is calculated from the following equation:

Re = ρDn V2−n

K
(10.28)

where Re = Reynolds number of flow, dimensionless
ρ = density of fluid
D = pipe inside diameter
V = velocity of flow
K = power law coefficient or consistency index
n = power law exponent or flow behavior index

It can be seen that when n = 1 and K = µ for newtonian fluids, the
Reynolds number equation (10.28) reduces to the familiar form VDρ/µ.
However, for pseudo-plastic fluids, we define a modified Reynolds
number Rem as follows:

Rem = 8
(

n
6n + 2

)n

ρDn
(

V2−n

K

)
(10.29)

where Rem = modified Reynolds number of flow, dimensionless
ρ = density of fluid
D = pipe inside diameter
V = velocity of flow
K = power law coefficient
n = power law exponent

Using the modified Reynolds number Rem defined in Eq. (10.29), we get
the Darcy friction factor f for laminar flow of a pseudo-plastic fluid that
obeys the power law model as follows:

f = 64
Rem

(10.30)

The transition from laminar flow to turbulent flow for pseudo-plastic
fluids may be assumed to happen at Rem = 2100. Studies made by re-
searchers N. W. Ryan and M. M. Johnson found that laminar to turbu-
lent flow transition occurs when the critical Reynolds number becomes



620 Chapter Ten

as defined in the following equation:

Remc = 6464n
(2 + n)(2+n)/(1+n)

(1 + 3n)2 (10.31)

For newtonian fluids, n = 1 and by substitution in Eq. (10.31), the
transition Reynolds number occurs at Remc = 2100 as expected.

The variation of the critical Reynolds number versus the flow behav-
ior index n is shown in Fig. 10.6. The transition velocity can now be
calculated corresponding to the critical Reynolds number Remc using
Eq. (10.29).

Having determined the critical Reynolds number, the friction factor
f for the transition point can now be calculated from

f = (1 + 3n)
101n

2( 1
2 + n

)(2+n)/(1+n)

(10.32)

Note that the friction factor calculated in Eq. (10.32) is for the transition
point only. At any other Reynolds number less than the critical Reynolds
number Remc calculated from Eq. (10.31), f for laminar flow must be
calculated using Eq. (10.30). The head loss due to friction in laminar
flow of pseudo-plastic fluids can now be calculated using the Darcy
equation (10.16).
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Yield pseudo-plastic fluids. For yield pseudo-plastic fluids the calcu-
lation of the critical Reynolds number is more complex. Similar to
Bingham plastic fluids we must first calculate the Hedstrom number
from the following equation:

He = ρD2τ0

K2

(τ0

K

)2/n−2
(10.33)

where He = Hedstrom number of flow, dimensionless
D = pipe inside diameter
ρ = density of fluid
τ0 = yield stress
K = power law coefficient
n = power law exponent

As before, consistent units are used to ensure that the resulting value
of He is dimensionless.

Next we define a parameter x as follows:

x = τ0

τw
(10.34)

where τ0 is the yield stress and τw is the wall shear stress. This param-
eter x must be calculated from the Hedstrom number He as follows:

He = 3232
n

(2 + n)(2+n)/(1+n)
[

x
(1 − x)1+n

](2−n)/n( 1
1 − x

)n

(10.35)

The parameter � depends on x and is found from the following equation:

� =

[
(1 − x)2

1 + 3n
+ 2x (1 − x)

1 + 2n
+ x2

1 + n

]2−n

(1 − x)n (10.36)

After calculating � from Eq. (10.36) we calculate the critical Reynolds
number for yield pseudo-plastic fluids as follows:

Remc = 6464n
(2 + n)(2+n)/(1+n)

(1 + 3n)n � (10.37)

The variation of the critical Reynolds number Remc with the Hedstrom
number for various values of n is shown in Fig. 10.7. The transition
velocity can now be calculated corresponding to the critical Reynolds
number Remc using Eq. (10.29).

Having determined the critical Reynolds number, the friction factor
f for the transition point can now be calculated from Eq. (10.30) as
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Figure 10.7 Critical Reynolds number versus Hedstrom number for yield pseudoplastic
fluids.

follows:

f = 64
Remc

(10.38)

Note that the friction factor calculated in Eq. (10.38) is for the transition
point only. At any other Reynolds number less than the critical Reynolds
number Remc calculated from Eq. (10.37), f for laminar flow must be
calculated using Eq. (10.30). The head loss due to friction in laminar
flow of yield pseudo-plastic fluids can now be calculated using the Darcy
equation (10.16).

A graphical method of determining the friction factor f in laminar
flow of yield pseudo-plastic fluids is as follows. A parameter known as
the flow function parameter � is defined first. This parameter depends
upon the Hedstrom number He and the power law exponent n. A graph
showing the variation of � with He and n is shown in Fig. 10.8. From
the calculated value of He and exponent n we will determine the value
of the flow function parameter � from Fig. 10.8.

Next calculate the friction factor from

f = 64
�Rem

(10.39)

where Rem is calculated from Eq. (10.29).
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Figure 10.8 Flow function versus Hedstrom number for yield pseudo-plastic fluids.

Example 10.6 A slurry contains 60 percent solids by weight in water at
60◦F and has a plastic viscosity of 7 cP and a yield stress of 40 dyne/cm2. The
specific gravity of solids is 3.0. Calculate the value of the Hedstrom number
and the transition velocity for pipe inside diameters of 20 and 50 mm.

Solution

τ0 = 40 dyne/cm2 η = 7 cP ρs = 3.0 D = 20 mm, 50 mm

First we calculate the slurry mixture density for Eq. (10.1):

ρm = 100
(60/3.0) + (40/1.0)

= 1.667

The Hedstrom number is calculated from Eq. (10.21). For 20-mm pipe,

He = τ0ρD2

η2
= 40 × 1.667 × (2.0)2

(0.07)2
= 5.44 × 104

and for 50-mm pipe,

He = τ0ρD2

η2
= 40 × 1.667 × (5.0)2

(0.07)2
= 3.4 × 105

The critical Reynolds number from Fig. 10.4 is

Rec =
{

6 × 103 for He = 5.44 × 104

9.5 × 103 for He = 3.4 × 105
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The transition velocity can be calculated from Eq. (10.20).

Re = VDρ

η

After transposing to solve for VT, we get

VT =




6 × 103 × 0.07
2.0 × 1.667

= 126.0 cm/s for 20-mm pipe

9.5 × 103 × 0.07
5.0 × 1.667

= 79.8 cm/s for 50-mm pipe

Example 10.7 A 52 percent by weight suspension of clay in water has a
plastic viscosity of 8.5 cP and a yield stress of 0.9 lb/ft2 (specific gravity of
solid is 2.5). Assume yield pseudo-plastic fluid with power law coefficient
K = 1.6 and exponent n = 0.4. Calculate the laminar-turbulent transition
velocity for flow in NPS 12 pipe with 0.250-in wall thickness.

Solution Calculate the slurry density from Eq. (10.1).

Sgm = 100
(52/2.5) + (48/1.0)

= 1.4535

Therefore, the density of the mixture is

ρm = 1.4535 × 62.4 = 90.7 lb/ft3

K = 1.6 n = 0.4

The critical Reynolds number from Fig. 10.6 is

Rec = 2400

The NPS 12 (0.250-in wall thickness) pipe has an inside diameter of

D = 12.75 − (2 × 0.25) = 12.25

Therefore using Eq. (10.29) for the modified Reynolds number,

2400 = 8
( n

6n + 2

)n ρDnV2−n

K

Solving for transition velocity VT,

VT
1.6 = 1.6 × 2400

8

(
0.4

6 × 0.4 + 2

)0.4

(90.7)

(
12.25

12

)0.4
= 13.6965

Therefore, solving for VT, the transition velocity is

VT = 5.13 ft/s

Example 10.8 A slurry containing 75 percent solids by weight (solid specific
gravity is 2.5) is transported through a 20-cm inside diameter pipe. If a thin-
ning agent were used to reduce the yield stress from 100 to 50 dyne/cm2 with

Next Page
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the plastic viscosity remaining the same at 50 cP, what will be the impact on
the transition velocity?

Solution

ρm = 100
(75/2.5) + (25/1.0)

= 1.818 g/cm3

τ0 = 100 dyne/cm2 D = 20 cm

Next, the Hedstrom number is calculated as

He = τ0ρD2

η2
= 100 × 1.818 × (2.0)2

(0.50)2
= 2.909 × 105

From Fig. 10.4,

Critical Reynolds number Rec = 10,000

The transition velocity is then calculated as follows:

10,000 = VT Dρ

η

VT = 10,000 × 0.5
20 × 1.818

= 137.5 cm/s = 1.375 m/s

Repeating calculations for τ0 = 50 dyne/cm2:

He = 1.455 × 105

Rec = 7500

VT = 1.03 m/s

Therefore, the impact of a thinning agent is to reduce the transition velocity
from 1.375 to 1.03 m/s.

10.4.2 Turbulent flow of nonnewtonian
fluids

For turbulent flow in nonnewtonian fluids, similar to laminar flow,
various correlations exist for calculating the friction factor from the
Reynolds number and Hedstrom number depending on whether the
fluid behaves as a Bingham plastic fluid or one that obeys the power
law model.

Bingham plastic fluids. A correlation between the friction factor and the
Reynolds number for Bingham plastic fluids was proposed by Hanks
and Dadia. The results of their study are depicted in the graph shown
in Fig. 10.9. It must be noted that this figure shows the variation of the

Previous Page
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Figure 10.9 Fanning friction factor versus Reynolds number for Bingham plastic fluids.

Fanning friction factor with the Reynolds number for various values of
the Hedstrom number. For example, at a Reynolds number of 105 and a
Hedstrom number of 106 for a Bingham plastic fluid, the Fanning fric-
tion factor is approximately 0.0045. The Darcy friction factor is there-
fore 0.018. The head loss due to friction can be calculated as before
using the Darcy equation (10.16).

Pseudo-plastic fluids and yield pseudo-plastic fluids. For pseudo-plastic
fluids in turbulent flow the Dodge-Metzner equation can be used to
calculate the Fanning friction factor as follows:

1√
f

= 4
n0.75 log (Rem f 1−n/2) − 0.4

n1.2 (10.40)

where f = Fanning friction factor, dimensionless
n = power law exponent

Rem = modified Reynolds number as defined in Eq. (10.29)
log = logarithm to base 10

Equation (10.40) for f is used to plot the friction factor against the
Reynolds number as shown in Fig. 10.10 for various values of the be-
havior index.

Another equation for the Fanning friction factor was proposed
by Torrance for turbulent flow of pseudo-plastic fluids and yield
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Figure 10.10 Fanning friction factor versus Reynolds number for pseudo-plastic fluids.

pseudo-plastic fluids. The following is applicable for smooth pipes only.

1√
f

= 2.69
n

− 2.95 + 4.53
n

log (1 − x) − 4.53
n

log
(

Rem

√
f 2−n
)

+ 0.68
n

(10.41)

where log represents the logarithm to base 10 and x is the parameter
defined before (x = τ0/τw).

The Reynolds number Rem in Eq. (10.41) is calculated from

Rem = ρDn V2−n

8n−1K
(10.42)

Torrance also proposed an equation for rough pipes as follows

1√
f

= 4.07 log
D
2e

+ 6.0 − 2.65
n

(10.43)

where log = logarithm to base 10
f = Fanning friction factor for turbulent flow, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in
n = power law exponent
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This is applicable for rough pipes and may be used for the calculation
of the friction factor in fully turbulent flow of Bingham, pseudo-plastic,
and yield pseudo-plastic fluids.

Example 10.9 A 20-inch-diameter (0.25-in-wall thickness) coal slurry pipe-
line is 50 mi long and transports a 50/50 slurry mixture by weight of coal
and water at the flow rate of 1800 tons/h. The density of slurry is 80 lb/ft3.
The yield stress is 25 dyne/cm2, and the coefficient of rigidity is 30 cP. The
pipeline availability is 95 percent per year.

(a) Calculate the average flow velocity.

(b) Determine the flow regime.

(c) Calculate the pressure drop per mile due to friction.

(d) What is the pumping HP required at an overall efficiency of 75 percent?

(e) Calculate the cost of transporting in $/ton assuming an electrical cost
of $0.10 per kilowatt-hour (kWh).

Solution

(a)

Average flow velocity = Mass flow rate
ρ A

= 1800 × 2000
(19.5/12)2 × 0.7854

× 1
80 × 3600

= 6.03 ft/s

Transitional velocity VT = 19

√
25

(80/62.4) × 981
= 2.68 ft/s

Therefore the flow is turbulent.

Reynolds number Re = VDρ

µ
= 6.03 × 19.5

12
× 80 × 100

0.3 × 6.7197
= 38,886

where the constant 6.7197×10−2 is used to convert a viscosity of 30 cP (0.3 P)
to English units.

The Hedstrom number is

He = ρD2τ0

µ2
= 80 × (19.5/12)2 × 25

(0.3 × 6.7197 × 10−2)2
= 1.3 × 107

From Fig. (10.9) we get the Fanning friction factor = 6 × 10−3.

Darcy friction factor f = 4 × 6 × 10−3 = 0.024

Pressure drop due to friction = f LV 2

2gD
= 0.024

64.4

(
5280

19.5
/

12

)
(6.03)2

= 44.03 ft/mi

= 44.03 × 80
62.4

× 1
2.31

= 24.44 psi/mi
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The total pressure drop in 50 mi of pipe is

�P = 24.44 × 50 = 1222 psi

Neglecting elevation effects, the pumping HP required is

HP = 1222 × 144
0.75

1800 × 2000
3600 × 80

1
550

= 5333

Transport cost per ton = 5333 × 0.746 × 24 × 365 × 0.10
0.95 × 1800 × 24 × 365

= $0.233/ton

Example 10.10 A nonnewtonian fluid that obeys the power law has n = 0.8
and K = 0.00025 (lb · sn)/ft2. The fluid specific gravity is 1.3. This fluid flows
through a pipe with a 1.5-in inside diameter at 1 ft/s. Calculate the pressure
drop due to friction at this velocity in a pipe length of 500 ft.

Solution This fluid will be considered as a pseudo-plastic slurry with K =
0.00025 and n = 0.8.

ρm = 1.3 V = 1.0 ft/s D = 1.5
12

= 0.125 ft

The effective viscosity is calculated using Eq. (10.35):

µe = K

(
8V
D

)n−1( 4n
3n + 1

)n

= 0.00025

(
8 × 1.0
0.125

)−0.2( 4 × 0.8
3 × 0.8 + 1

)0.8

= 0.00025 (0.4353)(0.9527) = 0.00010 (lb · s)/ft2

Reynolds number Re = VDρ

µ
= 1 × 0.125 × 1.3 × 62.4

32.2 × 0.0001
= 3149

From Fig. 10.6, for n = 0.8, the critical Reynolds number is Rec = 2230.
Hence the flow is turbulent.

The Fanning friction factor is calculated from the Dodge-Metzner equation:

Fanning friction factor
1√

f
= 4

n0.75
log (Re f 1−n/2) − 0.4

n1.2

= 4.7287 log (3149 f 0.6) − 0.5228

= 0.00946

Darcy friction factor f = 4 × 0.00946 = 0.0378

Friction head loss = f LV 2

2gD
= 0.0378 × 500 × 12

2 × 32.2 × 0.125
= 2.348 ft

= 2.348 × 2.31
1.3

= 4.17 psi
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Example 10.11 A coal slurry pipeline transports a 50/50 slurry mixture by
weight of coal and water at the flow rate of 7 m3/h. The density of slurry is
1300 kg/m3. The yield stress is 25 dyne/cm2, and the coefficient of rigidity is
30 cP. If the pipe inside diameter is 50 mm, determine

(a) Average flow velocity

(b) Flow regime

(c) Pressure drop due to friction for 100 m of pipe

Solution

(a)

Average flow velocity = Q
A

= 7
π
4

( 50
1000

)2 = 3565.06 m/h

= 0.9903 m/s (3.25 ft/s)

(b) The transitional velocity VT according to Eq. (10.25) is

VT = 19
√

τ0

ρ
= 19

√
25

1.3 × 981

Using proper conversions, 981 is the acceleration due to gravity in cm/s2.

VT = 2.66 ft/s

Since the slurry velocity of 3.25 ft/s at the given flow rate exceeds the tran-
sitional velocity of 2.66 ft/s, the flow is in the turbulent region.

(c)

Reynolds number Re = VDρ

µ
= 99.03 × 5 × 1.3

0.3
= 2145

He = ρD2τ0

µ2
= 1.3 × (5)2 × 25

(0.3)2
= 9028

From Fig. 10.4, the critical Reynolds number Rec = 4000. Therefore, the
Darcy friction factor is

f = 9.5 × 10−3 × 4 = 0.038

The pressure loss due to friction is therefore calculated from the Darcy
equation as

�P = f V2L
2gD

= 0.038 × (0.99)2 × 100
2 × (9.81) × (50/1000)

= 3.7965 m per 100 m of pipe

Example 10.12 A slurry consisting of a suspension of clay in water, 52 per-
cent by weight, has a plastic viscosity of 8.5 cP and a yield stress of 0.9 lb/ft2

(the specific gravity of the solid is 2.5). Assume yield pseudo-plastic fluid
with a power law coefficient K = 1.6 and exponent n = 0.4. Pipe size is 12-in
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NPS with 0.250-in wall thickness. Calculate the pressure drop due to friction
using both the Bingham plastic and power law models. The slurry flow rate
is 25,000 lb/min.

Solution The flow velocity at 25,000 lb/min is

V = mass flow rate
Aρ

where A is the pipe cross-sectional area and ρ is the slurry density. Therefore

V = 25,000/60
0.7854 × (12.25/12)2 × 90.7

= 5.61 ft/s

Since this velocity is greater than the transition velocity calculated earlier
(5.13 ft/s), the flow is turbulent. The Reynolds number is calculated from
Eq. (10.29).

Rm = 8
( n

6n + 2

)n
ρDn
(

V2−n

K

)

= 8

(
0.4

6 × 0.4 + 2

)0.4 90.7
1.6

(
12.25

12

)0.4

(5.61)1.6 = 2769

Using the Dodge-Metzner equation (10.40), we get the Fanning friction
factor as

1√
f

= 4
(0.4)0.75

log (2769 f 0.8) − 0.4
(0.4)1.2

Solving by trial and error we get f = 0.0066. Therefore, the Darcy friction
factor f = 4 × 0.0066 = 0.0264. The pressure drop can be calculated from
the Darcy equation (10.16) as follows:

hf = f LV2

2gD
= 0.0264 × 1000 × (5.61)2

2 × 32.2 × (12.25/12)
ft per 1000 ft of pipe

= 12.64 ft per 1000 ft of pipe

The pressure drop in psi is

�P = 12.64
2.31

× 90.7
62.4

= 7.95 psi per 1000 ft of pipe

The preceding analysis was based on the power law model for pseudo-plastic
fluid.

With a Bingham plastic model we must calculate the Hedstrom number
first:

He = τ0ρD2

η2
= 0.9 × 90.7 × (12.25/12)2

32.2 (0.085 × 2.0886 × 10−3)2

Therefore He = 8.38 × 107. The critical Reynolds number Rec is found from
Fig. 10.4 as follows:

Rec = 32,000
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Therefore the transition velocity is calculated as follows:

VDρ

η
= 32,000

VT × (12.25/12) × (90.7/32.2)
0.085 × 2.0886 × 10−3

= 32,000

Therefore transition velocity VT = 1.98 ft/s. Also using the simplified formula
from Eq. (10.25), we get

VT = 19
√

τ0

ρ
= 19

√
0.9

90.7
= 1.89 ft/s

which is quite close to what we got using the Hedstrom number.
We will now calculate the pressure drop due to friction using the Bingham

plastic model. Since the velocity is 5.61 ft/s, the flow is turbulent. For the
Bingham plastic model, we calculate the friction factor from He and Re:

Re = VDρ

η
= 5.61 × 12.25

12
× 90.7

32.2
× 1

0.085 × 2.0886 × 10−3
= 65,759

The Hedstrom number He = 8.38 × 107 from before. From Fig. 10.9,

Darcy friction factor = 0.005 × 4 = 0.020

The pressure drop from the Darcy equation is

hf = f LV2

2gD
= 0.020 × 1000 × (5.61)2

2 × 32.2 × (12.25/12)

= 9.58 ft per 1000 ft of pipe

Pressure drop �P = 9.58
2.31

× 90.7
62.4

= 6.03 psi per 1000 ft of pipe

Example 10.13 A slurry consists of limestone and water (solid specific grav-
ity is 2.7) flowing in an 8-in inside diameter pipe. The solid concentration is
60 percent by weight. The plastic viscosity is 20 cP and the yield stress is
50 dyne/cm2. The slurry flows at 5 ft/s. Calculate the pressure drop due to
friction in psi per 1000 ft of pipe.

Solution Calculate the slurry density from Eq. (10.1):

Sgm = 100
(60/2.7) + (40/1.0)

= 1.607

Therefore, the mixture density is

ρm = 1.607 × 62.4 = 100.277 lb/ft3

Using the Bingham plastic model,

τ0 = 50 dyne/cm2 η = 20 cP V = 5 ft/s
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We can calculate the Hedstrom number using Eq. (10.21):

He = τ0ρD2

η2
=
(

8
12

)2 50 × 2.0886 × 10−3

(0.2 × 2.0886 × 10−3)2
100.277

32.2
= 8.28 × 105

Therefore, the critical Reynolds number from Fig. 10.7 is

Rec = 15,000

The transition velocity is then calculated as

15,000 = VT Dρ

η

VT = 15,000 × (0.2 × 2.0886 × 10−3)
(8/12) × (100.277/32.2)

= 3.02 ft/s

Since the flow velocity is 5 ft/s, the flow is in the turbulent zone.

Re = VDρ

η
= 5

3.02
× 15,000 by proportions

= 24,834

From Fig. 10.9, we get Fanning’s friction factor

F = 0.006

The Darcy friction factor = 4 × 0.006 = 0.024. The head loss due to friction

hf = f LV2

2gD
= 0.024 × 1000 × (5)2

2 × 32.2 × (8/12)

= 13.975 ft per 1000 ft of pipe.

Pressure drop �P = 13.975 × 1.607
2.31

= 9.72 psi per 1000 ft of pipe

10.5 Homogenous and Heterogeneous Flow

We now discuss the calculation methodology for homogenous and het-
erogeneous suspension in slurry pipelines.

10.5.1 Homogenous flow

Slurry flow consists of solid particles moved by means of a liquid trans-
port medium. The solid particles are suspended in the liquid and de-
pending upon the flow velocity and the particle size may be homoge-
nously distributed or might settle to the lowest point due to gravity.
When particle size is very small, it is said to cause Brownian mo-
tion which causes random motion of the particles. Since the particles
are small and they have very small terminal velocity due to gravity,
they remain suspended in the liquid transportation medium. In such
cases, the slurry mixture is said to be homogenous. As indicated earlier
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depending upon the concentration of solid particles in the liquid, slur-
ries may be treated as newtonian or nonnewtonian. When the concen-
tration of the solids is less than 10 percent by volume, newtonian flow
may be assumed. At higher concentrations, nonnewtonian equations
apply. As the particle size increases, to prevent settlement, the flow
velocity must be large enough to cause turbulence and hence keep the
particles suspended. If particles settle, the liquid simply moves past the
settled particles and hence slurry transportation will not occur.

In connection with slurry pipelines, the solid-liquid mixture is divided
into the following categories of flow. Depending upon the particle size
and the average velocity, pipe flows are categorized into homogenous
(also called pseudo-homogenous), heterogeneous, moving-bed flow, and
stationary-bed flow. These four flow zones are graphically illustrated in
Fig. 10.11.

In connection with slurry flow, a term called settling velocity must be
understood. The settling velocity is also known as the terminal velocity
of a particle when it falls under gravity in the liquid which is at rest.
The terminal velocity depends upon the particle size, the liquid density,
and other factors and is calculated using Stokes’s law as follows:

Vs = (ρs − ρm)gd2

18µ
(10.44)

where Vs = settling velocity or terminal velocity, ft/s
ρs = density of solids, lb/ft3

ρm = density of liquid, lb/ft3

d = particle diameter, ft

Average flow velocity V
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Moving-bed flow

Heterogeneous flow

Homogenous flow

Figure 10.11 Flow regimes in slurry pipeline.
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g = acceleration due to gravity
µ = viscosity of liquid, lb/(ft · s)

When the transporting medium is in motion and turbulence occurs,
the vertical component of the liquid velocity due to turbulence must
counteract and exceed the settling velocity Vs in order to keep the solid
particles suspended in the liquid. The concentration of the particles
across the pipe cross section will vary with higher concentration present
in the lower half of the pipe compared to the upper half. To classify slurry
flows the following equation has been proposed by slurry researchers
such as E. J. Wasp and T. C. Aude:

log
CT

CA
= −1.8

VS

kuS
(10.45)

where log = log to base 10
CA = solids concentration by volume at pipe centerline
CT = solids concentration by volume at top of pipe at distance

92 percent diameter from bottom
VS = settling velocity
k = von Karman constant, 0.35 to 0.40

uS = shear velocity at pipe wall given by

uS =
√

τw

ρ
= V

√
f
8

(10.46)

where τw = shear stress at pipe wall
f = Darcy friction factor
V = flow velocity
ρ = average density

From Eq. (10.45) the ratio CT/CA, known as the concentration ratio, may
be calculated if the flow velocity, friction factor, etc., are known. Once
this ratio is known, the slurry flow can be categorized approximately
based on the following ranges for the concentration ratio:

Homogenous flow:
CT

CA
> 0.8

Heterogeneous flow:
CT

CA
< 0.1

Intermediate flow: 0.1 <
CT

CA
< 0.8

Sometimes the terms settling and nonsettling are used with slurries
to distinguish between different slurry behavior. A settling slurry may
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behave homogenous at high-velocities and high-solid concentrations.
Likewise at low velocities and low concentrations, it might behave het-
erogeneous. A homogenous slurry may be defined as one in which the
concentration of solids remains fairly constant along the cross section of
the pipe. This will happen when the inertia of the suspended particles is
fairly negligible and hence they remain dispersed uniformly throughout
the liquid. For solids with sizes less than 100 microns the slurry may be
considered homogenous because inertial effects would be negligible. In
such cases CT/CA = 1. As the particle size of the suspended solids in-
creases beyond 100 microns the value of CT/CA decreases up to about a
particle size of 600 microns. Even though at this particle size inertial ef-
fects are significant, they are still small in comparison with viscous and
turbulent forces. As particle size increases beyond 600 microns, the in-
ertial forces become more significant compared to viscous and turbulent
forces. Figure 10.12 illustrates the variation of CT/CA with particle size.

It can be inferred from Fig. 10.12 that below 600 microns the slurry
is fairly homogenous. However, the nature of the curve in Fig. 10.12
would change with the velocity of flow and the particle size, necessitat-
ing another break point for homogenous versus heterogeneous flow. A
better approach would be to establish a CT/CA ratio that will dictate
homogeneity. Strictly speaking there are three zones: homogenous, in-
termediate, and heterogeneous. At a low flow velocity, and hence under
the laminar flow condition, a pressure drop is fairly flat up to some point
where the velocity reaches a transitional value VT known as the viscous
transition velocity. As the velocity increases (and hence the flow rate)
beyond VT, the pressure drop increases at a faster rate in the turbulent
zone.

Most slurry pipelines operate in the turbulent flow zone, and there-
fore the velocity will be beyond the transition velocity. However, there

1.0

0.5

0.0

C
/C

A

10 µ 100 µ 1000 µ 10,000 µ

Particle diameter (µ = microns)

          Pipe diameter = 12 in
Solids concentration = 50% by weight
            Flow velocity = 6 ft/s

Figure 10.12 Particle size versus concentration ratio.
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are exceptions such as a very fine limestone slurry that may at times
be operated at velocities below VT and hence in the laminar zone.

Example 10.14 A coal water slurry consisting of a 50 percent concentration
by weight has a solid specific gravity of 1.3 and a slurry viscosity of 22 cP.
This slurry flows through a 300-mm inside diameter pipeline at a velocity
of 2 m/s. The shear stress at the wall is 10 N/m2. Calculate the maximum
particle size if the CT/CA ratio is 0.75.

Solution

Cw = 50% ρs = 1300 kg/m3 µm = 22 cP

D = 300mm V = 2 m/s τw = 10 N/m2

CT

CA
= 0.75

From Eq. (10.1)

Specific gravity of mixture = 100
(50/1.3) + [100 − 50/1.0]

= 1.13 lb/ft3

Therefore, the density of the slurry mixture is

ρm = 1.13 × 1000 = 1130 kg/m3

The shear velocity at the wall is calculated from Eq. (10.46):

uS =
√

τw

ρm
=
√

10
1130

= 0.0941 m/s

Next, using Eq. (10.45)

log (0.75) = −1.8
Vs

0.35us

The settling velocity is then

Vs = −0.35 × 0.0941 log 0.75 = 4.1149 m/s

From the settling velocity we can calculate the maximum particle size
using Stokes’s law:

Vs = (ρs − ρm)gd2

18µ

Solving for d, we get

d =
√

18 × 22 × 10−3 × 4.1149
9.81(1300 − 1130)

= 0.03125 m

= 3.125 cm

The maximum particle size is 3.125 cm.



638 Chapter Ten

Example 10.15 A slurry consisting of iron sand in water in an 8-in inside
diameter pipe has a velocity of 15 ft/s. The solids concentration is 50 percent
by weight and the mixture viscosity is 1.5 cP. The particles have a diameter
of 0.1 mm and a specific gravity of 4.8. The friction pressure drop is 4.5 psi
per 1000 ft of pipe. What is the CT/CA ratio for this slurry? Use a von Karman
constant of 0.38.

Solution

Specific gravity of mixture = 100
(50/4.8) + (50/1.0)

= 1.655

Frictional head loss = 4.5 psi per 1000 ft

Using the Darcy equation,

hf = f LV2

2gD
for head loss, we get

4.5 × 2.31
1.655

= f
64.4

(
1000
8/12

)
152

Now solving for the Darcy friction factor f ,

f = 4.5 × 2.31 × 64.4 × 8
1.655 × 1000 × 225 × 12

= 0.01198

From Eq. (10.46) we calculate the shear velocity:

us = V

√
f
8

= 15

√
0.01198

8
= 0.5806 ft/s

Then using Eq. (10.44) we get the settling velocity:

Vs = g
18µ

(ρs − ρL)d2 =
32.2 (4.8 − 1.0) 62.4 ×

(
0.1

25.4 × 12

)2

18 × 1.5 × 6.7197 × 10−4
= 0.0453 ft/s

From Eq. (10.45) we get CT/CA.

log
CT

CA
= −1.8 × 0.0453

0.38 × 0.5806
= −0.3696 = 0.427

10.5.2 Heterogeneous flow

Heterogeneous flow is characterized by a nonuniform solids concentra-
tion across the pipe cross section. Unlike a homogenous suspension,
the volume concentration at the axis of the pipe will be different from
that at the top of the pipe or the bottom of the pipe. The more heteroge-
neous the slurry is, the more the solids concentration tends to increase
in the bottom half of the pipe compared to the top. As the flow velocity
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increases, the solids tend to move up and hence reduce the settling of
the solids, which if not controlled, will eventually block the pipeline flow.
Only horizontal or nearly horizontal slurry pipelines will be discussed.
As the flow velocity decreases, the solid particles move downward and
tend to settle at the bottom of the pipe.

An important parameter called deposition velocity is defined as the
minimum velocity below which solid settlement takes place and hinders
pipe flow. If the pipeline is operated for a long period of time at velocities
below this critical deposition velocity, eventually the cross section of
flow would be reduced and the pipeline will be blocked, and this is
not desirable. Therefore, heterogeneous pipelines should be operated
at speeds above the deposition velocity. The deposition velocity may
also be referred to as the minimum velocity required to keep the solid
in suspension. It has been found that the deposition velocity depends
to some extent upon the Froude number of the slurry. An equation
attributed to Durand for calculating deposition velocity VL is as follows:

FL = VL√
2gD(S− 1)

(10.47)

S = ρS

ρL
(10.48)

where FL = Froude number
VL = deposition velocity

g = acceleration due to gravity
D = pipe inside diameter
S= relative density of solid (density of solid/density

of liquid medium)

The value of FL depends upon the particle size ds and the concentration
of solids in slurry by volume. Figures 10.13 and 10.14 show curves for
obtaining FL from the particle size and slurry concentration.

Two sets of curves are shown for estimating FL. The curve in Fig. 10.13
is for slurries in which the particle size is uniform, and the curve in
Fig. 10.14 is for slurries containing nonuniform size particles. Since
the deposition velocity is the minimum velocity at which a heteroge-
neous slurry mixture must be operated, we must ensure that in such
a slurry pipeline the actual flowing velocity is at least 10 to 20 percent
higher than the deposition velocity so that solid particles do not settle
out.

Example 10.16 Calculate the deposition velocity of a heterogeneous slurry
with a solid specific gravity of 3.0 in water, for a pipeline with an 8-in internal
diameter. The particle size = 1 mm, and volume concentration = 15 percent.
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Figure 10.13 Froude number versus particle size for uniform
particles.

Solution

ρs = 3.0 ρL = 1.0 D = 8.0 in

From Fig. 10.11 for a uniform particle size of 1.0 mm and Cv = 0.15 we get
the Froude number FL = 1.45. Therefore, from Eq. (10.47)

FL = VL√
2gD(S− 1)

= 1.45

VL = 1.45

√
2 × 32.2 × 8

12
(3 − 1) = 13.44 ft/s

The deposition velocity is 13.44 ft/s.
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Figure 10.14 Froude number versus particle size for nonuniform
particles.
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If the solid particles were of nonuniform size, we use the curve in Fig. 10.13
and get FL = 1.05. Then the deposition velocity becomes

VL = 1.05

√
2 × 32.2 × 8

12
(3 − 1) = 9.73 ft/s

10.6 Pressure Loss in Slurry Pipelines with
Heterogeneous Flow

Many researchers have put forward correlations and equations to cal-
culate the pressure loss due to friction in heterogeneous flows. The fol-
lowing equation proposed by Durand has found acceptance in analyzing
heterogeneous slurries:

� = im − i
iCv

= 67

(√
gD(S− 1)

V

)3(
Vs√

g(S− 1)ds

)3/2

(10.49)

where � = dimensionless parameter
im = pressure loss per unit length of pipe for slurry mixture
i = pressure loss per unit length of pipe for liquid medium

at same velocity as slurry
Cv = volume concentration of solids, decimal value

g = acceleration due to gravity
D = pipe inside diameter, ft
S= relative density of solid (density of solid/density

of liquid medium)
V = average flow velocity
Vs = settling velocity of solid in slurry, obtained by laboratory

tests
ds = particle size, ft

Once the numbers are substituted into the right-hand side of Eq. (10.49)
we can calculate the value of the dimensionless parameter �. Since the
pressure gradient i for the liquid is at the same velocity, the mixture can
be easily calculated considering newtonian flow. We can then calculate
the value of the pressure loss for slurry im as follows:

im = i(1 + �Cv) (10.50)

where � = dimensionless parameter
im = pressure loss per unit length of pipe for slurry mixture
i = pressure loss per unit length of pipe for liquid medium

at the same velocity as slurry
Cv = Volume concentration of solids, decimal value
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It must be noted that Durand’s equation for pressure drop calculation
of a heterogeneous slurry mixture is applicable only at velocities higher
than the deposition velocity, which is the required speed for satisfactory
operation of a heterogeneous flow anyway. From Durand’s equation af-
ter some rearrangement we can represent the pressure loss im for the
slurry mixture as a function of the velocity V. This function, when ana-
lyzed to produce the least pressure drop, results in an optimum velocity
given by the following equation:

V0 = 3.22 [g(S− 1)]1/4C1/3
v (DVs)1/2d−1/4

s (10.51)

where V0 = optimum velocity of slurry
Cv = volume concentration of solids, decimal value

g = acceleration due to gravity
D = pipe inside diameter, ft
S= relative density of solid (density of solid/density

of liquid medium)
Vs = settling velocity of solid in slurry, obtained by

laboratory tests
ds = particle size, ft

Since slurry flow may be classified as homogenous, intermediate, and
heterogeneous, the pressure loss calculation based on these flow regimes
will be different in each case. It is important to determine the flow
regime first before attempting to calculate the pressure loss due to fric-
tion. It has been found that when the concentration ratio CT/CA is less
than 0.1, the flow can be classified as heterogeneous, and when the ratio
is above 0.8, it is classified as homogenous. Therefore in the intermedi-
ate flow regime we find that CT/CA lies between 0.1 and 0.8.

Several methods have been proposed to calculate pressure loss in
intermediate flow regimes. One approach consists of dividing the slurry
into several fractions and computing the head loss for a certain portion
of the slurry based on a homogenous mixture and the remainder based
on a heterogeneous flow. The sum of the two will be the actual pressure
loss in the intermediate flow regime.

Another methodology of calculating pressure drop in slurries with
intermediate flow was put forth by a Chinese researcher X. J. Fei and
reported in Pipeline Engineering by Henry Liu (see References). This
is expressed by the following equation:

imh = im

ρg
= �Pm

ρgL
= α

f V2Sm

2gD
+ 11ηsCv(S− Sm)

Vsa

V
(10.52)
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where imh = pressure loss gradient, m/m or dimensionless
im = pressure loss per unit length of pipe for slurry mixture,

Pa/m
ρ = density of water, kg/m3

g = acceleration due to gravity, 9.81 m/s2

�Pm = pressure drop for slurry mixture, Pa
L = pipe length, m
α = correction factor, dimensionless
f = Darcy friction factor, dimensionless
V = average flow velocity, m/s

Sm = relative density of slurry mixture compared to liquid,
dimensionless

S= relative density of solids compared to liquid,
dimensionless

D = pipe inside diameter, m
ηs = contact friction coefficient between solid particles and

pipe, dimensionless
Cv = volume concentration of solids, decimal value,

dimensionless
Vsa = weighted-average settling velocity of solids, m/s

The correction factor α in Eq. (10.52) is a function of µr, the relative vis-
cosity of the slurry (slurry viscosity/liquid viscosity), and is calculated
from the following equation:

α = 1 − 0.4 (log µr) + 0.2 (log µr)2 (10.53)

Example 10.17 A sand slurry mixture in water is transported through
100 mi of fairly horizontal pipeline with an 8-in inside diameter at a ve-
locity of 10 ft/s. The particle size is 2 mm, and the solid specific gravity is
2.5. The laboratory tests show the average settling velocity to be 0.1 ft/s.
The von Karman constant is 0.38. Assume the viscosity of water = 1 cP and
density = 62.4 lb/ft3. Pipe roughness = 0.002 in. The slurry concentration
is 50 percent by weight. Calculate the concentration ratio CT/CA and deter-
mine if the flow is heterogeneous. Calculate the deposition velocity and the
pressure gradient for the slurry using Durand’s equation.

Solution

Density of mixture = ρm = 100 × 62.4
(50/2.5) + (50/1.0)

= 89.14 lb/ft3

The concentration of solids by volume is from Eq. (10.4):

Cv = Cw
ρm

ρs
= 50 × 89.14

62.4 × 2.5
= 28.57

FL = 1.38 from Fig. 10.13
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Using Eq. (10.47), we get

Deposition velocity VL = 1.38

√
2 × 32.2 × 8

12
(2.5 − 1) = 8.02 ft/s

Since the actual flow velocity is 10 ft/s, the flow is heterogeneous with fully
suspended solids.

Next calculate the pressure loss using Durand’s equation (10.49).

im − i
iCv

= 67



√

32.2 × 8
12

(2.5 − 1)

10




3
 0.1√

32.2(2.5 − 1)
2

25.4 × 12




1.5

= 67 × 0.1827 × 0.0749 = 0.9168

im = i(1 + 0.9168 × 0.2857) = 1.262 i

where i is the pressure loss per unit length for water only. Variable i is
calculated as follows:

Re = VDρ

µ
= 10 × 8

12
× 62.4

32.2
× 1

0.01 × 2.0886 × 10−3
= 618,560

The Darcy friction factor from the Moody diagram for Re = 618,560 and
a relative roughness of 0.002/8.00 = 0.00025 is f = 0.0175. The pressure
gradient for water is

i = f V2

2gD
= 0.0175 × (10)2

64.4 × (8/12)
= 0.0408 ft/ft

Therefore, im = 1.262 × 0.0408 = 0.0515 ft/ft.
The friction factor for the slurry is calculated from the Darcy equation:

im = 0.0515 = f V2

2gD

For slurry,

f = 1.262 × 0.0175 = 0.0221

The shear velocity us, from Eq. (10.46), is given by

uS = V

√
f
8

= 10

√
0.0221

8
= 0.5256 ft/s

From Eq. (10.45) we get

log
CT

CA
= −1.8 × 0.1

0.38 × 0.5256
= −0.9012 = 0.1255

Since the ratio is between 0.10 and 0.80, the flow is in the intermediate zone.
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Item USCS units∗ SI units† USCS to SI conversion SI to USCS conversion

Mass slug (slug) kilogram (kg) 1 lb = 0.45359 kg 1 kg = 0.0685 slug
pound mass (lbm) 1 slug = 14.594 kg 1 kg = 2.205 lb
1 U.S. ton = 2,000 lb metric tonne (t) = 1,000 kg 1 U.S. ton = 0.9072 t 1 t = 1.1023 U.S. ton
1 long ton = 2,240 lb 1 long ton = 1.016 t 1 t = 0.9842 long ton

Length inch (in) millimeter (mm) 1 in = 25.4 mm 1 mm = 0.0394 in
1 foot (ft) = 12 in 1 meter (m) = 1,000 mm 1 ft = 0.3048 m 1 m = 3.2808 ft
1 mile (mi) = 5,280 ft 1 kilometer (km) = 1,000 m 1 mi = 1.609 km 1 km = 0.6214 mi

Area square foot (ft2) square meter (m2) 1 ft2 = 0.0929 m2 1 m2 = 10.764 ft2

1 acre = 43,560 ft2 1 hectare = 10,000 m2 1 acre = 0.4047 hectare 1 hectare = 2.4711 acre

Volume cubic inch (in3) cubic millimeter (mm3) 1 in3 = 16387.0 mm3 1 mm3 = 6.1 × 10−5 in3

cubic foot (ft3) 1 liter (L) = 1,000 cm3 (cc) 1 ft3 = 0.02832 m3 1 m3 = 35.3134 ft3

1 U.S. gallon (gal) = 231 in3 1 cubic meter (m3) = 1,000 L 1 gal = 3.785 L 1 L = 0.2642 gal
1 barrel (bbl) = 42 gal 1 bbl = 158.97 L 1 m3 = 6.2905 bbl

= 0.15897 m3

1ft3 = 7.4805 gal
1 bbl = 5.6146 ft3

Density slug per cubic foot (slug/ft3) kilogram/cubic meter (kg/m3) 1 slug/ft3 = 515.38 kg/m3 1 kg/m3 = 0.0019 slug/ft3

Specific weight pound per cubic foot (lb/ft3) newton per cubic meter 1 lb/ft3 = 157.09 N/m3 1 N/m3 = 0.0064 lb/ft3

(N/m3)

Viscosity (Absolute or lb/(ft · s) 1 poise (P) = 0.1 Pa · s 1 cP = 6.7197 × 10−4 lb/(ft · s)
dynamic) (lb · s)/ft2 1 centipoise (cP) = 0.01 P 1 (lb · s)/ft2 = 47.88 (N · s)/m2 1 (N · s)/m2 = 0.0209 (lb · s)/ft2

1 poise = 1 (dyne · s)/cm2 1 (lb · s)/ft2 = 478.8 poise 1 poise = 0.00209 (lb · s)/ft2

1 poise = 0.1 (N · s)/m2

Viscosity (kinematic) ft2/s m2/s 1 ft2/s = 0.092903 m2/s 1 m2/s = 10.7639 ft2/s
SSU†, SSF‡ stoke (S), centistoke (cSt) 1 cSt = 1.076 × 10−5 ft2/s

Flow rate cubic foot/second (ft3/s) liter/minute (L/min) 1 gal/min = 3.7854 L/min 1 L/min = 0.2642 gal/min
gallon/minute (gal/min) cubic meter/hour (m3/h) 1 bbl/h = 0.159 m3/h 1 m3/h = 6.2905 bbl/h
barrel/hour (bbl/h)
barrel/day (bbl/day)
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Force pound (lb) newton (N) = (kg · m)/s2 1 lb = 4.4482 N 1 N = 0.2248 lb

Pressure pound/square inch, pascal (Pa) = N/m2 1 psi = 6.895 kPa 1 kPa = 0.145 psi
lb/in2(psi)

1 lb/ft2 = 144 psi 1 kilopascal (kPa)
= 1,000 Pa

1 megapascal (MPa)
= 1,000 kPa

1 bar = 100 kPa 1 psi = 0.069 bar 1 bar = 14.5 psi
kilogram/square centimeter 1 psi = 0.0703 kg/cm2 1 kg/cm2 = 14.22 psi
(kg/cm2)

Velocity foot/second (ft/s) meter/second (m/s) 1 ft/s = 0.3048 m/s 1 m/s = 3.281 ft/s
mile/hour (mi/h)
= 1.4667 ft/s

Work and energy foot-pound (ft · lb) joule (J) = N · m 1 Btu = 1055.0 J 1 kJ = 0.9478 Btu
British thermal unit (Btu)
1 Btu = 778 ft · lb

Power (ft · lb)/min joule/second (J/s) 1 Btu/h = 0.2931W 1 W = 3.4121 Btu/h
Btu/hour (Btu/h) Watt (W) = J/s
Horsepower (HP) 1 kilowatt (kW) = 1,000 W 1 HP = 0.746 kW 1 kW = 1.3405 HP
1 HP = 33,000 (ft · lb)/min

Temperature degree Fahrenheit (◦F) degree Celsius (◦C) 1◦F = 9
5

◦C + 32 1◦C = (◦F − 32)/1.8
1 degree Rankine Kelvin (K) = ◦C + 273 1◦R = 1.8 K 1 K = ◦R/1.8
(◦R) = ◦F + 460

Thermal conductivity Btu/(h · ft · ◦F) W/(m · ◦C) 1 Btu/(h · ft · ◦F) 1 W/(m · ◦C) = 0.5778
= 1.7307 W/(m · ◦C) Btu/(h · ft · ◦F)

Heat transfer Btu/(h · ft2 · ◦F) W/(m2 · ◦C) 1 Btu/(h · ft2 · ◦F) 1 W/(m2 · ◦C) =0.1761
coefficient = 5.6781 W/(m2 · ◦C) Btu/(h · ft2 · ◦F)

Specific heat Btu/(lb · ◦F) kJ/(kg · ◦C) 1 Btu/(lb · ◦F) = 4.1869 1 kJ/(kg · ◦C) = 0.2388
kJ/(kg · ◦C) Btu/(lb · ◦F)

∗USCS = U.S. Customary System.
†SI = Système International (modified metric).
‡Kinematic viscosity in SSU and SSF are converted to viscosity in cSt using Eqs. (6.6) through (6.9).
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Nominal Outside Wall Inside Inside Surface Pipe Water
pipe size diameter, thickness, diameter, area, area, Volume, weight, weight,

(NPS) in in in in2 ft2/ft gal/ft lb/ft lb/ft

Schedule

a b c

1
2 0.84 5S 0.065 0.710 0.3957 0.22 0.02 0.54 0.17

0.84 10S 0.083 0.674 0.3566 0.22 0.02 0.67 0.15
0.84 40 Std. 40S 0.109 0.622 0.3037 0.22 0.02 0.85 0.13
0.84 80 XS 80S 0.147 0.546 0.2340 0.22 0.01 1.09 0.10
0.84 160 0.187 0.466 0.1705 0.22 0.01 1.30 0.07
0.84 XXS 0.294 0.252 0.0499 0.22 0.00 1.71 0.02

3
4 1.05 5S 0.065 0.920 0.6644 0.27 0.03 0.68 0.29

1.05 10S 0.083 0.884 0.6134 0.27 0.03 0.86 0.27
1.05 40 Std. 40S 0.113 0.824 0.5330 0.27 0.03 1.13 0.23
1.05 80 XS 80S 0.154 0.742 0.4322 0.27 0.02 1.47 0.19
1.05 160 0.218 0.614 0.2959 0.27 0.02 1.94 0.13
1.05 XXS 0.308 0.434 0.1479 0.27 0.01 2.44 0.06

1 1.315 5S 0.065 1.185 1.1023 0.34 0.06 0.87 0.48
1.315 10S 0.109 1.097 0.9447 0.34 0.05 1.40 0.41
1.315 40 Std. 40S 0.330 0.655 0.3368 0.34 0.02 3.47 0.15
1.315 80 XS 80S 0.179 0.957 0.7189 0.34 0.04 2.17 0.31
1.315 160 0.250 0.815 0.5214 0.34 0.03 2.84 0.23
1.315 XXS 0.358 0.599 0.2817 0.34 0.01 3.66 0.12

1 1
2 1.900 5S 0.065 1.770 2.4593 0.50 0.13 1.27 1.07

1.900 10S 0.109 1.682 2.2209 0.50 0.12 2.08 0.96
1.900 40 Std. 40S 0.145 1.610 2.0348 0.50 0.11 2.72 0.88
1.900 80 XS 80S 0.200 1.500 1.7663 0.50 0.09 3.63 0.77
1.900 160 0.281 1.338 1.4053 0.50 0.07 4.86 0.61
1.900 XXS 0.400 1.100 0.9499 0.50 0.05 6.41 0.41

2 2.375 5S 0.065 2.245 3.9564 0.62 0.21 1.60 1.71
2.375 10S 0.109 2.157 3.6523 0.62 0.19 2.64 1.58
2.375 40 Std. 40S 0.154 2.067 3.3539 0.62 0.17 3.65 1.45
2.375 80 XS 80S 0.218 1.939 2.9514 0.62 0.15 5.02 1.28
2.375 160 0.343 1.689 2.2394 0.62 0.12 7.44 0.97
2.375 XXS 0.436 1.503 1.7733 0.62 0.09 9.03 0.77
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2 1
2 2.875 5S 0.083 2.709 5.7609 0.75 0.30 2.47 2.50

2.875 10S 0.12 2.635 5.4504 0.75 0.28 3.53 2.36
2.875 40 Std. 0.203 2.469 4.7853 0.75 0.25 5.79 2.07
2.875 80 XS 0.276 2.323 4.2361 0.75 0.22 7.66 1.84
2.875 160 0.375 2.125 3.5448 0.75 0.18 10.01 1.54
2.875 XXS 0.552 1.771 2.4621 0.75 0.13 13.69 1.07

3 3.5 5S 0.083 3.334 8.7257 0.92 0.45 3.03 3.78
3.5 10S 0.120 3.260 8.3427 0.92 0.43 4.33 3.62
3.5 40 Std. 40S 0.216 3.068 7.3889 0.92 0.38 7.58 3.20
3.5 80 XS 80S 0.300 2.900 6.6019 0.92 0.34 10.25 2.86
3.5 160 0.437 2.626 5.4133 0.92 0.28 14.30 2.35
3.5 XXS 0.600 2.300 4.1527 0.92 0.22 18.58 1.80

4 4.5 5S 0.083 4.334 14.7451 1.18 0.77 3.92 6.39
4.5 10S 0.120 4.260 14.2459 1.18 0.74 5.61 6.17
4.5 40 Std. 40S 0.237 4.026 12.7238 1.18 0.66 10.79 5.51
4.5 80 XS 80S 0.337 3.826 11.4910 1.18 0.60 14.98 4.98
4.5 120 0.437 3.626 10.3211 1.18 0.54 18.96 4.47
4.5 160 0.531 3.438 9.2786 1.18 0.48 22.51 4.02
4.5 XXS 0.674 3.152 7.7991 1.18 0.41 27.54 3.38

6 6.625 5S 0.109 6.407 32.2240 1.73 1.67 7.59 13.96
6.625 10S 0.134 6.357 31.7230 1.73 1.65 9.29 13.75
6.625 40 Std. 40S 0.280 6.065 28.8756 1.73 1.50 18.97 12.51
6.625 80 XS 80S 0.432 5.761 26.0535 1.73 1.35 28.57 11.29
6.625 120 0.562 5.501 23.7549 1.73 1.23 36.39 10.29
6.625 160 0.718 5.189 21.1367 1.73 1.10 45.30 9.16
6.625 XXS 0.864 4.897 18.8248 1.73 0.98 53.16 8.16

8 8.625 5S 0.109 8.407 55.4820 2.26 2.88 9.91 24.04
8.625 10S 0.148 8.329 54.4572 2.26 2.83 13.40 23.60
8.625 20 0.250 8.125 51.8223 2.26 2.69 22.36 22.46
8.625 30 0.277 8.071 51.1357 2.26 2.66 24.70 22.16
8.625 40 Std. 40S 0.322 7.981 50.0016 2.26 2.60 28.55 21.67
8.625 60 0.406 7.813 47.9187 2.26 2.49 35.64 20.76
8.625 80 XS 80S 0.500 7.625 45.6404 2.26 2.37 43.39 19.78

(continued )
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Nominal Outside Wall Inside Inside Surface Pipe Water
pipe size diameter, thickness, diameter, area, area, Volume, weight, weight,

(NPS) in in in in2 ft2/ft gal/ft lb/ft lb/ft

Schedule

a b c

8.625 100 0.593 7.439 43.4409 2.26 2.26 50.87 18.82
8.625 120 0.718 7.189 40.5702 2.26 2.11 60.63 17.58
8.625 140 0.812 7.001 38.4760 2.26 2.00 67.76 16.67
8.625 XXS 0.875 6.875 37.1035 2.26 1.93 72.42 16.08
8.625 160 0.906 6.813 36.4373 2.26 1.89 74.69 15.79

10 10.75 5S 0.134 10.482 86.2498 2.81 4.48 15.19 37.37
10.75 10S 0.165 10.420 85.2325 2.81 4.43 18.65 36.93
10.75 20 0.250 10.250 82.4741 2.81 4.28 28.04 35.74
10.75 0.279 10.192 81.5433 2.81 4.24 31.20 35.34
10.75 30 0.307 10.136 80.6497 2.81 4.19 34.24 34.95
10.75 40 Std. 40S 0.365 10.020 78.8143 2.81 4.09 40.48 34.15
10.75 60 XS 80S 0.500 9.750 74.6241 2.81 3.88 54.74 32.34
10.75 80 0.593 9.564 71.8040 2.81 3.73 64.33 31.12
10.75 100 0.718 9.314 68.0992 2.81 3.54 76.93 29.51
10.75 120 0.843 9.064 64.4925 2.81 3.35 89.20 27.95
10.75 140 1.000 8.750 60.1016 2.81 3.12 104.13 26.04
10.75 160 1.125 8.500 56.7163 2.81 2.95 115.64 24.58

12 12.75 5S 0.156 12.438 121.4425 3.34 6.31 20.98 52.63
12.75 10S 0.180 12.390 120.5070 3.34 6.26 24.16 52.22
12.75 20 0.250 12.250 117.7991 3.34 6.12 33.38 51.05
12.75 30 0.330 12.090 114.7420 3.34 5.96 43.77 49.72
12.75 Std. 40S 0.375 12.000 113.0400 3.34 5.87 49.56 48.98
12.75 40 0.406 11.938 111.8749 3.34 5.81 53.52 48.48
12.75 XS 80S 0.500 11.750 108.3791 3.34 5.63 65.42 46.96
12.75 60 0.562 11.626 106.1036 3.34 5.51 73.15 45.98
12.75 80 0.687 11.376 101.5895 3.34 5.28 88.51 44.02
12.75 100 0.843 11.064 96.0935 3.34 4.99 107.20 41.64
12.75 120 1.000 10.750 90.7166 3.34 4.71 125.49 39.31
12.75 140 1.125 10.500 86.5463 3.34 4.50 139.67 37.50
12.75 160 1.312 10.126 80.4907 3.34 4.18 160.27 34.88
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14 14.00 5S 0.156 13.688 147.0787 3.67 7.64 23.07 63.73
14.00 10S 0.188 13.624 145.7065 3.67 7.57 27.73 63.14
14.00 10 0.250 13.500 143.0663 3.67 7.43 36.71 62.00
14.00 20 0.312 13.376 140.4501 3.67 7.30 45.61 60.86
14.00 30 Std. 0.375 13.250 137.8166 3.67 7.16 54.57 59.72
14.00 40 0.437 13.126 135.2491 3.67 7.03 63.30 58.61
14.00 XS 0.500 13.000 132.6650 3.67 6.89 72.09 57.49
14.00 0.562 12.876 130.1462 3.67 6.76 80.66 56.40
14.00 60 0.593 12.814 128.8959 3.67 6.70 84.91 55.85
14.00 0.625 12.750 127.6116 3.67 6.63 89.28 55.30
14.00 0.687 12.626 125.1415 3.67 6.50 97.68 54.23
14.00 80 0.750 12.500 122.6563 3.67 6.37 106.13 53.15
14.00 0.875 12.250 117.7991 3.67 6.12 122.65 51.05
14.00 100 0.937 12.126 115.4263 3.67 6.00 130.72 50.02
14.00 120 1.093 11.814 109.5629 3.67 5.69 150.67 47.48
14.00 140 1.250 11.500 103.8163 3.67 5.39 170.21 44.99
14.00 160 1.406 11.188 98.2595 3.67 5.10 189.11 42.58

16 16.00 5S 0.165 15.670 192.7559 4.19 10.01 27.90 83.53
16.00 10S 0.188 15.624 191.6259 4.19 9.95 31.75 83.04
16.00 10 0.250 15.500 188.5963 4.19 9.80 42.05 81.73
16.00 20 0.312 15.376 185.5908 4.19 9.64 52.27 80.42
16.00 30 Std. 0.375 15.250 182.5616 4.19 9.48 62.58 79.11
16.00 0.437 15.126 179.6048 4.19 9.33 72.64 77.83
16.00 40 XS 0.500 15.000 176.6250 4.19 9.18 82.77 76.54
16.00 0.562 14.876 173.7169 4.19 9.02 92.66 75.28
16.00 0.625 14.750 170.7866 4.19 8.87 102.63 74.01
16.00 60 0.656 14.688 169.3538 4.19 8.80 107.50 73.39
16.00 0.687 14.626 167.9271 4.19 8.72 112.35 72.77
16.00 0.750 14.500 165.0463 4.19 8.57 122.15 71.52
16.00 80 0.843 14.314 160.8391 4.19 8.36 136.46 69.70
16.00 0.875 14.250 159.4041 4.19 8.28 141.34 69.08
16.00 100 1.031 13.938 152.5003 4.19 7.92 164.82 66.08
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Nominal Outside Wall Inside Inside Surface Pipe Water
pipe size diameter, thickness, diameter, area, area, Volume, weight, weight,

(NPS) in in in in2 ft2/ft gal/ft lb/ft lb/ft

Schedule

a b c

16.00 120 1.218 13.564 144.4259 4.19 7.50 192.29 62.58
16.00 140 1.437 13.126 135.2491 4.19 7.03 223.50 58.61
16.00 160 1.593 12.814 128.8959 4.19 6.70 245.11 55.85

18 18.00 5S 0.165 17.670 245.0997 4.71 12.73 31.43 106.21
18.00 10S 0.188 17.624 243.8252 4.71 12.67 35.76 105.66
18.00 10 0.250 17.500 240.4063 4.71 12.49 47.39 104.18
18.00 20 0.312 17.376 237.0114 4.71 12.31 58.94 102.70
18.00 Std. 0.375 17.250 233.5866 4.71 12.13 70.59 101.22
18.00 30 0.437 17.126 230.2404 4.71 11.96 81.97 99.77
18.00 XS 0.500 17.000 226.8650 4.71 11.79 93.45 98.31
18.00 40 0.562 16.876 223.5675 4.71 11.61 104.67 96.88
18.00 0.625 16.750 220.2416 4.71 11.44 115.98 95.44
18.00 0.687 16.626 216.9927 4.71 11.27 127.03 94.03
18.00 60 0.750 16.500 213.7163 4.71 11.10 138.17 92.61
18.00 0.875 16.250 207.2891 4.71 10.77 160.03 89.83
18.00 80 0.937 16.126 204.1376 4.71 10.60 170.75 88.46
18.00 100 1.156 15.688 193.1990 4.71 10.04 207.96 83.72
18.00 120 1.375 15.250 182.5616 4.71 9.48 244.14 79.11
18.00 140 1.562 14.876 173.7169 4.71 9.02 274.22 75.28
18.00 160 1.781 14.438 163.6378 4.71 8.50 308.50 70.91

20 20.00 5S 0.188 19.624 302.3046 5.24 15.70 39.78 131.00
20.00 10S 0.218 19.564 300.4588 5.24 15.61 46.06 130.20
20.00 10 0.250 19.500 298.4963 5.24 15.51 52.73 129.35
20.00 0.312 19.376 294.7121 5.24 15.31 65.60 127.71
20.00 20 Std. 0.375 19.250 290.8916 5.24 15.11 78.60 126.05
20.00 0.437 19.126 287.1560 5.24 14.92 91.30 124.43
20.00 30 XS 0.500 19.000 283.3850 5.24 14.72 104.13 122.80
20.00 0.562 18.876 279.6982 5.24 14.53 116.67 121.20
20.00 40 0.593 18.814 277.8638 5.24 14.43 122.91 120.41
20.00 0.625 18.750 275.9766 5.24 14.34 129.33 119.59
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20.00 0.687 18.626 272.3384 5.24 14.15 141.70 118.01
20.00 0.750 18.500 268.6663 5.24 13.96 154.19 116.42
20.00 60 0.812 18.376 265.0767 5.24 13.77 166.40 114.87
20.00 0.875 18.250 261.4541 5.24 13.58 178.72 113.30
20.00 80 1.031 17.938 252.5909 5.24 13.12 208.87 109.46
20.00 100 1.281 17.438 238.7058 5.24 12.40 256.10 103.44
20.00 120 1.500 17.000 226.8650 5.24 11.79 296.37 98.31
20.00 140 1.750 16.500 213.7163 5.24 11.10 341.09 92.61
20.00 160 1.968 16.064 202.5709 5.24 10.52 379.00 87.78

22 22.00 5S 0.188 21.624 367.0639 5.76 19.07 43.80 159.06
22.00 10S 0.218 21.564 365.0298 5.76 18.96 50.71 158.18
22.00 10 0.250 21.500 362.8663 5.76 18.85 58.07 157.24
22.00 20 Std. 0.375 21.250 354.4766 5.76 18.41 86.61 153.61
22.00 30 XS 0.500 21.000 346.1850 5.76 17.98 114.81 150.01
22.00 0.625 20.750 337.9916 5.76 17.56 142.68 146.46
22.00 0.750 20.500 329.8963 5.76 17.14 170.21 142.96
22.00 60 0.875 20.250 321.8991 5.76 16.72 197.41 139.49
22.00 80 1.125 19.750 306.1991 5.76 15.91 250.81 132.69
22.00 100 1.375 19.250 290.8916 5.76 15.11 302.88 126.05
22.00 120 1.625 18.750 275.9766 5.76 14.34 353.61 119.59
22.00 140 1.875 18.250 261.4541 5.76 13.58 403.00 113.30
22.00 160 2.125 17.750 247.3241 5.76 12.85 451.06 107.17

24 24.00 5S 0.188 23.624 438.1033 6.28 22.76 47.81 189.84
24.00 10 10S 0.218 23.564 435.8807 6.28 22.64 55.37 188.88
24.00 0.250 23.500 433.5163 6.28 22.52 63.41 187.86
24.00 20 0.312 23.376 428.9533 6.28 22.28 78.93 185.88
24.00 Std. 0.375 23.250 424.3416 6.28 22.04 94.62 183.88
24.00 0.437 23.126 419.8273 6.28 21.81 109.97 181.93
24.00 30 XS 0.500 23.000 415.2650 6.28 21.57 125.49 179.95
24.00 0.562 22.876 410.7994 6.28 21.34 140.68 178.01
24.00 40 0.593 22.814 408.5757 6.28 21.22 148.24 177.05
24.00 0.625 22.750 406.2866 6.28 21.11 156.03 176.06

(continued )655



(Continued )

Nominal Outside Wall Inside Inside Surface Pipe Water
pipe size diameter, thickness, diameter, area, area, Volume, weight, weight,

(NPS) in in in in2 ft2/ft gal/ft lb/ft lb/ft

Schedule

a b c

24.00 60 0.812 22.376 393.0380 6.28 20.42 201.09 170.32
24.00 80 1.031 21.938 377.8015 6.28 19.63 252.91 163.71
24.00 100 1.281 21.438 360.7765 6.28 18.74 310.82 156.34
24.00 120 1.500 21.000 346.1850 6.28 17.98 360.45 150.01
24.00 140 1.750 20.500 329.8963 6.28 17.14 415.85 142.96
24.00 160 1.968 20.064 316.0128 6.28 16.42 463.07 136.94

26 26.00 0.250 25.500 510.4463 6.81 26.52 68.75 221.19
26.00 10 0.312 25.376 505.4940 6.81 26.26 85.60 219.05
26.00 Std. 0.375 25.250 500.4866 6.81 26.00 102.63 216.88
26.00 20 XS 0.500 25.000 490.6250 6.81 25.49 136.17 212.60
26.00 0.625 24.750 480.8616 6.81 24.98 169.38 208.37
26.00 0.750 24.500 471.1963 6.81 24.48 202.25 204.19
26.00 0.875 24.250 461.6291 6.81 23.98 234.79 200.04
26.00 1.000 24.000 452.1600 6.81 23.49 267.00 195.94
26.00 1.125 23.750 442.7891 6.81 23.00 298.87 191.88

28 28.00 0.250 27.500 593.6563 7.33 30.84 74.09 257.25
28.00 10 0.312 27.376 588.3146 7.33 30.56 92.26 254.94
28.00 Std. 0.375 27.250 582.9116 7.33 30.28 110.64 252.60
28.00 20 XS 0.500 27.000 572.2650 7.33 29.73 146.85 247.98
28.00 30 0.625 26.750 561.7166 7.33 29.18 182.73 243.41
28.00 0.750 26.500 551.2663 7.33 28.64 218.27 238.88
28.00 0.875 26.250 540.9141 7.33 28.10 253.48 234.40
28.00 1.000 26.000 530.6600 7.33 27.57 288.36 229.95
28.00 1.125 25.750 520.5041 7.33 27.04 322.90 225.55

30 30.00 5S 0.250 29.500 683.1463 7.85 35.49 79.43 296.03
30.00 10 10S 0.312 29.376 677.4153 7.85 35.19 98.93 293.55
30.00 Std. 0.375 29.250 671.6166 7.85 34.89 118.65 291.03
30.00 20 XS 0.500 29.000 660.1850 7.85 34.30 157.53 286.08
30.00 30 0.625 28.750 648.8516 7.85 33.71 196.08 281.17
30.00 40 0.750 28.500 637.6163 7.85 33.12 234.29 276.30
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30.00 0.875 28.250 626.4791 7.85 32.54 272.17 271.47
30.00 1.000 28.000 615.4400 7.85 31.97 309.72 266.69
30.00 1.125 27.750 604.4991 7.85 31.40 346.93 261.95

32 32.00 0.250 31.500 778.9163 8.38 40.46 84.77 337.53
32.00 10 0.312 31.376 772.7959 8.38 40.15 105.59 334.88
32.00 Std. 0.375 31.250 766.6016 8.38 39.82 126.66 332.19
32.00 20 XS 0.500 31.000 754.3850 8.38 39.19 168.21 326.90
32.00 30 0.625 30.750 742.2666 8.38 38.56 209.43 321.65
32.00 40 0.688 30.624 736.1961 8.38 38.24 230.08 319.02
32.00 0.750 30.500 730.2463 8.38 37.93 250.31 316.44
32.00 0.875 30.250 718.3241 8.38 37.32 290.86 311.27
32.00 1.000 30.000 706.5000 8.38 36.70 331.08 306.15
32.00 1.125 29.750 694.7741 8.38 36.09 370.96 301.07

34 34.00 0.250 33.500 880.9663 8.90 45.76 90.11 381.75
34.00 10 0.312 33.376 874.4565 8.90 45.43 112.25 378.93
34.00 Std. 0.375 33.250 867.8666 8.90 45.08 134.67 376.08
34.00 20 XS 0.500 33.000 854.8650 8.90 44.41 178.89 370.44
34.00 30 0.625 32.750 841.9616 8.90 43.74 222.78 364.85
34.00 40 0.688 32.624 835.4954 8.90 43.40 244.77 362.05
34.00 0.750 32.500 829.1563 8.90 43.07 266.33 359.30
34.00 0.875 32.250 816.4491 8.90 42.41 309.55 353.79
34.00 1.000 32.000 803.8400 8.90 41.76 352.44 348.33
34.00 1.125 31.750 791.3291 8.90 41.11 394.99 342.91

36 36.00 0.250 35.500 989.2963 9.42 51.39 95.45 428.70
36.00 10 0.312 35.376 982.3972 9.42 51.03 118.92 425.71
36.00 Std. 0.375 35.250 975.4116 9.42 50.67 142.68 422.68
36.00 20 XS 0.500 35.000 961.6250 9.42 49.95 189.57 416.70
36.00 30 0.625 34.750 947.9366 9.42 49.24 236.13 410.77
36.00 40 0.750 34.500 934.3463 9.42 48.54 282.35 404.88
36.00 0.875 34.250 920.8541 9.42 47.84 328.24 399.04
36.00 1.000 34.000 907.4600 9.42 47.14 373.80 393.23
36.00 1.125 33.750 894.1641 9.42 46.45 419.02 387.47
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Nominal Outside Wall Inside Inside Surface Pipe Water
pipe size diameter, thickness, diameter, area, area, Volume, weight, weight,

(NPS) in in in in2 ft2/ft gal/ft lb/ft lb/ft

Schedule

a b c

42 42.00 0.250 41.500 1351.9663 11.00 70.23 111.47 585.85
42.00 Std. 0.375 41.250 1335.7266 11.00 69.39 166.71 578.81
42.00 20 XS 0.500 41.000 1319.5850 11.00 68.55 221.61 571.82
42.00 30 0.625 40.750 1303.5416 11.00 67.72 276.18 564.87
42.00 40 0.750 40.500 1287.5963 11.00 66.89 330.41 557.96
42.00 1.000 40.000 1256.0000 11.00 65.25 437.88 544.27
42.00 1.250 39.500 1224.7963 11.00 63.63 544.01 530.75
42.00 1.500 39.000 1193.9850 11.00 62.03 648.81 517.39
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Appendix

C
Viscosity Corrected Pump

Performance

The following is a report from PUMPCALC software comparing the
water performance against the viscous performance of a centrifugal
pump. Graphic plots of comparison are shown in Fig. C.1.

PUMPCALC—Centrifugal Pump Analysis Program (www.systek.us)

Water performance Viscous performance
SpGrav: 1.00 SpGrav: 0.985

Viscosity: 1.00 cSt Viscosity: 850.00 SSU

Flow Flow
rate Head Efficiency BHP rate Head Efficiency BHP

456 113.8 72.98 17.96 433.6 109.35 48.64 24.25
608 107.65 80.21 20.61 578.14 101.63 53.46 27.34
760 99.28 82.01 23.23 722.67 92.4 54.66 30.39
912 84.6 78.96 24.67 867.2 76.45 52.63 31.33
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Figure C.1 Water and viscous pump performance.
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    entrance 237 
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Manning index 22 142 161 
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 137 261 322 371

 509 

    reduced 398 405 409 411

 557 

    test 71 73 482 

    total 1 19 31 41

 46 50 66 68

 114 116 121 125

 182 188 196 246

 347 355 365 370

 509 515 536 549

 579 

    vapor 5 44 56 124

 132 191 258 304

 319 368 501 506

 510 

    working 50 71 121 197

 370 383 457 482

 509 599 601 

Properties of steam 204 207 

Pump: 

    curve 53 56 62 64

 124 380 

    station 24 43 51 60

 69 75 78 192

 196 347 368 370

 381 390 503 509
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 198 372 377 

    gear 52 198 372 380 
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    screw 52 198 372 380 
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R 

Relative humidity 258 511 

Resistance factor 24 107 153 347

 496 536 

Reynolds number 9 15 95 100

 141 150 226 229

 231 247 269 271

 277 326 330 332
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 527 573 615 620
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Rheogram 608 609 
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Roughness: 

    coefficient 20 143 150 164
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 235 376 533 
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    internal 11 14 16 97

 142 145 229 231

 278 330 416 419

 425 489 569 571 
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 376 491 494 533 

Runoff 159 175 

S 

Sanitary sewer 159 169 175 

Saturation temperature 204 207 213 221

 225 585 

Seam joint factor 71 383 454 

Self cleansing velocity 164 166 169 

Sewer piping 131 143 158 164 

Single phase 520 523 552 585 

Slack line 44 191 368 506 

Smooth pipes 16 100 104 229
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Sonic velocity 225 238 243 294
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Specific: 

    gravity 3 6 11 22

 51 57 90 104

 131 134 137 197

 301 305 309 322 
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 411 467 484 553
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    heat 206 213 234 294

 453 575 577 

    speed 58 378 

    weight 2 5 7 132

 134 264 301 483 

Sprinkler 82 85 87 104
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Standing-Katz 404 406 409 435 

Steam tables 207 212 240 

Stormwater 131 135 

Stress: 

    axial 71 382 454 

    circumferential 71 382 454 

    hoop 71 73 382 454 

    shear 3 135 306 523

 607 611 621 637 

Subcooling 1 578 

Subsonic 238 296 

Supercompressibility factor 405 

Surface water 159 175 

System head 62 125 199 
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T 

Temperature: 

    absolute 220 225 256 295

 313 395 398 556

 562 

    dry bulb 258 

    reduced 398 405 409 557 

    wet bulb 258 

Tight line 44 191 367 506 

Time of concentration 175 177 

Total head 34 46 62 193

 357 369 371 507

 540 

Transition: 

    velocity 45 616 620 625

 636 

    zone 16 102 229 333

 421 492 533 572 

Transmission factor 333 335 336 418

 422 425 

Two phase 320 520 523 552

 578 583 

V 

Valve: 

    ball 25 69 107 380 

    check 381 
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Valve: (Cont.) 

    control 45 69 192 247

 381 

    gate 25 28 69 110

 153 155 247 291

 348 496 540 

    globe 25 247 

    relief 69 122 247 469

 510 

Vaporization 204 207 212 467

 483 503 510 578 

Velocity 3 7 10 14

 93 

    deposition 639 

    settling 634 641 

Viscosity 3 

    absolute 4 135 

    dynamic 4 132 135 

    kinematic 4 135 141 

Volume fraction 604 607 

W 

Wetted area 162 511 513 

Y 

Yield strength 71 382 454 456 
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