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PREFACE TO THE ENGLISH EDITION

The production of an English translation of my book Wärmeübertrager was suggested 
by Jerry Taborek, formerly director of Heat Transfer Research Inc. (HTRI) in Alham
bra, California. He was a visiting scientist in our laboratory in Karlsruhe in 1986- 
1987 as a Humboldt fellow when I was writing the German text, which was published 
in Sept. 1988 by Georg Thieme Verlag Stuttgart, New York.

In February and March 1989,1 was at the Indian Institute of Technology (IIT) in 
Madras as a guest professor and used material from the book for my lectures there. 
Vijay R. Raghavan, Professor and Head of the Heat Transfer and Thermal Power 
Laboratory at IIT Madras, kind and generous host in those days, dear friend in the 
meantime, has shown keen interest in the contents of these lectures. He even ex
pressed a desire to translate my book.

In October 1989, when the Hemisphere Publishing Corporation actually ap
proached the German publisher for a license to produce an English edition, I wrote to 
Prof. Raghavan to inquire if he would assist me in the translation, to which he readily 
agreed. The first draft of my very crude translation took the form of some 11 note
books, which were sent to Madras between Dec. 1989 and Feb. 1990. He sent me 
back the corrected notebooks one by one, with my crude draft turned into readable 
clear English. In the process of translation, the book has also undergone a technical 
review, so much so that the English version has turned out to be practically an 
improved second edition.

I have also incorporated results from recent papers that appeared after the publi
cation of the original (references [B3a], [B3b], [R4]) and from an old paper which has 
been brought to my attention only recently (reference [K4]; see also the new 
Appendix C).



The notation used in this book is essentially the same as that recommended for 
the International Heat Transfer Conferences and used in the Heat Exchanger Design 
Handbook (HEDH) [H3] since 1983. Hopefully, English-speaking heat transfer engi
neers have become accustomed in the meantime to find heat transfer coefficients 
denoted by a. (lowercase Greek alpha) in place of h; one good reason for this change 
is the internationally well-established use of h for specific enthalpy. HEDH, neverthe
less, has retained the traditional (English) notation U for overall heat transfer coeffi
cients, in spite of its parallel use for internal energy. In this book the symbol for the 
overall heat transfer coefficient is k, which is also recommended internationally as an 
alternative to U, but not widely used so far, probably because k has been convention
ally used for the thermal conductivity, now internationally denoted by a X (lowercase 
Greek lambda). In case of doubt, a look on the list of symbols, page 197, should help 
avoid confusion.

In addition to expressing my deep gratitude to all those who encouraged, sug
gested, and produced this English edition, I would like to express my hope that the 
book might be useful for those studying and for those professionally working in the 
field of heat transfer and heat exchanger design.

X PREFACE TO THE ENGLISH EDITION

Karlsruhe, Winter 1990 Holger Martin



PREFACE TO THE GERMAN EDITION

For many engineers, Wärmeübertrager (literally “ heat transmitter” ) in place of Wär
meaustauscher (“ heat exchanger” ) may still be a somewhat unfamiliar term for the 
appliance in which heat is transmitted steadily from one medium having a higher 
entrance temperature to another medium with a lower entrance temperature. Thermo- 
dynamicists such as Ernst Schmidt, had already used the more correct expression 
(i.e., Wärmeübertrager) in preference to the currently used one (i.e., Wärmeaustaus
cher) [S5]. Now that the VDI-Wärmeatlas [VI] too has replaced Wärmeaustauscher 
by Wärmeübertrager since 1984, it seems appropriate to use this term generally in 
engineering education.

The present book is addressed to students of engineering and science, especially 
in the fields of technical chemistry, chemical and process engineering, mechanical 
engineering, and physics. Knowledge in mathematics, thermodynamics, heat and 
mass transfer, and fluid dynamics, as usually obtained in universities or institutes of 
technology after three years of studies, are thought to be a prerequisite.

The subject of the book is not heat transfer but its application to the calculation of 
temperature profiles, especially the outlet temperatures of both media and the transfer 
performance of heat exchangers.

In Chapter 1, three examples illustrate in detail how to apply the fundamentals of 
thermodynamics, heat transfer, and fluid dynamics for a systematic analysis of the 
phenomena in heat exchangers. The systematic procedure for the solution of prob
lems in this field is set out in the form of a comprehensive scheme.

Chapter 2 is dedicated to the influence of flow configuration on the performance 
of heat exchangers. Here the equations to calculate mean temperature difference and 
efficiency for stirred tank, parallel, counter- and crossflow, and their combinations



are derived and put together in a very compact way. In some cases, short computer 
programs are given to evaluate more complicated formulas or algorithms. Therefore, 
the book should also be useful to practicing engineers as a reference for these rela
tionships. It is so written as to enable one to work through the contents alone with 
appropriate preparatory training.

The fully worked-out examples in Chapter 3 are intended to show the application 
of the fundamentals to thermal and hydraulic design, i.e., sizing of heat exchangers. 
Mechanical design, with choice of material and calculation of strength according to 
relevant construction codes, has not been included. The latter is the subject of the 
course ''Konstruktiver Apparatebau/' for which a similar book would be desirable.

The present book was developed as a text on the basis of the course "Kalorische 
Apparate A ,"  offered for many years at the University of Karlsruhe by Professor Dr.- 
Ing. Dr.h.c.INPL Ernst-Ulrich Schlünder, which I have taken over from the winter 
term of 1986-1987. It was Prof. Schlünder who suggested that I write this book. The 
entire conception and a majority of the examples are engendered by his ideas. Apart 
from the elaboration of the hitherto handwritten course notes, my own contribution 
was restricted to the more recent research results on plate and spiral plate heat ex
changers, which are mainly based on the work of my former student Dr.-Ing. Moha- 
med K. Bassiouny as well as on the compact representation of the most important 
analytical results on the influence of flow configuration on heat exchanger perfor
mance developed at the end of Chapter 2. To the original course contents, I have 
added the analysis of heat exchangers coupled by a circulating heat carrier in order to 
assist the reader in comprehending the phenomena in a regenerator. All the numerical 
examples have been reworked, using the calculation procedures for heat transfer 
coefficients and friction factors currently recommended in the pertinent handbooks on 
the subject.

Dr.-Ing. Paul Paikert, director of the Research and Development Department of 
GEA Luftkühlergesellschaft, provided field data for the design examples on plate and 
shell-and-tube heat exchangers, which is gratefully acknowledged. I would also like 
to thank my former colleague Dr.-Ing. Norbert Mollekopf, now with Linde A.G., for 
information on the design of regenerators and other heat exchangers in flue gas 
cleaning processes applied in power plants. To my colleague Akad. Dir. Dr.-Ing 
Volker Gnielinski, I am indebted for his critical inspection of the manuscript and for 
many a valuable hint on the layout of the book. For the excellent drafting of a 
majority of the figures, I would like to thank Lothar Eckert and Pedro Garcia. Some 
of the figures have been obtained courtesy of Linde A.G. (Höllriegelskreuth) and W. 
Schmidt G.m.b.H. u. Co. K.G. (Bretten). I have myself produced some of the fig
ures, using the graphic software “ MacPaint” by Apple Inc.

Finally, I would like to thank Nana very much for carefully transcribing my 
handwritten notes into neatly typed text stored on a disk. She sacrificed many a 
weekend for this arduous work.

XU PREFACE TO THE GERMAN EDITION

Karlsruhe, Summer 1988 Holger Martin



CHAPTER

ONE
ANALYSIS OF SOME STANDARD TYPES OF HEAT 

EXCHANGERS ON AN ELEMENTARY BASIS

1. STIRRED TANK WITH JACKET

1.1 Description

The Stirred tank, or stirred vessel, is one of the simplest and, at the same time, most 
versatile types of apparatus used in process engineering. In the model shown in Fig. 
1.1, the vessel is put together from cylindrical, annular, and spherical shell segments 
according to structural analysis. The lower part has a double-walled construction with 
inlet and outlet headers, so that the contents of the vessel may be heated or cooled by 
a medium flowing through the jacket. In Fig. 1.2, this apparatus is drawn schemati
cally with its most important functional features. The flows of mass and energy 
entering and leaving the vessel and the jacket are inserted into the sketch as arrows 
and denoted by symbols, such as M  for mass flow rate, Q for heat flow rate, and W 
for stirrer power, which are, if necessary, identified by subscripts for position, time, 
or state.

1.2 Formulation of Questions

In the next step, one has to become clear on the questions of which are exactly the 
unknown and which are the given—or, at least, to-be-fixed-in-advance—quantities. 
Reasonable questions in connection with heating a liquid in a stirred tank may be , for 
example.
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Figure 1.1 A stirred tank with jacket.

a. How does the temperature of the contents of the vessel change with time after the 
steam inlet valve has been opened?

b. What is the consumption of heating steam?
c. What is the influence of the stirrer speed on the heating process?

To answer these questions, some quantities have to be known or fixed in advance. 
Only in the course of the analysis will it become apparent that, to answer the ques
tion, we need the vapor pressure and, thus, the condensation temperature Ty = 
T^(Py) of the vapor in the jacket, mass M  and initial temperature of the liquid in the 
vessel, type and rotational speed of the stirrer, and other parameters. In any case, it 
will be useful to list all necessary parameters using unambiguous symbols. Question 
(a), for example, can be formulated in symbolic writing as

T = T(t, parameters)

Here T, the unknown (or sought-after) quantity, the temperature of the liquid in the 
tank, is a function of the time t after the steam inlet valve has been opened and



“parameters” contain all other quantities that have to be known a priori to calculate 
the function T(t). In general, before starting the formal symbolic analysis, one has to 
be clear on the following questions:

• Which is the quantity sought after?
• What does it mainly depend on?
• Which other parameters are needed?

1.3 Application of Physical Laws

To answer the question posed in the previous section, in general, three classes of 
physical laws are at our disposal: the laws of conservation (of mass, momentum, 
energy); the laws of equilibrium; and the rate equations (kinetics of transport 
processes).

Over a space, thought of as the “ control volume,” one may write a balance for 
physical quantities that obey a law of conservation. Thus, the mass balance for the 
steam jacket is

ANALYSIS OF TYPES OF HEAT EXCHANGERS 3

( 1. 1)
in the steam jacket

If the vapor pressure py remains constant and if, by means of a steam trap, the liquid 
level of condensate in the Jacket is also kept constant, then the change of mass (of

Figure 1.2 Stirred tank: sketch, streams, symbols.
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vapor and condensate) in the jacket with time is equal to zero. The amount of vapor 
flowing in is always equivalent to the amount of condensate led off (My = M^). The 
corresponding energy balance for the steam jacket reads:

MvA/! = è  + !2l ( 1.2)

Here Ah = hy -  he, the difference of the specific enthalpies of vapor and conden
sate, i.e., the enthalpy of vaporization Ahy(Ty) and appropriate additional enthalpy 
differences in case of steam entering superheated and condensate leaving sub
cooled. Q is the rate of heat transferred from the condensing steam to the contents of 
the vessel, while Q^j is the heat “ loss” from the jacket to the surroundings. In order 
to answer the question 1.2 (a) for the variation with time of the temperature of the 
contents of the vessel, we have to regard the contents as a system. In case both inlet 
and outlet valves remain closed, the energy balance for the liquid contents of the 
vessel is:

Q *  f ' .  -  -  ( § ) (1.3)
Vessel contents

Ws denotes the power transferred by the stirrer and the heat loss from the con
tents through the lid to the surroundings. In this case (and similarly in many other 
practical cases in heat exchangers), of the components of the total energy of the 
system, i.e., the potential, kinetic, and internal energies, only the internal energy U 
changes. On the other hand, one has to take into account the expansion or contraction 
of the fluid in the vessel when heated or cooled under constant pressure. Thereby it 
transfers power by change of volume Wy = p(dV/dt) to its surroundings, which has 
to be subtracted from the left hand side of eq. (1.3)

Q +

By introducing the enthalpy

Contents

H -= U + p V

the energy balance can be simplified for constant pressure:

Q +  Ql {p = const)

(1.4)

(1.5)

( 1.6)
Contents

Since the pressure in heat exchangers often remains constant with time, the energy 
balance can be formulated most conveniently in many cases as in eq. (1.6) with the 
change of enthalpy dH/dt on the right hand side. When rewriting eq. (1.6), the laws 
of equilibrium thermodynamics, i.e., the second class of physical laws, have already 
been used. Further, the enthalpy H  may be expressed in terms of the temperature T 
(for constant pressure):
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dH  =  d(M/j) =  Cpd(M r) (1.7)

eventually leading to

Q + -  Qll = M r
dT
d7

in the vessel

( 1.8)

for constant mass of the contents of the vessel with T(t = 0) = T̂ .
The question regarding the variation of temperature with time, however, can not 

yet be answered with this equation alone. Apart from the laws of conservation and 
equilibrium, one needs the rate equations, i.e., one needs statements on the depen
dency of the fluxes on the field variables, such as the temperature, the flow velocity, 
and the concentration. These laws are always formulated in such a way that the fluxes 
vanish when approaching equilibrium. In the simplest version, the fluxes are taken as 
linearly related to the departure of the state variables from their equilibrium values. 
Should the steam in the jacket be in thermal equilibrium with the fluid in the vessel, 
then its temperature TV would have to be equal to the temperature T  of the vessels 
contents and vice versa:

T  =  T^ V,Equilibrium -* (1.9)

or

T =  T
^  Equilibrium ^  V

Q = K(T^ -  TV,Equilbrium.}

( 1. 10)

( 1. 11)

The factor of proportionality K  is thereby usually subdivided into two or more fac
tors:

Q = kA{T^ -  T) (1. 12)

A is the transfer surface area, in this case, the surface area of the wall of the vessel, 
which is equipped with the jacket. The area specific proportionality factor k = K/A is 
called “ overall heat transfer coefficient.” Analogous to eq. (1.12) one can write the 
rate equations for the heat losses in eqs. (1.2) and (1.3):

Qu = {kA)^  (T̂ v -  r j (1.13)

Gll = (A:^)ll(7’ -  r j (1.14)

Since the streams are vectors, one has to exercise due care that their direction is 
always the same in the balance and in the corresponding rate equation. If the power of 
the stirrer is known, e.g., kept constant by an appropriate control, the question 
posed under (a) in section 1.2 can be answered from the combined application of



equations (1.8), (1.12), and (1.14). The list of parameters in this case contains nine 
quantities:

parameters = (Q, Qll, kA , Ty, 7„ TJ

6 HEAT EXCHANGERS

1.4 Development in Terms of the Unknown Quantity

The sought-after quantity T{t), the temperature of the contents of the vessel, can now 
be calculated from the three equations (1.8), (1.12), and (1.14). The not-sought-after 
quantities Q, which depend on T, however, are eliminated from the three equa
tions. That can simply be achieved by inserting eq. (1.12) and (1.14) into (1.8):

kA{T^ -  T) + W , -  { k A \d T  -  r j  = Me.P d7
(1.15)

T(t = 0) = T, (1.16)

This is a first-order ordinary differential equation for T(t), that can be solved by 
separation of variables (T, t), if the remaining seven parameters (kA, (kA\i^, Mc^, 
Ty, T ,̂ Ti) are known data. Before the rigorous solution, it is desirable to reduce the 
number of variables and parameters by casting them into non-dimensional form. The 
parameters kA and Mc^ are easily combined with the variable t to form a non- 
dimensional time variable

kAt
(1.17)

This means that time is no longer measured in seconds, minutes, or hours but in terms 
of the time = McJ(kA) characteristic of the given problem. Temperature is re
placed by a normalized temperature difference

1? =
Ty -  T  

Ty -  r ,
(1.18)

Then eq. (1.15) transforms to

dy
+ - 9 )  = - - -  ,9(t = 0 ) = 1

dr
(1.19)

In that form, the equation has only three parameters in place of seven:

kA(Ty -  r , )
( 1.20)



By introducing

and
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{k A \
kA

TV -  7;
Ty -  r,

t ‘ =  (1 +  x )r

r  =  3 +
w

1 +y.

( 1.21)

(1.22)

(1.23)

(1.24)

the equation can be further condensed;

dS-
3* =

d r ’
(1.25)

I -f X

In this extremely compact form, it contains only one parameter of which also 
might be avoided by choosing the variable

1.5 Mathematical Solution

The dimensional equation (1.15) with its seven parameters can, no doubt, be solved 
mathematically. The solution becomes algebraically simpler however, if one has taken 
the pains to bring it to the most compact form of eq. (1.25) with only one parameter:

r  d^*
=  J d r -

. /  I F
(1.26)

0

T* = - I n  — (1.27)

exp( -  r*) (1.28)

the solution being:

The solution has, therefore, the same simple form that is obtained when neglecting 
the power of the stirrer and the heat losses ((̂  = 0 , x = 0).



1.6 Discussion of the Results

The answer to the question (a) in section 1.2 regarding the temperature of the vessel 
contents as a function of time is given formally be eq. (1.28) together with eqs. (1.17) 
and (1.18), the dimensionless quantities being defined by eqs. (1.20) to (1.25). Now 
one has to check whether the result is in agreement with physical experience and 
especially whether all possible limiting cases are correctly described by the solution. 
With the values of the parameters suitably chosen, one can describe and possibly even 
extrapolate experimental data. The initial condition ??*(t* = 0) = is, of course, 
fulfilled by eq. (1.28). The initial rate of change of temperature is

8 HEAT EXCHANGERS

d r \  kA

d 7 j „ r
[1 + o ; +  x (l -  l?a)] (1.29)

i.e., the heat loss has no influence on the initial slope of the temperature-time curve, 
if the initial temperature Ti is equal to the ambient temperature (in this case = 
1). For longer times, the steady state temperature can be found from eq. (1.24) with 

= 0 as

Ty -  -  CO

Ty -  T, 1 -h X
= (1.30)

The steady state temperature can be higher or lower than the vapor tempera
ture depending on whether the power of the stirrer or the heat loss from the lid is 
higher. It may be surprising that the heat loss from the steam jacket to the 
ambient according to eq. (1.14), plays no role at all in the answer to the question 
(a) in section 1.2. A little reflection will easily lead to the reason thereof. From eq. 
(1.30), one can also recognize that of eq. (1.24) is just ù -  a measure of the 
approach to steady state.

By setting dT/dt = 0 in eq. (1.15), and, therefore, the final compact form of 
the solution could be more easily determined as (exercise):

T -
T, -

= exp
kA  + { k A \

M e,

-  Ty +
fVy -  (kA)̂ (̂Ty -  T,:

kA  + {kA \

(1.31)

(1.32)
LL

In this form, the result can be most conveniently understood and discussed. The time 
constant of the heating process is

iV/c.
t  - kA  + (kA)i^ kA{ \ H“ x)

(1.33)

Its order of magnitude can be easily estimated thus: For many liquids, the volumetric 
heat capacity is (p Cp), =  2-10* J/(m^ K) (for water, 4.2-10^ J/(m^ K)). The overall 
heat transfer coefficient between the jacket steam and the vessel contents mainly
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depends on the convective coefficient on the inside of the vessel wall. As a rough 
estimate, one may use k = 1000 W/(m^ K). If the temperature of the lid is not very 
different from that of the ambient, will be on the order of 1 to 10 W/(m^ K) (free 
convection and radiation on the outside of the lid); and {kA)^J{kA) will usually be 
small compared to unity. Assuming that the cylinder bottom is flat and is heated, the 
ratio of cylinder volume to active surface area for the vessel is

nD-L D
A 4(7tDL-f  ttD2/4) 4 - fD /L

(1.34)

L is the heated height of the cylindrical shell 
the time constant to be

height of liquid. From this, we find

t f 4 • 10  ̂ s
D /m  

4 4-D /L
(1.35)

For aqueous liquids, it is around 800 seconds for a vessel diameter of 1 m and D/L = 
1. The time required to reduce the temperature difference to 1 % of the initial value is

9̂9% = i* In 100 (1.36)

and, with the above assumptions, it is roughly one hour.
The further questions (b) and (c) posed in section 1.2, in respect of the steam 

consumption and the influence of the stirrer speed on the heating process may also be 
answered now. The steam consumption is obtained by rearranging the energy balance 
for the steam jacket (eq. 1.2) as:

Mv = Q + Ql
A/i„

(1.37)

Q and Qlj are calculated from eqs. (1.12) and (1.13). The maximum steam consump
tion occurs at the beginning of the heating process:

Mv,, =
kA(Ty -  Tj) + (kA U T y  -  TJ

(1.38)

Whether it is possible to provide the steam required for the initial heating and the 
pressure loss in the jacket for this high steam flow rate should also be checked.

The mechanical power dissipated and the overall heat transfer coefficient are 
both affected by the stirrer speed. The mechanical power is calculated as the product 
of the drag force Fd on the stirrer and the velocity co. With = poi^dlcj  ̂ and co = 
nd,

iVs = Co (1.39)

The drag coefficient so defined depends on a Reynolds number
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coJs ndl 
Re = —  = —

V V
(1.40)

on the dimensions of the stirrer and the vessel, and, possibly, on other criteria such as 
the Froude number. For Re > 10"̂ , constant values of Cp ranging from 0.2 to 20 are 
reached. With — 2, 4  «  1 m, p = 10̂  kg/m^ and a rotational speed o in  = 1/s, 
the calculated stirrer power is 2 kW. For water with v = 10”  ̂ m^/s, the Reynolds 
number wold be around 10̂  in this case. For k = 1000 W/(m^ K) and ^  = 4 m^ the 
stirrer would increase the steady state temperature by

A7s -  —  «  0.5 K 
kA

(1.41)

On the other hand, the heat loss over the lid, with /cll = 10 W/(m^ K), /4ll = 1 
and (Fy -  TJ = 100 K, would decrease it by 0.25 K. In such cases, neglecting the 
heat loss over the lid and the stirrer power would cause little error. With increasing 
stirrer speed, the heat transfer coefficient on the inside of the vessel wall will also 
increase as oli oc [H3, pp. 3.14.3, VI, pp. M al-8]. Since the other resistances 
due to the condensate film and the wall of the vessel are usually small compared to 
l/a^, the overall heat transfer coefficient will also increase approximately as /: oc 
The increase in the steady state temperature due to the stirrer power is thus related to 
speed as for higher speeds and roughly proportional to the square of the speed for 
lower speeds (for lower Reynolds numbers, oc HRe and a, = const.). At high 
Reynolds numbers, would be increased by a factor of five (see eq. [1.41]) if the 
stirrer speed is doubled. The heating time would be reduced by about 37% {t̂  oc 
n -2/3) however, would require an eightfold power for the stirrer drive (see eq.
[1.39]).

Problems

1.1 Equation (1.12) is valid for an instant t, when the contents of the vessel have 
reached the temperature T To calculate the heat Q, which has been flowing through 
the vessel wall from the beginning of the heating process, one can write Q = 
{kAt)ùiTy^. Calculate the appropriate mean temperature difference in terms of 
only the initial and the final temperature differences (ATj = Ty -  Tj, ATp = TV “  
T p ). Stirrer power and heat losses may be neglected.

Solution: ATVi =
{^T, -  AT,) 

\n{AT,IAT,)

1.2 Answer question (a) in section 1.2 for the case that the maximum available mass 
rate of steam My,max is just half the initial steam consumption calculated from eq. 
(1.38) (stirrer power and heat loss negligible!)

Solution: = 1 -  r/2  (for r  < 1); ?? = (l/2)e"^^"'^ (for r  > 1)



1.3 How does the liquid level in the vessel change with time, if the boiling tempera
ture of the liquid is less than T^{T^ «  TV,  ̂ = 0 for T = T ^ l

Solution: {L/L^ = exp(-i/ic), AhJ[4 k (Ty -  T̂ )]

1.4 Calculate the outlet temperature T" of a fluid flowing steadily through a steam- 
heated stirred tank (mass rate = M̂ ut = specific heat capacity Cp, inlet 
temperature T ' , kA, and Ty are given, stirrer power and heat losses are negligible. 
Outlet temperature = temperature of the contents in steady state).

Solution: T" = T' + (Ty -  T )N /{ \ -  N); N  kA/{McA.
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2 DOUBLE-PIPE HEAT EXCHANGER IN PARALLEL 
AND COUNTERFLOW

2.1 Description

Double-pipe apparatuses (Fig. 1.3) are relatively simple to produce and are preferred 
for high pressure applications. The two streams, in the inner tube and in the annulus 
formed between the inner and outer tubes, can be directed in parallel or in counter
flow to each other as shown by arrows in Fig. 1.4. Furthermore a coordinate z in the 
direction of the tube side flow has been introduced.

2.2 Formulation of the Questions

a. With the mass flow rates M ,̂ M2, the pressure drops Ap^, Ap2, and the inlet and 
outlet temperatures T/, T/', T2 given, the size of a heat exchanger is to be 
determined (surface area A, flow cross sections S2) (design problem).

b. For a given apparatus, given fluids, mass flow rates, and inlet temperatures, the 
outlet temperatures and, if necessary, other quantities of interest such as the heat

Figure 1.3 The double-pipe heat exchanger.
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Figure 1.4 Sketch of double-pipe 
heat exchanger with temperature 
variation in parallel and counterflow.

transferred, pressure drop, and pumping power are to be calculated (rating prob
lem).

2.3 Application of Physical Laws

When the sum of the kinetic and potential energies at the inlet and outlet are equal, 
the steady flow energy balance applied to the apparatus is

( / , ; _ / / ; ) +M ^ ( / , ÖL = 0 (1.42)

A reasonable assumption in heat exchanger analysis is that the heat transfer 
between the apparatus and surroundings is small (due to small temperature differ
ences between the outer stream and the surroundings or by good thermal insulation). 
Then, it follows from eq. (1.42) that the change in specific enthalpy of each stream is 
inversely proportional to its mass flow rate:

/i; -  K  M, 
~ M 2

(1.43)
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The ratio of the enthalpy changes above may be expressed in terms of the correspond
ing temperature changes alone. For pure substances one has

Qclh = Qc dT  -f (I — pT ) dp (1.44)

Here the product of the thermal expansion coefficient P and the absolute temperature 
T is equal to unity for an ideal gas, i.e., the enthalpy is a function only of tempera
ture. For liquid water at 20 °C PT «  0.06 and p = 10̂  kg/m^ The strong dependency 
of enthalpy on temperature (3h/3T)p = «  4.2-10^ J/(kg K) is dominant relative to
the weak dependency on pressure (ah/dp)^ = (1 -  i87)/p «  0.94-10'^ J/(kg Pa). 
Even for a pressure change as large as 10̂  Pa, the influence on enthalpy is less than 
2.3% of the influence of a temperature change of only IK! In these cases, one can 
also write in place of eq. (1.43):

^ 2.1 “  ^ 2.0 _  
^LO “  ^ 1,1

(1.45)

The energy balances for the inner tube (fluid 1) and the annulus (fluid 2) are, respec
tively,

(MCp),(r,o -  Ti.O -  ¿12 = 0 (1.46)

(MCp)2(T2.o -  Ti.i) -  ¿21 = 0 (1.47)

and, thus, using eq. (1.45), it follows that

Q 2 i= -Q n  (1-48)

For the heat transferred from fluid 1 to fluid 2, one can write the rate equation

e ,2 = /c/l(r, -  Tj) (1-49)

The temperatures T̂  and Tj, however, are not constant over the surface area A (or the 
coordinate z), so that an appropriate mean value of the temperature difference (Ti -  

has to be used in eq. (1.49). To determine this mean value, the variation of the 
temperature difference with z must be known. Consequently, we first have to apply 
the balances of eq. (1.46) and (1.47) and the rate equation (1.49) only locally, to the 
control volumes dF, = 5idz and dFj = ĵdz.-

- (A ÎC p ) ,d r i-d Ô ,,  =  0 

-{MCp)2dT2-dQ2i=0

dQ,2 = k { T , - T 2 ) d A

(1.50)

(1.51)

(1.52)
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2.4 Development in Terms of the Unknown Quantities

By eliminating the heat rate dQn from the balance equations

kdA
- d r ,  =  (Tj -

(Mcp),
(1.53)

(1.54)

one obtains a system of two coupled ordinary differential equations for the tempera
tures Tj and T2 as functions of z; dA = Adz/L. With the “ number of transfer units” 
(see also r  according to eq. [1.17]) defined by

=  ( i = l , 2) (1.55)

and the normalized variables for length

- z
(1.56)

and temperatures

1 1 — -1 2
(1.57)

0 _  T 2 - n
'̂ 2 — 7̂ / 7-/ i 1 I 2

(1.58)

the differential eqs. (1.53) to (1.54) become

(1.59)

(1.60)

Adding these two equations, one obtains a single one for the temperature difference:

dZ = - ^ 2)
(1.61)

The normalization of the temperatures can be chosen arbitrarily and the form chosen 
here in eqs. (1.57) and (1.58) sets the entrance temperatures of the two streams to the 
convenient values = 1 and ^  0.



2.5 Mathematical Solution

Equation (1.61) can be solved straightaway by separation of variables and integration:

(,9 ,-3 2 )
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(5i -»2)0

Integrating up to Z = 1 (z = L) gives

=  ( ,V,+N2)Z

l n | ^ = ^  = (.V,+W2)

(1.62)

(1.63)

Dividing the balance eqs. (1.46) and (1.47) by (kA), the sum (TV, + N-̂ ) can be 
expressed as:

(N, + Nj) = kA ( T - r 2 ) o - ( T - 72̂)1
Ô 1 2

(1.64)

so that the heat rate can be given in terms of kA and the four temperatures alone:

(1.65)A _ / , i  ( T  -  72̂)0 - ( T - 7-2)1
in[(7’, -  r 2)o/ (r ,  -  r,),] ‘

Thereby, the appropriate mean value of the temperature difference required in eq. 
(1.49) is found. It is the logarithmic mean of the temperature differences at the 
positions z = 0 and z = L (see also Problem 1.1 for comparison). Inserting the 
exponential form of eq. (1.62) into eq. (1.59) and integrating again leads to the 
solution for i?i(Z):

^1.0-^2.0 ~  1+A^2/^1

By the same procedure, using eq. (1.60), t)e obtained.

( 1.66)

2.6 Discussion of the Results

To answer the question 2.2 (a), eq. (1.46) or (1.47), together with eq. (1.65), can be 
used to calculate the surface area required:

0,2 = -  T[') =  |Mc.|2 (7̂ ' -  A)

Ò12
kAT,LM

The overall heat transfer coefficient k depends on the flow velocities which are deter
mined by the flow cross sections Sj and S2 chosen and the pressure drops for fluids 1 
and 2. The outlet temperatures (question 2.2 [b]) can be found from eq. (1.66) with Z 
= 1. In the case of parallel flow, this can be done directly with Q = i?/ = 1 and
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^2,0 ~ 2̂ “

with

r ;  = T[ + ei(r; -  t {)

1 _^-(/Vi+N2)

1 4- ^ 2/^ !
(1.67)

For counterflow with N 2 < 0 (z-coordinate against the flow direction of M2), ^i,\ == 
0, while ??2,o = ^2' is the yet-unknown outlet temperature of stream 2. This can be 
expressed through the overall balance eq. (1.45) in terms of é"  and the capacity flow 
rate ratio,

C =
(Me,p̂ i

N,
~  ^2.0 (1.68)

leading to

1 _e-(i+c)/v, 
*̂1 =  1 +Ce-( '+c)N, (1.69)

In the special case C = — 1, i.e., counterllow with equal flow capacities (TV, — TVj 
= 0), eq. (1.69) leads to an indeterminate expression. By series expansion of the 
exponential function, one obtains

1 +  N,
(C = - l ) (1.70)

The exponential function degenerates in this case to a linear function as may be seen 
from eq. (1.61). The temperature difference remains the same at any position. The 
quantity e„ introduced in eq. (1.67), is a dimensionless change of temperature and is 
usually called heat exchanger effectiveness, or efficiency.

5, =  1 -5 ', '

r, =  9" -  0

(1.71)

(1.72)

It is generally defined as

^  (change of temperature of stream /) 
(max. temperature difference)

e, =
T[ -  T'{
T [ - n

(1.73)



7’n 
2= (1.74)
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T '

T[ -

From eq. (1.68) with (1.71) and (1.72) or directly from eq. (1.45), we see that the 
ratio €2/61 is related to NTU and C as

£2 _ (Mc-p), ^ 2

«1 ” (M i-p ),
= \C\ = R (1.75)

Through the balances of eq. (1.46) and (1.47), the effectiveness can also be written as 
a dimensionless heat rate:

è ,2 kA

M ,s ,(2"i -  n ) ViCpi r ;  -
(1.76)

£. = N r  Q a = 1, 2)

which expresses the basic relationship between the three dimensionless quantities 
Nf and 0 . If 0  is known in terms of ej, €2 then N^, N 2 can be calculated (design 
problem). If 0  is known as a function of N^, N 2, the values of €2 can be found 
(rating problem!). Knowledge of the functions

© (£1, 62)

0 (N „ N 2 )

(1.77)

(1.78)

is thus the key to the questions 2.2 (a), (b). The quantity 0 , as can be seen from eq.
(1.76), is the integral mean temperature difference divided by the maximum 
temperature difference. For the cases of parallel flow and counterflow treated here, 
the mean temperature difference is the logarithmic mean, ATlm (see eq. [1.65]).

Problems

1.5 Obtain the dimensionless mean temperature difference 0  in terms of N 2 for 
the stirred tank with steady streams from problem 1.4 (subscript “ 1” contents of 
tank, “2” steam)

Solution: 0  = 1/(1 + N^), N 2 = 0, C = 0

1.6 Determine 0(/Vi) for C = 0 [(MCp)2 ^ 00] for parallel and counterflow. 

Solution: 0  == (1 -  exp(-A^i))/A^i

1.7 The following inlet and outlet temperatures have been measured in a heat ex
changer operated in parallel flow: 7/ = 100 °C, T¡ = 20 °C, T" = 60 °C, T2 =
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50°C. What outlet temperatures T2 ” would you expect to find under the same 
inlet conditions if operated in counterflow?

Solution: T , ” = 53.6°C, = 54.8°C (C = -3 /4 ,  N, = 1.188)

1.8 Derive the function 0  (ej, €2) for parallel and counterflow heat exchangers.

£1 ~h 2̂
Solution: Parallel flow 0 - -

In[l -  (£, -f £2)]

Counterflow 0  =
ln[(l - £ 2)/(1 - £ i)]

0  =  1 — £j = 1 — £2,

£j ^  £2

£, =  £̂

3 DOUBLE-PIPE BAYONET HEAT EXCHANGER

3.1 Description

Double-pipes with one end closed, as shown in Fig. 1.5, are often used as bayonet 
heating (or cooling) elements in various types of apparatus. They are also called Field 
tubes. The outer medium heated or cooled by such a Field tube (or double-pipe) will 
often be well mixed (as in stirred tanks, fluidized beds, etc.) or have a constant 
temperature as in a boiling liquid. The heating (or cooling) medium may be a 
liquid or gaseous heat carrier with mass flow rate M  and specific heat capacity Cp 
(assumed constant). The medium may first enter the inner tube (case I) or the annulus 
(case II).

3.2 Formulation of the Questions

The earlier analysis of the double-pipe apparatus in parallel and counterflow might 
lead us to expect that the heat transferred from the heating medium to the well-mixed 
contents of the outer vessel (boiling liquid, fluidized bed, etc.) could again be calcu
lated from a simple equation:

Figure 1.5 The double-pipe bayonet heat 
exchanger.



Q = (1-79)
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In the following sections, we shall check whether it is really that simple or if it is 
necessary to use a mean temperature difference other than the logarithmic mean. To 
accomplish this, the variation of the temperature of the heating medium in the inner 
tube and in the annulus has to be calculated as a function of the coordinate z.

3.3 Application of Physical Laws

As in the preceding sections, we shall combine the rate equations and the energy 
balance for each of the control volumes dFj and dk^ to formulate the unknown tem
perature as a function of the length coordinate. With the abbreviations

Ù =
T - T ,  

Tin -  t :

the two differential equations are

Mc„

i<A

(1.80)

dC

dC
9 i - ( l + x ) 3 a

(1.81)

(1.82)

subject to the boundary conditions:

^.(0) =  1 (1.83)

(1.84)

Here it is formulated for the fluid entering the bayonet assembly by the inner tube 
(case I). For x = 0 and N 2 = -  N^, these differential equations are the same as for a 
counterflow heat exchanger (eqs. [1.59] and [1.60]). With the boundary condition 
d-XN) = however, x = 0 would be a trivial case and the temperature at the
inlet, ?? = 1, would be maintained throughout.

The mathematical solution can be found by decoupling the two equations, i.e., by 
eliminating one of the two dependent variables Denoting the derivative with
respect to f  by a prime, dt?/df = , we get from eq. (1.81)

— «9: -f 9; (1.85)

This equation and its derivative
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s; = s: + s'' ( 1. 86)

can now be inserted into eq. (1.82). An ordinary differential equation of second order 
for results:

For  ̂ similar procedure (exercise) will yield

The general solutions to these two equations are

3 ,(0  = /I e'"'"' + B e '”-̂  

and

(1.87)

( 1.88)

(1.89)

3 ^ (0  = (1.90)

where w, and denote the roots of the characteristic eq. — x m  — x = 0:

'«1.2 =1  1 ±  \ / 1 +
4 \  X
X J 2

(1.91)

To determine the four constants, we have the two boundary conditions (1.83) and 
(1.84) and two other conditions derived from these with differential eqs. (1.81) and 
(1.82):

9[{N) =  0 

3:,(iV) = x30iV)

(1.92)

(1.93)

The somewhat laborious calculation of the four constants eventually leads to the 
solution for case I:

m
9a ( . , ( 0 =  ' '

M

^miN

M

(1.94)

(1.95)

where

M  =  - m , ,

The temperature at thè closed end of thè bayonet is found (with + rui ^  and 
f  = AO to be:
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3 „ „ - w = s. ( n ) (1.96)

The outlet temperature of the heating medium becomes

. mi — m-.
M

(1.97)

The solution for case II (fluid entering the bayonet by way of the annulus) can be 
found by replacing f  by -  f  in the differential equations. In place of eqs. (1.87) and 
(1.88), we get

S'' +  X -  X Sj =  0 (1.98)

and

9" +  x S ; - x S , = 0 (1.99)

with the boundary conditions

3,(0) =  1 3,(iV) = Si (AO (1.100)

9 \ {N ) = 0  S;(yV) = -x S ,(N ) (1.101)

After appropriate calculations (exercise!), we find that the solutions for case II can be 
expressed by

1̂ (1](H (1.102)

»¡(.i) ( 0 = ^ - ’'L 9 , , , ( 0 (1.103)

Therefore, it follows that the normalized temperature at the closed end in case II is 
lower than in case I by a factor of :

( I I )  “  ( I I ) ( ^ )  ~  ( I I ) ( ^ )  ~  ^ (1) (1.104)

Nevertheless, the outlet temperature of the heating medium turns out to be the same 
in both cases:

out  ( I I )  —  ( H ) ( 0 )  -  ( I ) ( 0 )  —  ^out  ( I ) (1.105)

3.4 Discussion of the Results

Figure 1.6 shows the variation of temperature in the double-pipe bayonet heat ex
changer with X = 3 and N  = 1 for the two cases. The heating medium will be 
reheated in the second pass after passing a minimum which is always at z = 1 in case 
II. Despite different temperature variations inside, the efficiency e, defined as before 
(see eq. [1.73], but with the temperatures conveniently written with subscripts “ in” 
and “ out” in place of the primes and double primes which have been used here to
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0.0 0.2 0 .4 0 .5 0.6 z/l
Figure 1.6 Temperature variation in 

 ̂- 0 the double-pipe bajonet heat exchanger.

denote the derivatives) is always the same for cases I and II (e = 1 -  It
depends on the two parameters x and N. After some algebraic manipulation, it can be 
written as

e{N.^,x) =  2
1 —

(^ + Ì) +
(1.106)

with

N = x N ,
iCj/lj

AT =  M i  
Mc„

Here the product xN  was chosen as a more relevant measure of the residence time of 
the heating medium (or the length coordinate). For any finite value of x, there is a 
maximum effectiveness

= jim  £{N.^,x) =Na-̂ oo ^  4- 1
(1.107)

For 00 and, consequently, /x ^ l,  i.e., for a perfectly insulated inner tube, the 
maximum possible effectiveness is obtained. In that case, one would have a constant 
temperature in the inner tube and the temperature curves for the annulus for both 
cases would be mirror images about a vertical axis through Z = 0.5. Equation 
(1.106) can be solved for so that, with 0  = e//V̂ , the mean temperature difference 
can also be given explicitly in terms of e and x:

0(e.x) =
í:¡i (1.108)



Now it is possible to answer the question raised in section 3.2, viz., whether the 
logarithmic mean temperature difference is the correct basis for calculating the heat 
transferred, as done in eq. (1.79). The logarithmic mean is easily calculated for 
constant temperature of the outer medium (i.e., C = 0):
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1 - ( 1 -^^) 
ln(l — s)

(1.109)

Comparing this result with the mean temperature difference (eq. [1.108]), we see that 
eq. (1.79) would hold good only for oo, i.e., /x = 1. However, in order to retain 
the logarithmic mean as the basis for calculations, one may introduce a LMTD cor
rection factor F

©

® LM
F = (1.110)

The factor F describes the diminution of the performance compared to the ideal 
(counterflow) case:

F =
fi\n( \ -  8)

ln { [2 -( / /+  1)ì;]/[2 + (/ì -  !)e]}
( 1. 111)

Figure 1.7 shows the mean temperature difference 0  according to eq. (1.108) as a 
function of e, with as a parameter. The straight lines through the origin are lines of 
constant NTU, = const. The double-pipe bayonet heat exchanger is obviously 
very unsuitable if the overall heat transfer coefficient at the outer wall becomes 
smaller than that at the inner wall. It may be recalled that the temperature of the

Figure 1.7 Mean temperature difference 0  as a 
function of efficiency e with x = (kA)Ql{kA)i as 
parameter.



medium outside the double pipe (r^) was assumed to be constant for this analysis. 
This is possible either for very large heat capacity of the outer medium (C — 0, for 
example, with evaporation or condensation) or for ideally mixed flow of the 
stream M2. In the latter case, however, 7̂ , would not be the inlet temperature but the 
outlet temperature of medium 2. In this case, e is defined with = T2 in place of 
T2 . Under the stated assumptions, an effectiveness for the medium 1 inside the 
double-pipe, according to the usual definition (see eq. [1.73])
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1 j ,  _ (1.112)

is related to e and C (exercise!) as

1 -f- C e
(1.113)

This, of course, gives the original definition again for C — 0.

3.5 Pressure Drop in Double-Pipes

In order to force liquids or gases through the pipes and annuli of double-pipe appara
tuses, pumping power is required, which is proportional to the pressure drop for 
given flow rates.

For the design of heat exchangers, we also need, apart from the laws of heat 
transfer (to calculate the overall heat transfer coefficients), a knowledge of fluid 
mechanics. Here, primarily, the relationships between pressure drop, flow rate, vis
cosity and density of the fluid, and the geometry of the duct are of importance.

For fully developed laminar flow of incompressible Newtonian fluids in a circu
lar duct of diameter D or in an annulus whose outer and inner passage dimensions 
are, respectively, D and (i.e., the inner diameter of the outer tube and the outer 
diameter of the inner tube forming the annulus), the Hagen-Poiseuille law in a form 
generalized for annuli holds [B5]:

K~)"
InK

\2^r]ML
tzqD^

(1.114)

For a circular duct, K  is equal to zero and the expression in K  within brackets 
becomes unity. For the general case, the average velocity can be written as

4.V/
u =

kqDH\ -
(1.115)

Utilizing the following definitions for the hydraulic diameter and Reynolds number



ANALYSIS OF TYPES OF HEAT EXCHANGERS 25

, . cross sectional area
rfh =  4 --------— --------— -----------D(\ -  K)

wetted perimeter

and

Re =
/OMrfh 4 M

ir£>(l +  K)ii]

we can write

A/? _  64^(jQ L
puV2

The function <p{K) is given by:

<P(K] =

Re A

\ + K -  + { l - K ^ ~ ) / l n K

(1.116)

(1.117)

(1.118)

(1.119)

For circular ducts = 0), the function (;̂ (0) has the value 1. (p{K) shows a steep 
initial gradient and reaches a limiting value of 3/2 for = 1 (parallel plates duct). 
Figure 1.8 shows the graph of the function <p(K).

For a bayonet (i.e., a double-pipe arrangement closed at one end) of length L, 
outer and inner dimensions of the annulus D and KD and the ratio of the pipe wall 
thickness to diameter 5, the internal diameter of the core tube is (1 -  2b)KD. Not 
considering turnaround losses, the expression for the frictional pressure drop through 
the bayonet following eq. (1.114) becomes

= [(’^Po
2c5)K]‘' +  1 - K ‘' + (1

InX
(1.120)

Here Apo is the pressure drop in a simple circular duct of diameter D and is obtained 
by setting = 0 in eq. (1.114). Equation (1.120) is plotted in Fig. 1.9 as a function 
of the diameter ratio ^  for 6 = 0 (negligible wall thickness) and 6 = 0.2. For small 
inner tube diameters, the main flow resistance lies in the inner tube and decreases as 
[(1 -  2d)K]~'^. For larger K, the resistance is essentially in the annulus and increases

Figure 1.8 Factor <̂ (K) for frictional pressure 
drop in an annulus.
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6 ( K - D )

9 k-dL---------— i----------------
* I T 1 ----

•r
1 L

Figure 1.9 Frictional pressure drop in the 
double-pipe.

correspondingly steeply with decreasing gap width. As can be seen in the figure, a 
well-marked minimum in pressure drop occurs at a certain diameter ratio. For turbu
lent flow, the valid equation in place of eq. (1.118) is

^ =  URe) ^{q/2)u
( 1. 121)

In fully turbulent flow, ^{Re) is a weak function for smooth pipes and a constant for 
rough pipes [H3, VI]. Contrary to laminar flow = 6Aip(K)IRe], ^ is practically 
independent of the cross-sectional shape of the duct in turbulent flow. So, for turbu
lent flow in a circular duct as well as in an annulus, we obtain, to sufficient approxi
mation.

( \ - K ) \ \ + K ) - A p  = c
m - L
71-qD^

( 1. 122)

The dependency of pressure drop on diameter in turbulent flow is as D~^ and is 
stronger than for laminar flow (oc eq. [1.114]). Similar to eq. (1.120) for
laminar flow in a double-pipe bayonet, we obtain for turbulent flow (with  ̂ = 
constant)

^  = [(1 -  23 )K r^  + [(1 -  KŸ{\ + K)-]2 i- l (1.123)
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The values calculated from this equation for 6 = 0 and 6 = 0.2 are shown as chain 
lines on Fig. 1.9. To this, the flow turnaround losses have to be added, especially for 
shorter tubes.

For turbulent flow in smooth tubes, the friction factor  ̂ can be calculated, for 
example, from using an equation due to Filonenko [H3, VI]:

= (l,821gKc- 1,64)“ (1.124)

Using this equation, the relative pressure drop can no longer be given in terms of K  
and 6 alone. This can be achieved, however, by using the simpler power law as given 
by Blasius

or any similar power law expression:

0,316

C =
const
Re^

Using eq. (1.126), we arrive at the relative pressure drop:

APo
[(1 -  +  [(1 _  K f ( \  -  K f -" ' ] - '

(1.125)

(1.126)

(1.127)

When m = 0, we obtain eq. (1.123). With m = 1/4, the calculated value differs little 
from that for m = 0. Thus, an additional curve for m = 1/4 has not been shown in 
Fig. 1.9.

3.6 Heat Transfer in Double-Pipes

The heat transfer coefficients for flow in tubes and annuli can be calculated for simple 
boundary conditions, e.g., constant temperature or constant heat flux at the wall, for 
which well-known formulas are available in textbooks and, in particular, in hand
books on heat transfer [H3, VI]. For fully developed laminar flow and sufficiently 
long ducts, asymptotic values of the Nusselt numbers are obtained, e.g..

Nil Tcf. 3,66-f 1.2/C" (1.128)

where m = - 0 .8  for outer walls. If K  is set equal to zero or unity, respectively, one 
obtains the corresponding values for circular duct and parallel plates (one side adia
batic). No standard formula can be found, however, in the handbooks [H3, VI] for 
the case of a double-pipe bayonet heat exchanger with heat flow on both sides of the 
annulus at different temperatures. The equation given in these sources for heat flow 
on both sides of the annulus is only valid for the same temperature on both walls. In 
the case that the two walls are at different temperatures, the asymptotic Nusselt



numbers can be calculated from the known steady state temperature and velocity 
profiles. The steady state temperature profile in the annulus is
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9 =
In .X 
\nK

(1.129)

and the velocity profile [B5]

M _   ̂1 -  .V- +  2.V,; In x 
1 +  K2 -  2x?„

(1.130)

Here x is a normalized radius: x  = r/R, whose value lies in the range K  < x  < 1, 
and x„ is the coordinate of the maximum velocity:

2x  ̂ =
1 -  K -

\n{\ /K)

With the dimensionless heat flux at the outer wall of the annulus (x = 1)

-2(1 - K )

(1.131)

\nK
(1.132)

and at the inner wall (x = K)

cl>(p = -ii 
' K

and the caloric average temperature
1

(1.133)

(1.134)

the Nusselt numbers based on the hydraulic diameter as a characteristic length (ac
cording to eq. [1.117]) now become

Nu.^ = (1.135)

and

Nu, =
1 - 9

(1.136)

Equation (1.134), together with eqs. (1.129) and (1.130) for the temperature and 
velocity profiles, can be integrated in closed form (exercise!) to give
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9 =
(2 4 - X y  +  2 x j (K ^ - 3 ) /4

( l - K 2 ) ( 2 A i - X 2 - l )
(1.137)

Nusselt numbers calculated from the equations (1.131) to (1.137) agree with those 
given by Shah and London [S8] in tabular and in graphical form. For K-*0  (thin wire 
in the axis of a tube), the flux and the Nusselt number Nu^ at the inner surface tend 
to infinity. However, the product (KNuX respectively, tend to zero as
1/ln K. Nu^, in this limit, tends to a finite value

WmNu  =  I  =  2.667 
K^O “* 3

(1.138)

For K-*l  (parallel plates, gap width R(l -  K) < radius R), a limit analysis yields 
the value 1/2 for d and = 2. So, the Nusselt numbers, in this case, reach the
value

lim Nu- = lim Nu.. =  4
K- \̂ ‘ K-l (1.139)

For a number of other boundary conditions, one can find friction factors and Nusselt 
numbers for laminar flow in annuli in the book by Shah and London [S8]. For 
turbulent flow in annuli and tubes, friction factors and Nusselt numbers are found in 
[VI] and [H3]. The formula recommended by Gnielinski in [H3] and [VI] for turbu
lent tube flow (Re >  2300) is

Nu = f
^ / 8 ( R c -  1000)Pr

1 +  12.7v/fT8{Pr2/3-1)
1 + (i)

2/3
(1.140)

with  ̂ = ^(Re) from eq. (1.124) and /  = 1.
For annuli, the values calculated from this relation with the hydraulic diameter as 

a characteristic length are to be multiplied by the factors

/  = 0.86 (inner wall, adiabatic outer wall)

/  = 1 — 0.14 (outer wall, adiabatic inner wall)

4 CONCLUSIONS

4.1 A Method for the Systematic Analysis 
of Heat Exchangers

The examples in sections 1 to 3 have demonstrated that one can systematically ana
lyze quite different types of equipment (stirred tank, double-pipe heat exchanger, 
bayonet heat exchanger) applying the same method. The procedure may be set out in



tabular form as a comprehensive general scheme for the solution of problems in this 
field:
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• 1 Description of the Problem
• 2 Formulation of Questions
• 3 Application of Physical Laws
• 4 Development in Terms of the

Unknown
• 5 Mathematical Solution
• 6 Discussion of the Results

sketch, streams, symbols 
unknowns, variables, parameters 
balances, equilibria, kinetics

eliminate, normalize, nondimensionalize 
integrate, differentiate, algebra 
limiting cases, experience, physics

The keywords given with each of the six items are meant as memory aids to facilitate 
the practical application of the method. Beginners especially are advised to follow this 
seheme closely when trying to solve a problem. With increasing confidence and 
experienee, one will need it less and less.

4.2 Form of Presentation of the Results

The results of analyses of heat exchangers may be presented in a variety of forms. 
The presentation becomes especially convenient and eomprehensive by using the 
definitions

e,|— normalized temperature change of stream i (also called efficiency or 
effectiveness)

N.

0  = e Æ

number of transfer units (NTU) of stream i 

normalized mean temperature difference.

and the functions

0 (e,, €2, flow configuration)

0(A^i, 7V2, flow configuration)

(1.141)

(1.142)

The functional relationships determined from the analysis can be given as simple 
formulas for the calculation of the mean temperature difference in many cases, as, 
e.g., ATm = ATlm for parallel and counterflow heat exchangers. The performance of 
a heat exchanger depends not only on its surface area A and the overall heat transfer 
coefficient k that ean be achieved but, to a large extent, also on the flow configuration 
of both fluids along the heat transfer surface. Certain idealized models of this flow 
configuration are eharacterized by the terms “ stirred tank,” “parallel flow,” “coun
terflow,” etc. The following chapter is devoted to the determination of the influence 
of flow configuration on the performance or on the efficiency e or the mean tempera
ture difference (the mean driving force) of various commonly used types of heat 
exchangers.



CHAPTER

TWO
INFLUENCE OF FLOW CONFIGURATION ON HEAT

EXCHANGER PERFORMANCE

1 STIRRED TANK, PARALLEL FLOW, COUNTERFLOW

1.1 Stirred Tank

The stirred tank has been treated in chapter 1 with a jacket for steam heating. Because 
of the unlimited specific heat capacity of condensing steam, this is a special case, with 
vanishing change of temperature of the vapor stream:

^steam ^  ^liquid in the tank ^ (C = 0)

In general, the fluid flowing through the jacket may have a finite heat capacity. Two 
limiting cases may be regarded.

a. The fluid in the jacket of the tank is totally mixed (as is the contents of the tank). 
This configuration is called “ stirred tank, both sides” for brevity in the following.

b. The fluid in the jacket flows through in plug flow without any backmixing. This is 
called “ stirred tank, one side” for short. Figure 2.1 shows these two cases sche
matically: stirred tank (a) both sides and (b) one side.

31
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(a)

1 I

ib)

Figure 2.1 Stirred tank—heat exchanger (sketch), a(left) both sides, 
b(right) one side mixed.

1.1.1 Stirred tank, both sides. In this case, the mean temperature difference be
tween the two streams is equal to the difference of the outlet temperatures T ” = f^,  
Ti' = T,). We get

= r ; r tf 
7 (2 . 10)

or

with the definitions

0  =
j n  _  j n

T[ ~  T'

8, =
T[ nnff 

 ̂1 T'
T[ T'  ̂2 T[ -  n

eq. (2.2) immediately leads to the relationship 0(ei, €2):

(2.2)

(2.3)

0  = 1 — — T2 (2.4)

With €/ = NiQ (eq. [1.76], we can also find the second basic relation 0(N i, N 2):

1
0  = (2.5)

for the stirred tank, both sides. On a plot of ej vs. 62 with 0  as a parameter [a contour 
map of the function 0(ei, €2)], one can recognize that outlet temperatures above the 
diagonal = I -  62 —i.e., 0  <  0—are impossible (see Fig. 2.2). The rays through 
the origin are “balance lines” |C| = 62/61 = N2/N1 (broken lines in Fig. 2.2). From 
eqs. (1.76) and (2.4), it also follows that

£l =  (1 - £ , )
1 -hN, or

4 -N .
( 2 . 6 )
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Figure 2'2 Contour map of the function 
0(ei, €2) for stirred tank, both sides.

The lines of constant NTU, = const, and N2 = const, are, therefore, radii through 
the points (0, 1) and (1, 0), respectively, of the diagram (dash-dotted lines in Fig. 
2.2). They have an intercept N^/{1 + N^) and a slope + Â i).

From diagrams like this, all relationships required for design and operation can 
be read off directly. The plot of 0  vs. ê , with C = €2/61 as a parameter, fulfills the 
same purpose (see Fig. 2.3a). Diagrams of this kind are to be found in vol. 1 of 
HEDH [H3]. In this figure, the radii through the origin are lines of = const with 
slope IIN^.

Figure 2.3b presents ej vs. with C as a parameter. Such figures are often 
found in textbooks. They show distinctly the decreasing influence of transfer surface 
A [Ni = kA/MCp)i] on efficiency or on the approach to thermal equilibrium. Here the

(a) ib)

Figure 2.3 Stirred tank, both sides: a(left) 0(e, Q and b(right) e{N, Q.



radii through the origin are lines 0  = const with slope 0 . Though the same informa
tion is given in the 0  -  e plot of Fig. 2.3a, it covers a wider range of  oo.

1.1.2 Stirred tank, one side. The case of the stirred tank, one side, as shown sche
matically in Fig. 2. IZ? is an example of an asymmetric heat exchanger. The subscripts 
1 and 2 of the two streams are not to be interchanged. The backmixed stream through 
the tank is denoted in the figure by subscript 2 and the unmixed stream (plug flow) by 
subscript 1. In practice, this flow configuration can be realized by a tube welded to 
the outer wall of the stirred tank as a helical coil or by a coil immersed in the tank. 
For the fluid in the coil, this is similar to the case of parallel or counterflow with 
constant temperature on the other side T2 = T2 . So, the mean temperature difference 
is equal to the logarithmic mean
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A 7’m =
{T[ -  T!l) -  {T” -  r^') 

in [(r; - T ! [ ) i { r {  -  r '')] (2.7)

Contrary to the parallel flow heat exchanger, the local temperature difference at the 
entrance (of stream 1) is not T[ -  T2, but T[ -  f 2 = T[ -  jp .  If is divided by 
the maximum difference (not actually occurring at the transfer surface) T[ — T2 and 
the changes of temperature are expressed in terms of ej and €2 from eq. (2.3), one 
obtains 0(ei, €2) for this case:

0  = ln[l +£i /(l  - £ 2)] (2 .8)

Problem: Check this formula for correctness by investigating the limiting cases 
€2 ^ 0  (parallel and counterflow for C ^  0) and ej — 0 (steamheated stirred tank 
C -  00).

If the forms of presentation 0(ei, C) and €i(Â i, C) as in Fig. 2.3a and b are 
chosen again and if we fix the notations

e = ei, Ce 62, N  = N,, CN = N2 

then the subscripts 1 or 2 can be omitted. From eq. (2.8) follows

0
ln{l +£/[ l  - d  +C)£]} (2.9)

and, with eq. (1.76), e = NQ, one finds

0  =  CiV +
N

1 - e -
(2 .10 )



1.2 Parallel and Counterflow

The formulae for 0(e,, Cj) and 0(A^i, N 2) have already been derived for parallel and 
counterflow heat exchangers in the first chapter. In the form 0(e, C) and Q(N, C) for 
parallel flow they are (C > 0);
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© (£,0  =
-(1 +C)£

ln[l - ( 1  +C)£]

0 (^^ C ) =
} -¿.-(i+OW

(i + c W

and for the counter flow (C < 0):

0(£,C) =
(1 +C)£

ln [ l+ ( l  + C)£/(l -£)]

0 ( e) =  1 — £

e(N,c) =
1 _  e-(i+C)N

N  + CN e-O+O/^

e{N)  =
1

1 + N

( C ^ - 1 )  

(C = - l )

( c ^ - 1 )

(C = - l )

(2.11)

(2.12)

(2.13)

(2.14)

The normalized mean temperature differences 0  calculated from these equations 
(2.11) to (2.14) are plotted against e for -  1 <  C < 1 in Fig. 2.4. Comparison with 
Fig. 2.3 shows that the maximum efficiency e for stirred tank and parallel flow is 
always limited by the capacity flow rate ratio C to the value

Figure 2.4 Mean temperature difference 0  as a 
function of change in temperature e with the 
capacity flow rate ratio C as a parameter for 
parallel (C >  0)—and counterflow (C <  0).
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m̂ax’ St 5 p 1 + c (2.15)

while the maximum efficiency for counterflow is independent of C and its value is 
unity.

Problems

2.1 Sketch 0(e) with |C| = 1 in one diagram for all flow configurations treated so 
far.
2.2 The following temperatures have been measured at a heat exchanger in steady 
operation: T[ = 80°C, T' = 20°C, T[' = 40°C, and = 3 5 T . Calculate from 
these e ( = ei) and C. The flow configuration is unknown. Within what limits could 
N  = kA!{Mc^^ vary?

Solution: e = 2/3, |C| = 3/8, 8 > N  > 1.297.

2 CROSS FLOW

2.1 Cross Flow over One Row of Tubes (Cross Flow,
One Side Mixed)

Tubular heat exchangers may be built from a single row of tubes in a rectangular 
frame, as shown in Fig. 2.5. Such arrangements are typically used as air coolers with 
the liquid in the tubes (stream 1) and air in cross flow over the tubes (stream 2). That

Figure 2.5 Cross flow over one row of 
tubes (cross flow, one side laterally mixed).
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the tubes are normally finned on the outside is, however, unimportant for analysis of 
the influence of flow configuration on performance. The first four steps of the method 
of chapter 1, section 4.1, applied to the case shown in Fig. 2.5 (left to the reader as 
exercise), leads to a system of coupled differential equations:

'dc,

^ - 9  - 9

(2.16)

(2.17)

Here the dimensionless length coordinates and 2̂ ^re defined as follows (see also 
eq. [1.59] and [1.60] for parallel and counterflow for comparison)

kA  Zi
ti =

{McA L,
= N,-Z; (i = 1, 2)

and t?, means 9, =
N, f )dC,

(2.18)

(2.19)

Since the temperature of medium 1 depends only on coordinate fi, while that of 
medium 2 depends on both, eq. (2.16) contains a total and eq. (2.17) a partial deriva
tive. The physical significance of the equations is that the change of enthalpy in the 
flow direction is proportional to the heat flux and, therefore, to local temperature 
difference in steady state. The proportionality factors are absorbed into the expres
sions for the dimensionless coordinates (eq. [2.18]). For the mathematical solution 
(step 5 of the general method), we start by using (2.16) and (2.17) to get:

dS] d.% _
■ (^2 ^2)
dC] di,2

(2 .20)

This is integrated over 2̂ f^om zero to N 2 for a fixed but arbitrary value of

A S ,92(C i .A'2)

(2 .21)

0 S'

With the inlet temperatures normalized as t?,' = 1 and di = 0, we get:

d9,
dC

-A/, =  92(c„ N^) (2 .22)

Similarly, eq. (2.17) can be integrated by separation of variables for a fixed value of 
fi, i.e., also a fixed t?,, with d^2 “  ~

,9|-»2(C|.V2) N2

s,-s' 0
/ (2 .23 )
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9.(C,)

S2(C„A^2) = 5, (C,)(l-e- '^^)

(2.24)

(2.25)

This expression for the temperature profile of medium 2 at the outlet can be inserted 
now into eq. (2 .22) and integrated over

- I
d9, l - e - ^ 2

S, iV,

■2 n
- / d C , (2.26)

With Ù" = 1 — we first obtain e^N,, N 2) in the form

e, =  1 — exp
N-,

■iV, (2.27)

and so 0  = e,W, as a function of and N2 or of N  and CN:

n-CN '

© =
N

(2.28)

The normalized mean temperature difference 0  can also be expressed in terms of the 
changes in temperature by solving for N 2 = C N  and using N  = e/0:

0  =
- C s

ln(l + C l n ( l  -  a))
(2.29)

For equal flow rate capacities (C = 1) on both sides, the maximum efficiency (for 
00) is limited to

£„,,(C =  l) =  l - c - ' =  0.632 (2.30)

a value situated between 0.5 and 1.0, the corresponding maxima for stirred tank or 
parallel flow (C = 1) and for counterflow (C = -  1).

2.2 Cross Flow over Several Rows of Tubes

Image n equal frames, each with one row of tubes, in the direction of flow of stream 
2 in Fig. 2.5. In the tubes of each frame, n equal streams M^/n flow in Zi direction 
with a common inlet temperature i?/ = 1. Then the differential eqs. (2.16) and (2.17) 
are also valid for any one of these frames. Only, the boundaries of integration in ^2" 
direction are no longer 0 and N2, but (/ -  1) N2/n and jNj/n, if we consider the7* 
frame (j = 1 . . .  h). In place of eq. (2.22), we therefore get
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and correspondingly in place of eq. (2.24):

5, , - .9 ,

or

0 '' -J _
^ u - ' V .

^  j _^-W2/n

(2.32)

Equation (2.33) can again be inserted into eq. (2.31);

(2.33)

(2.34)
dCi N2/n

This inhomogeneous ordinary differential equation of first order has this solution:

>9ij =  ( 9„(0) +  J  g92,_.(x) dx
0

Here the constant factor g is an abbreviation for

1 _  (,--^2/fi

(2.35)

N./n
(2.36)

and the outlet temperature profile of stream 2 from the (j -  1)̂  ̂ element has been 
denoted in short as ^ 2j - i -  For the first element (j = 1) i?2,o = ^2 = oq. (2.35)
with t^i,i(0) ==??/= 1 yields

For = Ni, one gets

S'; = S / N , )  = e-gNi

(2.37)

(2.38)

which coincides with eq. (2.27) for n = 1. With this and eq. (2.33), the outlet 
temperature can be written as

*̂2,1 (^1) ~  *̂2.0 (’̂1.1 ’̂ 2.0)
g^2 (2.39)

or in general
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For j  = 2, one obtains first from eq. (2.35),

(2.40)

(2.41)

i.e., for« = 2; the mean outlet temperature of stream 1 (mixture of t?", , and is

,9';= =

^ ~  N 2 / 2

For C = 1—i.e., TV, = A'2 = TV—this becomes

' g N ^ 2

" ( f ) '
and the maximum efficiency is

(C = 1)

= 2 , C = ] )  =  l - 2 e - ‘ =  0.729

(2.42)

(2.43)

(2.44)

i.e., a value more than 15% higher than for one row of tubes. For j  = 3 from eq.
(2.40) with gTVj/n = b follows

—h)he~^^ +  (I + h gx)h

g 92 2(a') =  gb{2 -  b + h gx)

and so

.9,3 =  c ( 1 +  gb { 2 - h ) c , + ghC'i

Now, with n = 3 and t7," = 1/3 (i?", 1 + + «^"i.s), we find

b \  , (gbN^)-'

(2.45)

(2.46)

and, with TV, = TVj = TV, (gTV)„ = n = 3 and = 1, the maximum efficiency 
becomes

£ _ ( u = 3 , C =  1) =  1 -  - e - ^ = 0 . 7 7 6 (2.47)

over 6 % higher than the corresponding value for n = 2 rows from eq. (2.44). A 
similar calculation for n = 4 eventually leads to (problem!)



(2.48)
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32
e „ J n  =  4, C = 1) =  1 -  y  =  0.805

In Appendix A, a general solution is given for an arbitrary number of tube rows n.

2.3 Ideal Cross Flow

With an increasing number of rows, larger changes of temperature, i.e., higher trans
fer performances, are achieved with the same total surface area. In the limit n-*co,  
i.e., for the surface area continuously distributed in Z2"direction (see cross flow plate 
heat exchanger in Fig. 2.6), we get the system of differential equations

' =  9i -

- 9

(2.49)

(2.50)

which differs by the partial derivative of and the local value of t?2 (2.49)
from the system for cross flow, one side laterally mixed. The solution can be given in 
terms of power series according to Nusselt [N2]:

I « - " ™
 ̂n=0 ■ m-0 ■ ■

(2.51)

Figure 2.6 Cross flow plate heat exchanger.
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cc „„ n
<M V" <=2 \^-(Ci+o)

M=0 m=0 ml
(2 .52)

Writing out the first three terms of eq. (2.51), one can recognize the structure of these 
solutions and check their validity with some limiting cases:

'̂ 1 -  (  ̂ +  C,)C2 +  (  ̂ ^ -{C1+C2)

The corresponding solution for 1 - 1̂2 follows by interchanging the subscripts 1 and 
2. For = 0 and arbitrary values of ^2, = 1?/ = 1 must be valid. One finds, in
this case.

„  rn
(2.53)

n=0

which, in fact, gives the value 1 as = Tjc'/nl At the “ inlet edges” of the heat 
exchanger, the respective temperatures of the other side are constant. Therefore, for 
these flow paths, the equations (2.49) and (2.50) can be integrated directly by separa
tion of variables. We get

and

3i(Ci,0) =  e-^^

(2.54)

which is also fulfilled by eqs.(2.51) and (2.52), as can be easily seen from the 
“ written out” form of eq. (2.51). Analogous to the mixture of partial streams from 
parallel rows of tubes, the mean outlet temperatures are now obtained by integration 
of the local variations of temperature along the “ outlet edges” of the heat exchanger:

3',' =  ^  /
 ̂ 0

A,

»2 = ^  J.92(C„/V2)dC,

(2.55)

The result of this integration can be written with 1 -  " = e, d ” == Ce, N 2 = C N
and € = N 0 , in the form 0(A, C)\

(2.56)



Figure 2.7 shows a short computer program to evaluate this formula. It may be 
surprising that only one loop of the program is necessary, in spite of the “box-in-a- 
box” double summation (inner sums from 0 to m, outer summation over m). The 
summation ends when the term p  adds an amount less than bP to the sum R For b 
= 1 0 '^  m = 5 terms are sufficient for {N, Q  = (1, 1), and one finds e(l, 1) = 
0.4762; m = 119 terms are required, however, for {N, C) = (100, 1) to obtain the 
same accuracy [e(100, 1) = 0.9436]. For equal flow capacities, C = 1 ,  and large 
NTU, the efficiency may be obtained easier from the asymptotic formula [VI]
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=  1 -
1

\  16N
( N >  2) (2.57)

the unmixed or ideal cross flow gives, with eq. (2.57) for C = 1, a maximum 
efficiency of = 1 that has been found only for counterflow from the analyses 
done so far. An efficiency of 90% (e = 0.9) is reached for ideal cross flow only with 
A = 32 (at C = 1). For counterflow, however, N  = 9 [e(C = - 1 )  = N/(\  + A/)] 
is sufficient. The transfer surface of the crossflow exchanger would have to be more 
than 3.5 times larger than that of an ideal counterflow exchanger to reach an effi
ciency of 90% under the same conditions.

Having reached this state of perception, a beginner is inclined to ask why manu
facturers of heat exchangers can offer, and are obviously able to sell, apparatuses 
with flow configurations other than counterflow. It may be worthwhile to think about 
this and to investigate the perceptions and assumptions underlying this question in 
detail.

2.4 Cross Flow, Both Sides Laterally Mixed

In section 2,1, we first treated the asymmetric case of crossflow one side laterally 
mixed; then, in the next section, the progressively more favorable and less asymmet
ric case of crossflow over increasing numbers of rows of tubes; and, finally, the 
symmetric ideal crossflow. One could also imagine another symmetric case: 
crossflow with both sides laterally mixed. Mathematically, this case differs from the 
preceding one by total in place of the partial derivatives in the basic equations:

dc, - (2.58)

(2.59)

and, thus, d ti/d f , depend only on f,, while j?, and dtJj/df, only on f,. Thus, on the 
right hand side of these two equations, we have to use the integral mean values of the 
other temperature:

' /V, J .9,(C,)dC, (2.60)
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Figure 2.7 Program for the calculation of the efficiency of an ideal cross flow heat exchanger.

A'7

(2.61)

Both eqs. (2.58) and (2.59) can be easily integrated:

- 9 ,
(2.62)



5 , - 3 ,
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== e -̂ 2 (2.63)

The mean values defined above follow from this to be

. 9 , - 9 , 1 -
(2.64)

1 - 9 ,  “

9 . - 9 2  _ l-e-A'2
(2.65)

9, N,

These two equations can be simultaneously solved for and i?, (the details of which 
are left as an exercise to the reader). From eqs. (2.62) and (2.63) with =
??i(Â i), 1 -  = e and 0  = e/N, we finally obtain

0  -
N

+
CN

— e~ — e -CN (2.66)

This result is remarkable insofar as the maximum efficiency calculated from it is not 
obtained for oo as in all other cases treated so far, but for a finite value of N  ^  3:

8 ^ , , ( C - l , y V -  3) =  0.5645 (2.67)

The transfer performance is a maximum at a certain transfer surface area correspond
ing to = 3. For larger surface areas than this value, the performance will decrease 
again to reach the same limiting value as found earlier for stirred tank and parallel 
flow:

1 + c (2.68)

2.5 Comparison of Simple Flow Configurations

A comparison of the simple flow conflgurations treated so far can be shown most 
clearly on a plot of e vs. 0  for equal flow capacity rates on both sides, |C| = 1 (Fig. 
2.8). Here again, the rays through the origin are lines of constant NTU. The range of 
crossflow configurations is depicted in gray. It is intermediate between parallel flow 
and counterflow. The diagonal N  = I subdivides the figure into two typical ranges. 
At low NTU, N  < 1, the flow configuration, apart from backmixing, has little 
influence on transfer performance. Here the heat transfer coefficients and the surface 
area are the important parameters. At high NTU, A > 1, flow configuration becomes 
crucial, while increasing surface area has little or even a negative influence in some 
cases. To reach efficiencies of, say, 80% or more, only ideal crossflow and counter
flow come into reckoning. In the limiting case C = 0 (constant temperature on the 
other side, see broken curve in Fig. 2.8), flow configuration plays no role. This curve
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Figure 2.8 Influence of flow configuration 
on transfer performance at equal capacity
flow rates jCj = 1 ------------------- and for
C = 0 ------------------a counterflow; b ideal
cross flow; c cross flow, one side; d cross 
flow both sides laterally mixed; e parallel 
flow; f stirred tank, one side; g stirred tank, 
both sides.

is valid for all configurations with the exception of “ stirred tank, both sides.” The 
curve for C = 0 for the stirred tank coincides with the diagonal, i.e., with the one for 
counterflow at C = -  1. Not shown in the figure for clarity are the lines for finite 
numbers of tube rows which lie between crossflow, one side mixed, and ideal 
crossflow.

Problems

2.3 Obtain from eq. (2.56) the normalized mean temperature difference 0  for ideal 
crossflow as a function of N  in the limiting case C-^0. Compare the result with those 
for parallel flow and counterflow!

Solution: same as in Problem 1.6.
2.4 Draw a diagram of € vs. N for |C| = 1 corresponding to Fig. 2.8 with 0 < N
<  10.

2.5 What is the outlet temperature i?/'2 attained by the second partial stream (Mi/2) 
with crossflow over two rows, if it flows in reverse ( -Z i)  direction? What value of 
m̂ax (C = 1) would be obtained with that configuration?

3 COMBINED FLOW CONFIGURATIONS

3.1 Cross-Counterflow

In crossflow over tubes and tube bundles, one can usually get higher heat transfer 
coefficients than in longitudinal flow. This compensates, to a certain extent, for the



lower efficiencies of crossflow as compared to counterflow. One possibility of in
creasing the efficiency beyond that of pure crossflow for the simple crossflow ele
ments shown in Fig. 2.5 is to put such elements together in a counterflow arrange
ment as shown in Fig. 2.9. Three versions of cross-counterflow configuration are 
shown in this figure. In the counterflow cascade (Fig. 2.9a), the crossflow elements 
are so connected by tubing that the stream may be regarded as laterally completely 
mixed between the units of the cascade. Obviously, in counter-directional (Fig. 2.9b) 
and co-directional cross-counterflow (Fig. 2.9c), the stream is not laterally mixed 
between the elements. In case a, the four units or “ cells” are coupled only through 
the mean outlet temperatures. Such a cascade is analyzed most easily. With N  and C 
known for each cell, the inlet and outlet temperatures of each cell are related by the 
function e(N, Qceii- For the cell with number j, we have
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Q"^ \ j
= Sj(Nj,Cj) (2.69)

and

-  ^2j

»9
\Cj \Ej (Nj,C j) (2.70)

It is convenient to reduce the number of subscripts and represent the temperature of 
the two streams thus

Figure 2.9 Cross-counterflow configurations: a counterflow cascade; b counter-directional; 
c co-directional cross-counterflow.
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0  ;= 9,

9 := 9,

(2.71)

(2.72)

The subscripts now used for the temperatures pertain to the cells (see Fig. 2.10). In 
place of |C|, we now write R and solve for the outlet temperatures in cell j  as

© ; - ( I -« , )©;  + £ , 3;

and

(2.73)

(2.74)

These give 2J equations for the 47 unknown temperatures of the cascade. 2J more 
equations required are found form the interconnections of the cells. If the cells in Fig. 
2.9a are numbered following the direction of by j  = 1 to 4, we get

0 ;  =  i, 0 ;  =  0 ';, 0 ; = ©;', ©; = 03,
a; =  5 ,̂ ==

or, in general, for countercurrent cascades:

and

e; = 0 '' with 0 "o  = 0 '  = 1 (Inlet M|)

with I = = 0  (Inlet M2)

(2.75)

(2.76)

The last two (or 27) equations can be inserted directly into eqs. (2.73) and (2.74) in 
order to eliminate all 27 cell inlet temperatures (single primed):

0 ;  =  (i -£^.)0;l ,+£,-9;v , (2.77)

(2.78)

For the example shown in Fig. 2.9, this is a system of 8 linear equations with 8 
unknowns. The system of equations can be solved easily by introducing a ratio of

M

j

it Figure 2.10 Cell of a cascade.
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difference of temperatures before and after a cell for the streams and M2, derived 
from eqs. (2.73) and (2.74) as

0 ; .9;

Based on this definition of d and with eqs. (2.75) and (2.76), we get

1

‘̂ j+1.0 -  ®_/+l S'i+i

(2.79)

(2.80)

We can now elegantly eliminate all intermediate temperatures by multiplying these 
ratios for cells 1 to 4:

4
1 - 3 "  0 2 - 3 ; '  o ; - 3 "  0 ; - 3 "

0 ' ; - 3 ' |  0 2 - 3 ;  0 " - o =n
i=i

RjCj
\ -F. j

Defining e as 1 -  0 "  and Re as we can express the relationship between the 
individual cell efficiencies 6j and the efficiency of the whole cascade e in similar 
form:

(2.81)

No statement whatsoever has been made on the flow configuration inside the cells, so 
that the result is valid for countercurrent cascades of arbitrary heat exchanger cells. 
For constant heat capacity Rj = R and for J  identical cells this yields

\ - R e

1 —  E 1 — E:
(2.82)

These equations are also correct in the limiting case C ^  — I or R = \C\ 1; they
do not yield a value of e, however, but only the identity 1 = 1̂ . By calculating the 
limiting value for (1 — i?) ^  0 one can find (exercise!)

(2.83)

i.e., four equal cells with = 0.5 in a countercurrent cascade give an overall 
efficiency of 7/(1 + 7), that means 80% for 7 = 4.

Cases b and c of Fig. 2.9 have to be treated in a different way, as the elements 
are coupled here through each row of tubes. For example, one can subdivide each 
element into K x  J  smaller cells (say 10 X 10), and again apply eqs. (2.73) and
(2.74), together with the corresponding relations from the interconnections of these 
cells (e.g., 800 linear equations with 800 unknowns). The solution is found most 
easily by an iterative procedure because of the sparsely occupied matrices as each 
single equation contains only three unknowns. Figure 2.11 shows efficiencies e vs. 
NTU with equal flow capacities on both sides (R = \C\ = 1) calculated by the above 
procedure for co-directional and counter-directional fourfold cross-counterflow.
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co-directional 
cross-counterflow fourfold 
counter-directional

Figure 2.11 Efficiency of cross-counterflow configurations.

It may be seen from the figure that the co-directional cross-counterflow gives 
somewhat higher and the counter-directional somewhat lower efficiencies than the 
cascade of four ideal crossflow cells. The NTU-values required to reach e = 0.9 are 
marked in this figure for pure counterflow (Â  = 9), co-directional cross-counterflow 
(N = 11.5), the countercurrent cascade (N = 13), and the counter-directional cross
counterflow {N = 15). For ideal crossflow, the corresponding value {N = 32) lies 
outside the diagram. With tube bundles of rectangular cross-section (built from ele
ments as shown schematically in Fig. 2.5), counter-directional cross-counterflow is 
technically easier to realize than co-directional. One only needs simple turnaround 
headers over each pair of single elements, as shown in Fig. 2.9b. Co-directional 
cross-counterflow, however, would require long turnaround ducts with correspond
ingly higher pressure drop and larger heat losses. In practice, one will, therefore, 
content oneself in these cases with the less favorable configuration (A/90% = 15). The 
more favorable co-directional cross-counterflow can be realized, however, by a quite 
different design [S7, M4]: The tubes are wound in several concentric layers to form 
multiple coils in a very compact apparatus (see Fig. 2.12 a, b), coming very close to 
ideal counterflow.

Problems

2.6 Corresponding to eq. (2.81), derive a relationship for cross-cocurrent flow! 

Solution: 1 -- (1 + R)e = Il[l -  (1 + Rj)ej\

2.7 What is the efficiency of a cocurrent cascade with R = Rj ^  \ and ej = 0.95 for 
/  = 2, 3, 4, 5, 6?
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Figure 2.12 Wound multiple-coil heat exchanger as an example for co-directional cross-counterflow 
(photo: A. G. Linde).

Solution: (0.095, 0.865, 0.172, 0.795, 0.234)

Sketch the graph of e(7)! Determine the asymptotic value limy_ooe(/)!
2.8 In the Linde air liquefaction process [HI] air from the surroundings has to be 
compressed and cooled, e.g., from 20°C down to -  180°C, so that, after expansion, 
about 6% of the mass flow can be led off as a liquid. The remaining 94% of the 
expanded air, now at about -194°C , is used to cool the incoming air in a co- 
directional multiple cross-counterflow heat exchanger (as in Fig. 2.12). This air is 
thereby heated up to 19°C. Calculate the efficiency e, the capacity ratio C, and the 
number of transfer units N  required (based on the outlet air stream). The number of 
turns of the coils may be large enough to reach practically ideal counterflow.



Solution: e = 0.995, C = -0 .939 , TV = (213/13)lnl4 = 43.24
For comparison, calculate the efficiency e reached with that in a countercurrent
cascade of 50 identical crossflow elements, one side laterally mixed.

Solution: N, = 0.8648, e, = 0.447, 6 = 0.994.

3.2 Shell-and-Tube Heat Exchangers with Baffles

Figure 2.13 shows a shell-and-tube heat exchanger having two tube-side passes and 
two baffles. On the shell side, this results in three compartments where the fluid is 
essentially in crossflow to the tubes. For the purpose of analysis, the apparatus is 
subdivided into six cells as shown in Fig. 2.14. For each cell we can again write 
down the eqs. (2.73) and (2.74) [G1-G3]. The interconnection of inlet and outlet 
temperatures of subsequent cells may now be written in the following form:
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0 ; =  © ;i, (2.84)

3'j = K (2.85)

Here j  is the cell number along the direction of stream (used with 0) and k is the 
number of the cell lying upstream of j  in the direction of M2 (used with ??). Once the 
flow configuration is fixed, each k is related unequivocally to a certain j. In the 
example of Fig. 2.14, we find the following relation:

J 3

kU) 0

The linear system of equations for the 2J unknown outlet temperatures becomes

(2 .86)

3j =  +  (1 -  Rjej)3l (2.87)

(6 )

Figure 2.13 Shell-and-tube heat exchanger with two tube-side passes and 
two baffles a longitudinal, b cross section.
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Figure 2.14 Cell-model of the shell-and-tube heat exchanger 
from Fig. 2.13.

It can be solved using the well-known methods for systems of linear equations. For 
all the flow configurations with two passes on one side (as, for example, in Figs. 2.12 
and 2.13), the problem can be solved explicitly by an elegant method recently shown 
by Gaddis and Vogelpohl [G4]. As in Fig. 2.15, the configuration of cells is first 
drawn in a straight sequence with the corresponding flow paths of the two streams. 
One can then easily recognize that the cells 2, 3, and 4 form a countercurrent cas
cade, while cells 5 and 6 are connected in parallel flow.

Using the formulae for the efficiency of a parallel and a counterflow arrangement 
of two cells, as compiled in Fig. 2.16, the combined efficiencies of the new “ double
cells” (2-3) [(2-3)-4], and (5-6) can be easily calculated from the efficiencies of the 
individual cells. For example, with = 0.4 (j = 1, . . .  ,6) and R = 1, we find:

£0-3 —
1 +  £;

0.571

£5.6 =  2£̂ (1 -£y) 0.480

£04 —
2̂.3 + ~

1 — £23 £j

h .6 =  ^2,4 +  ^5.6 ~  ~^2,4^5.6

= 0.667 

= 0.507

+  ^2.6 “  2£/£2£ = 7̂ 2.6
1 -^ /2 .6

= 0.629

By changing the direction of stream 1, stream 2, or both, three other flow configura
tions can be realized, for each of which the overall efficiency can be calculated as 
above (exercise!). Changing the direction of either stream 1 or stream 2 leads to a 
lower efficiency of e = 0.540 in both cases. With the directions of both streams 
reversed, there is no change in the efficiency: e = 0.629. The four possible flow 
configurations, thus, fall into two pairs which yield the same efficiency but are by no 
means identical. This may be verified from a sketch; one transposes to the other when 
both flow directions are reversed. Following Gaddis [G1-G4], we distinguish the 
four possible flow configurations by the distance between the two inlet cells and
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Figure 2.15 How to determine the 
overall efficiency of the shell-and-tube 
heat exchanger from Fig. 2.13, 
according to Gaddis a. Vogelpohl.

denote them by G l, G2, G3, and G4 (see Fig. 2.17). In the case of the present 
geometry ( 2 x 3  cells), these four possibilities can be realized with one single 
apparatus just by changing the flow directions. The example in Fig. 2.14 corresponds 
to configuration G4. The two configurations with the same efficiency exhibit different 
internal variations of temperature, as can be verified by calculation. Figure 2.17 
shows the variation of temperature of both streams for all four configurations, calcu-

Parallel flow configuration (P)
r ~ -  —  —  •—  —  - ~i

T "
1 2

1 ^

£p =  ̂ 82 -  (1  ̂R) 02

Cp = 2 e ( 1 - e )  I for =

Counterflow configuration (C)

1t . 2 __

^2 "  (1 R) Cl ^2

1 -  R 02

2e/ (1  + e) (for e^=£2, R  = 1)

Figure 2.16 Efficiency e of parallel and 
counterflow configurations of two 
exchangers of arbitrary internal 
configuration.



lated with the data used above (ê  = 0.4, R = \, 6 cells). The temperatures for Gl 
and G2 change monotonically along the flow direction, while relative maxima (or 
minima) occur in G3 and G4!

It is, therefore, by no means unimportant how such an apparatus is ducted for the 
two streams. A temperature sensitive fluid, which is heated to a desired outlet tem
perature might have passed inadmissibly high temperatures internally. At equal— 
logically the higher—efficiency, the configuration G2 would be preferable here.

The temperature scales in Fig. 2.17 are labelled only with the value 0.5. The 
inlet temperatures of either stream may be put equal to one or to zero arbitrarily.

Using the e-values of the combined groups of cells from Fig. 2.15, one can also 
calculate the intermediate temperatures. If two temperatures are known at a cell or a 
group of cells, then the other two can be calculated via e and Re. This can be done in 
the inverse sequence of the calculation of the overall efficiency (our outlet tempera
ture). Corresponding to the last scheme in Fig. 2.15, one can first calculate the outlet 
temperature Q ” of stream 1 from the definition of efficiency for group (2-6):
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e r
2̂.6 =  y- &:

K
Q'{

Figure 2.17 Temperature variations for 
the four possible configurations of the 
apparatus from Fig. 2.13.
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:.6
=  0.247

,y" =  i - ( i - 0 X , 0.618

For group (2-4), we find:

It follows for cell 3:

2̂.4 ~
© 4  -  0 ', ' 1 -  9 "

1 -  0',' 1 -  0','

0 :  = 0 ', '+ ( i  -0',')<o4 =  0.749

:r; =  i -  (i  -  0','));2 4 =  0.498

For cell 4, one obtains:

—
0 4  -  0 3  _

- 0 ' ' 1 - 0 "

©;( =
■̂2

3" = 1 -  (1 -  0")£.

: 0.581 

0.832

=
0 "  -  ©;' _  9'; -  »3
,9" -  © ;' 9" -  © ;'

0 "  =
1 — f-:

0.413 

: 0.665

And, correspondingly, for cell 5:

©C -  e'l 9" -  9"
9;' -  0'I 9" -  0 "

& ; =  e ':  +  ( 9 ''- e '; ) s j =  0.649
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5'' =  S ''- ( 9 ' ' =  0.598

Now all temperatures are known. Finally, one can check for cell 6, whether

0
S ' ' - 0 '

Q" Q" 5 3^0 ^  ^5 ~ ^6
j S'5' -  0 ''

is fulfilled. We find 0.392 in place of 0.400, i.e., an error of 2%, due to the fact that 
we did the calculations with only three digits. The error could be reduced by storing 
the intermediate values with a larger number of digits. The outlet temperature G '̂ is 
equal to the total efficiency e = 0.629; and, for ??/', we get 1 -  e = 0.371. For 
configurations with more than two passes on one side, it is more convenient to solve 
the linear system of eqs. (2.86) and (2.87) numerically. As input data, one only needs 
the cell efficiencies Cj and (Re)j and the relation of the numbers k(f) characterizing the 
configuration. Most easily programmed, and probably most economical with respect 
to storage capacity required, is the simple iterative procedure in which all 0 /  and all 
ú f  are first set equal to zero and one, respectively (or vice versa, depending on the 
choice of normalization). The eqs. (2.86) and (2.87) then yield first approximations 
for 6 / ' and ??/'; these are again inserted on the right hand sides and so forth until the 
difference between two successive steps of iteration becomes smaller than a specified 
threshold value of accuracy.

Figure 2.18 shows a flowsheet of a short computer program that may be imple
mented even on a pocket calculator (it is universally valid for any one of the four 
configurations G1 to G4 and is considerably simpler than the one suggested by Gad
dis in [G3] that requires a special subroutine for each configuration). Calculations 
with programs like this show that the efficiency for exchangers with a fixed cell 
num ber in one direction (e .g ., two passes on one side) and increasing num ber of cells 
in the other direction tend to a common asymptotic value either in a monotonic or an 
alternating sequence, when the number of transfer units is kept constant (see Fig. 
2.19).

The cell efficiency of = 0.4 used in the numerical examples so far may be 
obtained, for instance, with crossflow one side laterally mixed with /  = 6; A, = 
0.715; and, therefore, N  = 6Nj = 4.29. With one baffle, i.e., a total of four cells, 
one finds Nj = 4.29/4, 6j = 0.482. The efficiencies of the four possible configura
tions are e = 0.509 (for G1 and G4) and e =  0.659 (for G2 and G3) (easily checked 
with the method from Fig. 2.15). With only two crossflow cells, one side mixed, the 
parallel and the countercurrent arrangement give (with Nj = 4.29/2, Cj = 0.586) the 
efficiencies e = 0.485 (for G1 = G3) and e = 0.739 (for G2 = G4). With three 
baffles, i.e., eight cells, one obtains, with Nj = 4.29/8, Cj = 0.3397, the efficiencies 
e = 0.556 (for G1 and G4) and e = 0.613 (for G2 and G3).

These results are plotted in Fig. 2.19 against 7/2, which may be termed as the 
half cell number (7/2 = number of baffle spaces = number of baffles + 1). Similar 
diagrams, treating the cells as “ stirred tanks,” can be found in Gaddis and Schlünder 
[G3]. The more favorable cases—G3 with even number of half-cells, G4 with odd
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Figure 2.18 Flow sheet of a simple program for numerical calculation of temperature variations in 
shell-and-tube heat exchangers.
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Figure 2.19 Overall efficiency of a 
two-pass shell-and-tube heat exchanger as 
a function of the number of cells and the 
type of configuration.

number of half-cells, or G2—have a decreasing efficiency with an increasing number 
of cells. For the less favorable cases—G3 with odd number, and G4 with even num
ber of half-cells, or G l—the converse is true. For comparison, the cases of pure 
parallel and counterflow (e = 0.499 and e = 0.811, respectively) are shown in the 
figure at y = 0.

The difference between the efficiency of an apparatus of either type with three 
baffles {J/2 = 4) and the common asymptotic efficiency value is only about ±  5 %. 
The common asymptote is obviously characterized by the fact that stream 2 becomes 
more and more an axial stream (parallel or antiparallel to stream 1), which is mixed 
laterally to the main direction due to the baffles. This limiting case may again be 
analyzed similar to the double-pipe bayonet heat exchanger, found in chapter 1, sec
tion 3 (problem!). The expression for e{N, R) as already shown by Underwood [Ul] 
is

£ =
2(1 ~ioN

(cu -f 1 4- -R) +  (co — 1 — R)e—coN CO = V \ + R ^ (2 .88)

With R = I and N  = 4.29, the asymptotic value of e is found from eq. (2.88) as 
0.5847, shown in Fig. 2.19. For R = 0, the formula yields e = 1 -  a result 
obtained earlier and valid for all flow configurations without backmixing. The maxi
mum value for N-* oo is

CO + I + R
(2.89)

For R = 1, it gives e = 2/(2 + V2) = 0.5858, a value which had already been very 
closely approached by e = 0.5847 for N  = 4.29. Equation (2.88) can also be solved 
inversely for N, so that one can get the relation 0(e, R) with N  = e/0 (compare eq. 
[1.108] and [Ul]):
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0
COE,

ln{ 1 +  2we/[2 -  (w +  1 + R)c]}
(2 .90 )

CO = V \  + R^

In practice, one can use these analytical solutions (2.88-2.90) for shell-and-tube heat 
exchangers with two tube-side passes and a large number of baffles. Four baffles or 
more may be regarded as sufficiently large in this context (see Fig. 2.19 and [G7]). 
The subdivision into single cells is only required for a small number of cells and for 
higher accuracy, especially at large NTU. Similar expressions can also be derived for 
apparatuses with a larger number of tube-side passes [FI, Ul] (see also section 8 in 
this chapter). In order to complete a design, the required heat transfer coefficients for 
shell-and-tube heat exchangers with baffles may be calculated by the methods given 
in VDI-WA [VI] or in HEDH [H3].

Problems

2.9 Rewrite eq. (2.90) with := e and ej := Re in the form 0(ei, 62). Would 0  
change with interchanging the two streams?
2.10 Check with := N, N 2 := RN,  whether it is necessary in eq. (2.88) to 
distinguish between the streams in the tubes (two passes) and on the shell side (one 
pass laterally mixed).
2.11 Derive an expression for the LMTD correction factor F (defined in eq. [1.110]) 
from eq. (2.29) (check your result against the diagram  given by G ardner and Taborek 
in [G7] as Fig. 6).
2.12 Use the Gaddis-Vogelpohl method [G4] (see Figs. 2.15 and 2.16) to calculate 
two efficiencies of a shell-and-tube heat exchanger with two tube-side passes and four 
baffles (10 cells) with N  = 4.29 and R = 1. Compare the result with the value 
obtained from eq. (2.88).

4 PLATE HEAT EXCHANGERS

4.1 Description

Plate heat exchangers of the type shown in Fig. 2.20 are presently offered by a large 
number of manufacturers as standard series production apparatus. They consist of a 
number of gasketed metal plates clamped between a stationary head and a follower 
plate by tie bolts. A wavy surface of a special design is stamped on the thin walled 
plates (see Fig. 2.21).

The plates are usually rectangular with circular ports at the four corners through 
which the two heat exchanging fluids may enter and leave. The gaskets are so ar
ranged as to direct the two fluids through alternate flow channels formed by the space 
between the plates, as seen in Fig. 2.22. The corrugated surface pattern on the plates
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Figure 2.20 The plate heat exchanger. 1 plate pack,
2 stationary head, 3 tie bolt, 4 follower plate, 5 bottom 
bar, 6 end support, 7 top bar.

Figure 2.21 Plates with chevron-type corrugations (photo: Schmidt Comp.)
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Figure 2.22 Parallel arrangement of plates.

subdivides the flow cross section into a number of interconnected parallel flow chan
nels with multiple changes in direction as well as cross-sectional area.

The corrugations on adjacent plates crisscross, providing multiple points of con
tact and offering mechanical support against pressure difference across the plates. 
Using plates with only two or three of the four ports open, the path of the two streams 
through the pack can be so arranged that any number of channels may be connected in 
series (see Fig. 2.23).

A variety of connections is possible using a single element of construction built 
as an array in this type of heat exchanger, giving rise to a multitude of flow configura
tions. The main application area of these apparatuses is liquid-liquid heat transfer in 
the lower pressure range (usually below 1.6 MPa) because the construction and the 
large gaskets are unfavorable for high pressures in general. Due to the small interp
late spacing and the high vorticity of the flow, one can reach high heat transfer

Figure 2.23 Series arrangement of plates.



coefficients. Ease of cleaning, simple adjustment to changed operating conditions by 
replacement or addition of plates, and the compactness and, correspondingly, a small 
liquid hold-up are usually cited as the most important advantages of plate heat ex
changers.

Probably the most widely used configuration is the antiparallel arrangement of 
the flow paths of the two fluids through the plate back as in Fig. 2.22. The counter
flow that results from this arrangement is usually desired and even needed in some 
applications. However, it is opposed in practice by a number of effects that tend to 
diminish the efficiency compared to that of an ideal counterflow heat exchanger.

4.2 A Peculiar End Effect

One of the causes of diminution in efficiency of the plate heat exchanger is the 
thermal end effect due to the two outermost streams of the plate pack taking up or 
losing heat only over one side, while all internal streams have both channel walls 
available for this purpose (see Fig. 2.24). Therefore, the number of transfer units 
and for the two outermost streams are just half the value of all other Nj at uniform 
flow distribution if the number of channels n is even:
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= ;  = 3 , 5 , 7 , . . . , n - l (2.92)

7 =  2,4,6, . . .  , /i — 2 (n even) (2.92)

If n is odd, the arrangement has an adiabatic plane of symmetry in the middle of the 
central channel having the number {n -H l)/2. The problem may, therefore, be re
duced to a pack with (n -h l)/2 channels having only one end channel, for which

N, . 7 - 3 , 5 , 7 , .
n 4-

-  1 (2.93)

a lower NTU in the end channels implies, of course, a smaller change in temperature 
of these streams.

As the streams are mutually coupled, the temperature distribution has to be found 
from a coupled system of linear differential equations, as shown in detail in [Bl, B3], 
that can be written very compactly in vector notation (see also [Dl, P3, Zl]):

:  1
/

2 3 k 5 n -2 n-1
Y

n /
/
/

/ irnm // /

:  1 i ( 1 * 1 t ;
Figure 2.24 End effect in plate packs.
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d 0 .
(2.94)

The coefficient matrix [A] has the form

[/!] =

C -2 C  C
1 -2 1

C -2 C  C

1 -2 1
c - c /

a tridiagonal matrix with n rows and columns. For n = 2, this leads to

dC c - c  j (2.95)

and in written-out form:

^ = - ( 0 , - 0 , ) (2.96)

^  = C( 0 ,  - 0 . )
di. (2.97)

These are the well-known equations for parallel and counterflow heat exchangers. 
Compare eqs. (1.59) and (1.60) with f  C f = N 2Z. The coefficient matrix in
eq. (2.94) is written for even n. For odd only (n + l)/2 rows and columns are 
needed, and the last row reads 0 2 - 2 o r 0  2C -2 C , as can be seen from
writing a balance for the central channel. Further, one has to consider that the “ lo
cal” flow rate capacity ratio of individual streams for odd n is not equal to the total 
capacity ratio, unlike in the case of even n. Here we have = [(« + 1)/ 
(n -  1)]C. The general solution of the system of equations, (2.94), is

(2.98)

The complete solution is the sum of all terms from m = \ io n. The eigenvalues 
are the roots of the characteristic equation

det|y4 -  r ^ \  = 0  E  = unit matrix 

For n = 2, the determinant is

(2.99)
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and the roots are

- (1+r)  1
C - ( C  + r)

r ( r +  1 -f C) =  0

Therefore, the solutions is

0,

02 =  Ch\ ^22'

( l+r ) (C + r ) - C

= 0, r 2 = - ( l + C )

-(i+C)C

Hl + CK

(2.100)

(2 .101)

The coefficients have to be determined from the differential equations and bound
ary conditions. For small numbers n, the solution can be obtained in closed form. The 
solution for « = 4 can be found in [Bl, B3]. For larger numbers n, the analytical 
solution (eq. [2.98]) can still be used, but the characteristic equations have to be 
solved numerically. The limiting case of C = 0 is more easily treated, since the 
system of equations (2.94) then becomes completely decoupled. In practice, C = 0 
can be realized by evaporation or condensation of a pure substance. Thus, the temper
atures in all even-numbered channels might be kept constant: 0  ̂ = 0 for y = 2, 4, 
6, . . . . The outlet temperatures on the other side, i.e., of the streams in channels 1, 
3 , 5 , . . . ,  can be easily calculated in this case:

0 f f, = e -2Ni 7 = 1,3,5,... (2 . 102)

With the phase change medium flowing in the even-numbered channels, there are two 
possibilities for the m streams on the other side: m = n i l  for even n and m = (« + 
l)/2 for odd n. For even n, there is only one end channel with For7 = 3,
5 ,7 ,  . . . , (n — 1), TV, = 2Nq. Here Nq is based on the surface area Ap of one plate 
and flow rate M/m:

M
m (2.103)

There are (n -  1) active plates, so that the number of transfer units for the whole 
apparatus becomes

N ( n - i ) (2.104)

When the total number of channels is odd, the case of the constant temperature 
medium flowing through the odd-numbered channels is obviously trivial, as there is 
no end effect then. For the two remaining cases of n being even or odd, there are 
(m -  1) or (m -  2) inner streams and one or two end streams, respectively, and the 
exchanger outlet temperature results from mixing of the inner and outer streams. For 
even n, the efficiency is
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S = 1
exp ( - ^ ) + ( [ « / 2 ] - l ) e x p  ( - ^ ) (2.105)

n /2

and for odd n:

8 = 1  —
exp ( - ‘= iS^ )+ ([(« + lV 4 1 -l)e x p (-tS r) (2.106)

in + l)/4

Substituting n ’ = (n + l)/2 (symmetry for odd n) in eq. (2.106) yields eq. (2.105) 
with n'  in place of n. From this, it follows for C = 0

k ( u  ) £  ( ^ ) e v e n  n ^
n + 1

(2.107)
odd n

Equation (2.105) can also be solved explicitly for Nq or for Â (e, n '),  respectively 
(problem!). With the basic relation e = NQ, one can also find 0(e, n ')  or the LMTD 
correction factor F(e, n'):

ln(l — e)
l n { [ y i + / 7 ' ( n ' - 2 ) ( l - 8 ) - l ] / ( n ' - 2 ) } (2.108)

Figure 2.25 plots the loci of the values of the correction factor calculated from 
this equation against the number of channels n ' with the efficiency as a parameter. 
Recall that n' = n for even n and n' = (n + l)/2 for odd n. It may appear 
somewhat surprising that the minimum in F  for a given efficiency is not always found 
for n ' = 3 (i.e., n = 5), for which we have the largest ratio of the number of end 
channels to total number channels on one side (i.e., 2/3). In other words, the conse
quence of the end effect is not always the greatest for n ' = 3 as might be expected. 
At efficiencies greater than 0.7, the minimum shifts towards higher n for increasing 
efficiencies. This seemingly erroneous result may be explained as follows: In the 
definition of the correction factor, there are contained two effects—first, the thermal 
end effect, which decreases with increasing number of channels, and second a “ geo
metrical end effect,” expressing itself in the factor n '/[2 {n' -  1)] in eq. (2.108). 
The reciprocal of this factor is the number of active plates available for one individual 
stream. For n' = 2 (i.e., n = 2 or 3), this is just one plate per stream, while it 
becomes two for ^ o o . Thus, the first term in eq. (2.108), representing the geo
metrical end effect, goes monotonically from 1 to 0.5 as while the second
term, representing the thermal end effect, is an increasing function of n' and tends to 
2 as Az' 0 0 . The correction factor, which is a product of these two terms, exhibits a 
minimum that varies with e as in Fig. 2.25. With the phase change fluid flowing in 
even-numbered channels, comparison between two consecutive numbers n and « + 1 
shows that the odd number is always less favorable (two end channels in place of 
one). If the connections of the two fluids are interchanged, then an odd number is
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2 4 6 8 10 12 K 16 18
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Figure 2.25 LMTD correction F  as a function of the number of channels at C = 0.

obviously more favorable as the constant temperature fluid flows in the end channels 
(no end effect, F = 1).

Calculations for C ^  0 were carried out analytically by Bassiouny [Bl] and 
numerically, using a finite difference scheme, by Shah and Kandlikar [S9]. As far as 
the ranges of parameters overlap, these results agree very well with each other. The 
calculations for C = -  1 (counterflow with equal capacity flow rates) show that the 
higher value of F  is found for the odd number compared to the preceding or following 
even number of channels. The explicit solutions for « = 5 (three equations, = 
a*2 = 0, a*3 = -5 /3 )  and n = 4 (4 equations, = r2 = 0, = V2, = - ^ 2 )
yield

T(m = 4,C = -1) -f -
I

3 3 /V/3 + (vTiV/3)coth(v/2N/3)
(2.109)

r-. 9 , 1  l -exp( -5A74)f ( » - 5 . C - - l |  = -  +  -  --------------------- (2.110)

The correction factors calculated from these equations have a value of unity for both 
cases for N-*Q and as oo, drop to 2/3 or 9/10, respectively. The lower limit of 
the LMTD—correction for C = 0 is given by eq. (2.108) as = nl{2{n -  1)] for 
even n and as {n + l)/[2(n -  1)] for odd n. The analytical results for « = 4 and



those for n = 6, 8, 10, 12 with numerically calculated eigenvalues lead to the 
same limit for 0 > C > -  1. With odd numbers n, however, different values of C 
result in different limits for E The values calculated at C = -  1 for = 5 to 17 can 
be summarized by the formula
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^  x  ~  odd —  ^
(2 .111)

which, like that for even numbers, cannot claim general validity for arbitrary n.
Figure 2.26 shows the results of an experimental check [Bl] of the end effect in 

an industrial plate-heat exchanger with n = 4, 6, 12 channels and C = - 1 .  The 
correction factors calculated from measured data for packs of 4, 6, and 12 channels 
(i.e., 5, 7, and 13 plates) agree with the trend of the theoretical curves. The consider
ably lower absolute values, however, indicate that there are probably other reasons, 
apart from the end effect, for a deviation from ideal counterflow behavior. A maldis
tribution of flowrate in the parallel channels might be one of these reasons for lower 
efficiency. The counterflow effect that remains is, nevertheless, still considerable 
(esp. for 12 channels), as may be seen from the comparison with the curve for ideal 
crossflow (broken line). Calculations of temperatures, efficiencies, and correction 
factors for more complex flow configurations may be found in Bassiouny’s thesis 
[Bl], as well as in the earlier mentioned paper by Shah and Kandlikar [S9].

In the next section, some of the more important arrangements will be treated 
approximately for a large value of n, i.e., without taking end effects into account.

4.3 Series-Parallel Arrangements

If the flow rates of the two fluids are widely different, then the flow velocities and, 
consequently, the heat transfer coefficients can become very small for the stream with 
the lower flow rate, when the two streams are in simple counterflow as in Fig. 2.24. 
This may be avoided by connecting the flow channels of the smaller stream in series. 
Figures 2.27 and 2.28 show two of these arrangements.

Here one stream is directed in parallel to a set of alternate plate channels. The

Figure 2.26 LMTD correction F vs. N at C = -  1 for 4, 6, 
12 channels. Theoretical results in comparison with 
experimental values (symbols).
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Mj,6 '=0
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Figure 2.27 Parallel-series arrangement (1 X  2).

Other stream flows through the remaining alternate plate channels in series. In the 
figures, the plate pack is shown divided into two and three equal segments, respec
tively. The series stream is alternately in co-current and counterflow to the stream 
connected in parallel. Such series-parallel arrangements may, of course, be realized 
with other types of heat exchangers also (e.g., double-pipe heat exchangers). The 
total surface area is divided into two or more parts. If the end effects and the effects 
of coupling of the various parts are neglected, each part may be treated as a separate 
parallel- or counterflow heat exchanger. Such an approximation is permissible for a 
sufficiently large number of parallel channels within each partial pack and for not- 
too-large NTUs.

The analysis is then very simple. For the 1 X 2 series-parallel arrangement of 
Fig. 2.27, one calculates first the outlet temperature â\ of stream 1 (the intermediate 
temperature) from the first partial pack:

1-3 - ,
1 - 0

= e.
N,

2R

and then the outlet temperature from the second pack:

//V.
â\ -  0

=  S, ,2R

(2 . 112)

(2.113)

where €p denotes the efficiency of a parallel, that of a counterflow heat exchanger. 
The arguments of these functions are Â ,/2 and 2R, because the whole stream 1 and 
only half of stream 2 flow through the partial pack with half the surface area. From 
the two eqs. (2.112) and (2.113), the efficiency of the 1 X 2 arrangement is found 
with e = 1 -  d".

M,.6j =1
■“1 r - - ■“ 1

1

11
 ̂ 3

1

Mi|i
1

‘ 3

11
M,|,

1

ÈL
' 3

1 1 r
L___ - J L___ Figure 2.28 Parallel-series arrangement (1 x  3).
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Here from eqs. (2.12) and (2.14), we have
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1 - S ( ^ , 2 R l - e , (  ^ , - 2 R

- S  =
,-(i+C ).v  ^  c

1 + C

(2.114)

(2.115)

and

I —
c

c-ii+C).v + c ( C t̂ - I )

c. =
L 1 +A'

(C = - l ) (2.116)

If these expressions are inserted with the arguments N  = N^/2 and C -  2R or C = 
— 2R, respectively, into eq. (2.114), explicit formula for the efficiency of the 1 X 2 
series-parallel arrangement is obtained:

£ =  1 —

\ - 2 R  c x p [ - ( l -h 2 /^ ) ;V |/2 ] - f  2/i 

' I r e x p [+ (l -  2R)A’|/2 ]  -  2R
.-.Vi

2 + A', ^  =  ?

(2.117)

Check: With R = 0, i.e., = 0, this again must result in e = 1 -  e
Obviously, with this configuration, one can reach a maximum efficiency of €oo = 

1 as TVi-oo, given R = 1/2. For = 10, 15, and 20 and R = 1/2, 1/3, and 1/4, 
the efficiencies calculated numerically for — oo by Shah and Kandlikar [S9] for the 
1 x 2  arrangement agree with those calculated by eq. (2.117). (Note: The subscripts 
1,2 used in [S9] are the converse of our notation in Fig. 2.27).

According to these calculations, the end and coupling effects may be neglected in 
practice for the channels numbering more than 40 for the whole pack. At very large 
NTU and for a smaller number of channels, these effects are significant, however. In 
the case of the 1 X 3 series parallel arrangement, one can find the intermediate 
temperatures by a procedure analogous to that for the 1 x 2 case:

1

i l

- 1 A',
3 ’

-3 R ^ (2.118)

' i l , 3R^ (2.119)

A'l 
3 ’

-3 R  j (2.120)



By multiplying these terms, the intermediate temperatures cancel, and one obtains a 
result that could easily be generalized for arbitrary 1 X m arrangements:
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1 ■ 3 ’
-3R , 3R (2.121)

Here it was assumed, as in Fig. 2.28, that two of the three passes are in counterflow 
and one in parallel flow. For the less favorable inverse case (two parallel, one coun
terflow), one has merely to interchange the exponents 2 and 1 in eq. (2.121). In a 
similar way, one can get equations for efficiency e and normalized mean temperature 
difference 0  = e/N for other plate heat exchanger configurations also. A detailed 
calculation accounting for the temperature variation in every single channel is re
quired only for small numbers of plates and high NTU.

4.4 Pressure Drop and Heat Transfer

Because of the complex path of the fluid in the clearance between two corrugated 
plates (see Fig. 2.21), the conventional standard formulas for friction factors and heat 
transfer coefficients are not applicable here. As the details of the pressed patterns 
vary from manufacturer to manufacturer, one can hardly give generalized correla
tions. Nearly all the manufacturers today offer plates with chevron-type corrugations 
(as in Fig. 2.21) with the direction of the crests and troughs of the waves shifted by 
an angle <p from the longitudinal axis of the plate. With ip = 0, i.e., longitudinal 
waves, one would get parallel channels, separated from each other, which would have 
the lowest flow resistance. With ip = 90°, one would get transverse waves with 
infinitely large flow resistance (if the crests in the two plates are everywhere in 
contact). Both these extreme cases are mechanically less sturdy. Usually plates with 
either ip »  30° or ~  70° are offered by the manufacturers.

Plate packs may be built up from equal plates, every second one turned around 
its surface normal by 180°, or alternately from dissimilar plates having different 
angles. The acute angle pattern {ip = 30°) yields channels with lower flow resistance. 
Such plates are called “ soft” plates (S-plates). The stronger deviation from the longi
tudinal direction for the pattern with (̂  = 70 ° results in correspondingly higher flow 
resistances. Plates of this type are called “ hard” plates (H-plates). The pressure 
drops measured by Bassiouny [Bl] using plates of one manufacturer (W. Schmidt 
GmbH and Co KG Bretten, Germany) with (̂  = 71 ° (called Sigma-27 H) and ip = 
29°45' (Sigma-27 S) are plotted as friction factors  ̂ vs. the Reynolds number in Fig. 
2.29.

As a characteristic length, the hydraulic diameter «  2b has been chosen. The 
gap width b is the distance between two planes touching the wave crests of a plate on 
either side minus the wall thickness. The flow velocity is defined as the volumetric 
rate V divided by b-B, Here B is the width (or breadth) of the plate perpendicular to 
the mainflow direction measured between the gaskets. The “ hard” pattern has about 
an eightfold higher flow resistance than the “ soft” one. The friction factor for a 
channel built from one H- and one S-plate (H/S) is close to the arithmetic mean of the



factors obtained with uniform channels built from H-plates or S-plates alone. The 
pressure drops were measured inside the plates, so that turnaround and friction losses 
in the distributors and collectors still have to be added to find the total pressure drop 
between the inlet and outlet headers of the apparatus.

Measurements of heat transfer for the same three channels (H, S, and H/S) are 
shown in Fig. 2.30 in terms of Nu vs. Re from [Bl]. In the range investigated, 
straight lines with slopes around 0.7 were found in this log-log plot, so that one can 
write
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with
Nu = cR e“ Pr°* (2.122)

(p 7r{H) 29*̂ 45' (S) (H/S)

a 0.69 0.72 0.70
c 0.274 0.094 0.184

in a range of validity of about 10̂  < Re < 10'*, and 2 < f r  <  40.
With water in the “ hard” channels, for example, a pressure drop of 1 bar/m

5 Figure 2.29 Friction factors for 
plate heat exchangers.
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Figure 2.30 Heat transfer coefficients Nu Pr for plate heat exchangers.

results in flow velocities of 0.8 m/s and heat transfer coefficients of 23000 W/(m^ K) 
{k «  7500 W/(m^ K)). In the “ soft” channels, however, we get about 1.7 m/s with 
a  «  18000 W/(m^ K) {k «  6300 W/(m^ K)). The overall heat transfer coefficients 
given in parentheses were calculated with a thermal conductivity of the wall of \  «  
15 W/(K m) for stainless steel and a wall thickness of 5̂ = 0.7 mm (1//: = 2!a  + s! 
XJ. Data for water are taken at an average temperature of 40°C. The underlying 
dimensions are [Bl] == 2b ^  7.2 mm, plate width B = 260 mm, plate length 
(measured between inlet and outlet ports) L = 980 mm, area = 0.25 m .̂

With a correspondingly high pressure drop and, therefore, a high pumping power 
ApK very high overall heat transfer coefficients can be reached with these appara
tuses. At Ap/AL » 0 . 1  bar/m, one typically obtains flow velocities of w = 0.20 m/s 
(for H), 0.46 m/s (for S) with *  9000 W/(m" K) {k »  3700 W/(m" K)) and «s «  
6700 W/(m^ K) (k »  2900 W/(m^ K)), respectively. From these values and eq.
(2.122), heat transfer coefficients in plate heat exchangers may also be estimated for 
fluids other than water. Similar correlations (as in Figs. 2.29 and 2.30) for pressure 
drop and heat transfer in plate heat exchangers can be found in HEDH [H3] 3.7.3 
(supplement 1989) for chevron-type plates with angles of <p = 30°, 40°, and 60° 
(there the angle (3 ^  2<p is given [60°, 80°, 120°]).

5 SPIRAL PLATE HEAT EXCHANGERS

5.1 Description

Figure 2.31 shows a spiral plate heat exchanger with counterflow of the two fluids 
inside the double spiral formed by winding two metal sheets around a cylindrical 
core. Steel bolts are provided at regular intervals to serve as spacers to maintain a 
constant distance between the plates as well as to stiffen the plates against fluid



74 HEAT EXCHANGERS

Figure 2.31 Spiral-plate heat exchanger (photo 
and drawing: Schmidt Comp.).

pressure. Each spiral channel is sealed by welding on one edge, the other side being 
accessible for inspection and cleaning. The two spiral channels are, thus, open on 
opposite sides and are closed with a lid-plate and a flat gasket during operation. The 
welded edges of the spiral channels have to be accurately machined to provide a 
leakproof closure against the flat gasket. Manufacture of spiral plate exchangers is 
more labor intensive, and, hence, they are more expensive compared with plate 
exchangers built from pressed plates. Since there exists only one continuous flow 
channel for each fluid, potential fouling deposits are swept away more easily and 
positively. The “ hot end” of the counterflow arrangement may be placed at the core 
of the spiral exchanger, shielding it more or less completely from the surroundings. 
These exchangers are, therefore, often used for energy recovery, i.e., preheating of 
process fluids by hot product streams which have to be cooled. The spiral plate 
exchangers are especially advantageous in handling solid suspensions. In a slightly



modified design, they can be used as compact reflux condensers directly on top of a 
distillation column. The largest units offered have surface areas of up to 400 m  ̂
[Ml].

5.2 Temperature Profile and Mean Temperature Difference

The calculation of the temperature profile in a spiral plate heat exchanger is more 
involved than in an ideal counterflow exchanger. This is due to the fact that each cold 
stream is separated from an adjacent cold stream by one turn of the spiral and both 
receive heat from the hot fluid flowing in between. Analytical solutions of the prob
lem have been given in 1983 by Cieslinski and Bes [C3] in terms of series expansions 
of Hermite polynomials and in 1988 by Bes [B3a] in terms of series expansions of 
exponential functions. These analytical solutions are, however, hardly suitable for 
practical application, as the evaluation of the series requires tedious calculations. The 
authors have, therefore, provided charts of Ae, the efficiency reduction with respect 
to ideal counterflow as a function of NTU, capacity rate ratio C, and number of turns 
[C3], as well as charts of vs. €2 with 0  and as a parameter for a few numbers of 
half turns [B3a]. Numerical calculations have been done for up to 16 turns and NTU 
up to 10 by Chowdhury et al. [Cl]. These have been done for the three types of 
double spirals shown schematically in Fig. 2.32, differing only in the relative posi-
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Type I 

(n=2)

Type II 

(n=2)

Type III 
ni = 2.5 
ri2=2.0 
(n=2.25)

(Mcp)i

(MCp)2
Figure 2.32 Three types of counterflow 
double-spirals.



tions of inlet and outlet at the inner and outer ends of the spirals, respectively. As an 
example of these results, Figs. 2.33 and 2.34 show the temperature profile vs. the 
flow length for types I and II of Fig. 2.32 for a high NTU (N = 10) and a small 
number of turns (« = 4), with counterflow at equal capacities (C = -  1). At such a 
small number of turns, the end effects (heat flux only to one side of the channel in the 
innermost and outermost half turns), as well as the general deviation from the linear 
profile of an ideal counterflow exchanger, are evident. The reduction in efficiency, 
Ae, can be directly read from these graphs.

Of the several possible ways to present the profusion of numerical results (Ae 
depends on N, C, n, and the position of inlets. Type I, II, III, . . .), a compact form 
was obtained with the plot of the LMTD correction factor F  for constant C versus the 
ratio N/n, i.e., the NTU per turn. Figures 2.35 and 2.36 show this plot of the 
numerical results for C = -  1. Only for very small numbers of turns, one may find 
additional influences of type and number of turns. In the ranges of practical interest, 
it is obviously possible to reduce the number of parameters from four {N, C, n, type) 
to two {N/n, Q .  The formal similarity between the F vs. (N/n) curve and the well- 
known variation of fm efficiency vs. fin height for plane fins (see Fig. 3.23) inspired 
the choice of the function tanh(jc)/x, describing this fm efficiency, as an empirical 
fitting curve for the numerical data:
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F ^  — tanh — 
N n

{C = -1 ) (2.123)

It was found that this simple analytical function could represent the numerical 
results strikingly well without any additional parameter. The analytical results of 
Cieslinski and Bes [C3] as well as Bes [B3a] are also in agreement with this, except 
for small differences at low numbers of turns. The successful approximation of the

- 1/16 1/16

Figure 2.33 Temperature variation in the 
spiral-plate heat exchanger (type I).
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Figure 2.34 Temperature variation in the 
spiral-plate heat exchanger (type II).

Figure 2.35 LMTD correction F 
vs. NTU per turn N/n for type I 
and type II spirals.
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Figure 2.36 LMTD correction F vs. NTU per turn N/n for 
type III spirals.

numerical results by such a simple function as eq. (2.123) encourages one to hope 
that there may exist a simpler physical model for the thermal behavior of the spiral 
plate heat exchanger, which would lead analytically to the functional form of eq.
(2.123) that had been first introduced purely as an empirical curve fit.

Trying out several configurations of cascades (see section 3.1), it is found that a 
countercurrent cascade of n parallel flow exchangers (see Fig. 2.37) is exactly what 
we are looking for!

From eq. (2.83) for a countercurrent cascade of n equal elements at 
C = -  1 (i^ = 1), the following relation is derived:

= n (2.124)

Inserting for the efficiency of a parallel flow cell from eq. (2.115) but with 
C = |C| = 1 for parallel flow, we obtain

(2.125)= n

With F0LM = and 0 lm = 1 “  e (for C = - 1 ) ,  one eventually finds that the 
LMTD correction factor for a countercurrent cascade of n equal cocurrent (parallel 
flow) elements is

F =
n e -̂N /n _ ,~N/n

(2.126)

or

n l ^  F = — tanh  — 
N n

(2.127)

At first glance, there appears to be no similarity between the cascade model from Fig. 
2.37 and the spiral plate heat exchanger. The equivalence may be seen if the double
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Figure 2.37 Countercurrent cascade of n parallel 
flow exchangers.

spiral is cut into two halves (see Fig. 2.38iz). The cut halves may be represented by 
two plate packs interconnected as shown in Fig. 2.38Z?, where the half-channels are 
symbolized by equal rectangular shapes. The half-channels are numbered in the flow 
direction on the hot side as 0 to 5 and against the flow direction on the cold side as 0 ' 
to 5 '.  From any given internal channel on the hot side (1, 2, 3, or 4), heat is 
transferred to two adjacent cold streams with different temperatures. If we replace the 
heat fluxes from stream 1  to the two cold streams O' and 2 ' by a single heat flux to 
the stream 1  ' whose temperature is half-way between those of the streams 0 ' and 2 ',  
we obtain the simplified configuration c in Fig. 2.38 which is the countercurrent 
cascade of parallel flow elements.

Since the simplified model does not account for the end effects and for the 
different positions of inlet and outlet of the three types investigated, it can only be

;iì}f
i l l

X — r-
p_i-|X

2' 2'
Cl l'l a
-2 0’ ■I. e

1 f
— x l

I6‘)
H

(6) e
1 1
ID. Figure 2.38 Development of a simpler model for the 

spiral-plate heat exchanger.



valid for sufficiently large numbers of turns. This is demonstrated in Fig. 2.39 where 
the ratio of ̂ (numerical) to F(modei) (from eq. [2.127]) is plotted against the number of turns 
n for C = -  1 and the largest numerically investigated value of NTU (N = 10).

The deviation of the numerical results from the model predictions lies between 0 
and +5% for « > 6. For smaller numbers of turns, the end effects become increas
ingly important. For n = I, type II becomes an ideal counterflow exchanger (F = 1), 
while type I becomes a cocurrent cascade of two counterflow elements (F = 1/[1 + 
(N/2f]). Type II is always more favorable than type I. As is to be expected, type III 
lies in between. For n > 10, the differences are practically negligible. The model can 
be applied to other capacity rate ratios too. For C - I ,  one obtains the following 
expressions for e¡ and F:
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F l - , C  
n ( l - ^ Q N / n

In 1 +
1 +  C

( C : ^ - l )  (2.128)

and

=
1

T T T q (2.129)

As before, the correction factors calculated from these equations (for the countercur
rent cascade of n parallel flow elements) agree very well with the numerical results 
for spiral plate heat exchangers, as may be seen from Fig. 2.40. So the countercur
rent cascade of n parallel flow elements is adequate as a model for the design of spiral 
plate heat exchangers, except for the cases of small numbers of turns and high NTU, 
which are, however, less important in practice.

High efficiencies at large NTU can only be reached with a large number of turns. 
For C = -  1, one obtains from the cascade model a maximum efficiency of

8 ^ ( C : ^ - 1 )  =
n -M

10 15 20

Figure 2.39 Comparison of numerically 
calculated LMTD correction factors with those 
obtained from the cascade model vs. number of 
turns.



More than 19 turns are therefore required to reach efficiencies above 95%. Recently 
Bes and Roetzel [B3b] have shown that the maximum efficiency for a type II spiral 
(as calculated from an exact analytical solution) is not reached asymptotically for 
N-*  00, but at a finite, large value of NTU (usually greater than 15), with decreasing 
efficiencies for increasing NTU above this maximum (as in the case of cross flow, 
both sides laterally mixed). They also derived a new analytical approximation for F, 
which may be written in a slightly rearranged form as
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with

F  = z ln [ l  + l/(z + X)] (2.130)

X = y / ( l  + 2y), y  = r¿/(2nAr), and z = (1 + 2y)l[{N/nfR\.

In addition to N/n and R, this formula contains the parameter y, i.e., the core radius r, 
divided by the width of the double spiral pack of 2n channels.

Problem

Determine the limiting curves F{Nlri) for y — oo (large core diameter) and y  0 
(small core diameter) and the maximum efficiency ê ax from eq. (2.130) and compare 
the results with those from the cascade model (eqs. [2.127-2.129]!).

5.3 Pressure Drop and Heat Transfer

As the channels of a spiral plate exchanger are of a rectangular cross-section, pres
sure drop and heat transfer can be calculated in principle from the standard formulas 
for parallel plate ducts (annuli with The pressure drop will be increased
because of the plate spacers and, at intermediate Reynolds numbers, also the heat 
transfer. The effect of the plate curvature is similar to that of the spacers. However, 
the curvature effect should be of minor importance as the core diameters are usually 
quite large compared to the gap width. Measurements [C2] with spiral plate exchang-

Figure 2.40 LMTD correction F v s . capacity flow rate 
ration C.



ers have shown that the friction factor can be calculated as the sum of a value for 
laminar flow in a parallel plates duct (from Eq. [1.116] with K-* 1 and <p = \ .5) and 
another term, c o n s t \  probably resulting from flow separation at the spacer 
bolts.

82 HEAT EXCHANGERS

 ̂ =  1.5— + c  Re-0' 
Re

(2.131)

The apparatus used in the investigations had a cross section of 5 X 300 mm^ number 
of turns n = 8.5, core diameter of 250 mm, outer diameter of 495 mm and 5 x 5  
mm cylindrical bolts in a rectangular in-line arrangement of 61 X 50 mm. For data in 
the range 4-\0^ < Re < 3 ' 10"̂ , the constant was found to be c = 0.2. Heat transfer 
data in the same range with water as the medium could be correlated by

N u ^  0.04 (2.132)

In the upper range of Reynolds numbers, there is fair agreement between eq. (2.132) 
and the standard equation for turbulent flow in a parallel plate duct (eq. [1.140] with 
dJL  «  0, A"-* 1 and hence, = 0.86) as can be seen from the following table:

Re 2 300 5 000 10000 30000
^^(1.140) 13.3 34.7 68.3 182
^ (̂2.132) 26.8 47.6 79.5 179

In the intermediate and lower range of Reynolds numbers, the values are significantly 
higher due to vortex formation at the spacer bolts, and, to a lower degree, due to the 
plate curvature.

6 COUPLING OF TWO HEAT EXCHANGERS 
BY A CIRCULATING HEAT CARRIER

For reasons of safety or spatial constraints, it may be necessary to carry out heat 
transfer between two streams not directly in one apparatus, but in two separate heat 
exchangers coupled by a circulating heat carrier. Figure 2.41 shows such a connec
tion schematically using symbols convenient for this case and the conventional defini
tions of Nj, N2, Ri, ^ 2* The efficiency of the whole arrangement can be expressed in 
terms of the efficiencies e^, €22? the capacity rate ratios and R 2 (the first 
subscript in stands for the stream, the second for the apparatus):

'SI

S ' , - 9 ' ^22( ^ 2’ ^2

(2.133)

(2.134)
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Figure 2.41 Coupling of two heat exchangers 
by a circulating carrier stream.

Apart from these two equations, which follow immediately on applying the defini
tions of €i to the two exchangers, one can write down the steady state balance for each 
of the apparatuses:

— S'l) — — Sgi

^ 2(^2 ~  ^2) ~  "̂ Sl “  Ŝ2

(2.135)

(2.136)

If the pumping power added to and the heat lost from the circulating stream are 
neglected, then we also have

S'.SI = 9's

and

Ss2 =  S's'i =  S''

(2.137)

(2.138)

In order to eliminate the temperatures and eqs. (2.133) and (2.134) are solved 
for these intermediate temperatures of the circulating stream:

>̂s -  '̂ 1 ;
1̂1

Q" — Q'
s" =  5; +

(2.139)

(2.140)

The differences on the right hand side of eqs. (2.135) and (2.136) now become

(2.141)
Q' Q" Q" Q'

s" _  = _(9; _  9 ') +  +  ^ 2 - 1 ^

The intermediate temperatures can be thus eliminated. Replacing ^2 -  by {RJ 
^ 2) ‘ (^1 ”  ^ 1") (from a total balance or the combination of the two partial balances) 
and dividing by (t?/ -  t?/'), one obtains
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1
-h

R.
- R . (2.142)

Here e, is defined as the change in temperature of stream 1 related to the maximum 
temperature difference of the whole arrangement:

Q' — Q" ^
■' 9', -  9;

(2.143)

Equation (2.142) may now be discussed with respect to the maximum efficiencies that 
can be reached with such an arrangement. We have to keep in mind that the functions 
€n(A î, /?i) and 622( ^ 2  ̂ R 2) ^^e the efficiencies of stream 1 in exchanger 1 and of 
stream 2 in exchanger 2, respectively. Then, is the efficiency of the circulating 
stream S in exchanger 1, which can be obtained from the same function by renaming 
the arguments (N^R^ :=  Â i, l/Ri :=  Ri)

^ 1̂ 11 ~  ~  1̂1 ( ^1^1’ R.
(2.144)

and

RjÊ') — — ^7? 1 ^2^2’ (2.145)

Three cases can be distinguished here:

1. Both Rj > 1 (weak circulating flow)

= R.
f;, ‘ ^/Rl)  ^02(^2^2’ 1/ ^ 2)

1
'1 max R,

< 1 (2.146)

2. Both Rj < 1 (strong circulating flow)

'1 max \ + R , [ { l / R ^ ) - l ]
< 1 (2.147)

3. /?i <  1 and R 2 > I [(A/tp), <  (Mcp)s <  (A/Cp),]

e, i /R. )

'*  ̂I rn a V 1

(2.148)

Here we have assumed that the individual exchangers can, in principle, reach effi
ciencies of unity, i.e., that they are ideal counterflow or crossflow exchangers, or
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countercurrent cascades. We have further assumed that (MCp)i < (Me^ 2  ̂ i.e., <
R 2 will be always valid, which does not restrict the generality of these statements. (If 

>  R 2, one can simply regard €2 in place of ej or rename the streams.) High total 
efficiencies can obviously be reached only if the circulating flow is chosen so that its 
flow capacity lies in between those of the two other streams.

The optimal flow rate of the circulating stream, as recently also shown by Roet- 
zel [R4], is found from:

(-̂ Ŝ̂ ps)opt
k j “H ^2^ 2

+ Â2
(2.149)

if both apparatuses are counterflow heat exchangers.
Figures 2.42-2.44 show the efficiency of e vs. l/Rj, i.e., the ratio of the circulat

ing flow capacity to that of stream 1 for R 1/R 2 = 0, 0.5, and 1, respectively. The 
parameter of the curves is always N^, with N 2 = Â i for the dotted lines and N 2R 2 = 
N^Ri for the full lines. At low circulating flows (Mc^)^, the efficiency increases 
linearly with the circulating flow rate to fall again after passing a more or less sharp 
maximum (for N  > I and R 1/R 2 > 0). In Fig. 2.43, one can clearly recognize the 
range 0.5 <  < 1, in which efficiencies up to unity are theoretically possible. At
Ri = R 2, this range shrinks to the point R^ = R 2 = I, and the circulating flow in 
this case has to be chosen very accurately if efficiencies above 80% are to be reached. 
The individual exchangers have been regarded as ideal counterflow ones here.

In the special case Ri = R 2 = I, with en(A ĵ, 1) = A î/(1 + Â i) and €22( ^ 2» 1) 
= ^ 2/(1 + ^ 2)» it follows from eq. (2.142) that

£ N,
1 + 1 (2.150)

I Me P M
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-------------- .̂.........  ...I— --------
2 (Mcp)s 3
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Figure 2.42 Overall efficiency e of the configuration from Fig. 2.41 as a function of the circulating 
stream oc(l/^j) with and N2 as parameters (R1/R2 = 0).
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00 5 2 1 0.75 0.5
Rl =

(MCp)̂

0.25

(Me pM
Figure 2.43 Overall efficiency e of the configuration from Fig. 2.41 as a function of the circulating 
stream <x(l/R{) with and N2 as parameters (R1/R2 = 0.5).

If we further assume that the two exchangers are equal, = /:2^2 = then we 
have

(2.151)

or

N =
IF. (2.152)

Figure 2.44 Overall efficiency e of the configuration from Fig. 2.41 as a function of the circulating 
stream oc{\/R̂ ) with and N2 as parameters {R1/R2 = 1.0).



With direct heat transfer in a single counterflow exchanger at equal flow capacities, 
we have
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^ideal -  1̂ (2.153)

Since N  is expressed with the surface area A of one of the two exchangers, one would 
require a fourfold NTU with indirect transfer for the same efficiency in both cases. 
This does not necessarily imply a fourfold surface area. For gas-to-gas heat transfer 
in one apparatus, the overall heat transfer coefficient is roughly half the gas side heat 
transfer coefficient a '

a , ,

1 (2.154)

If a liquid is chosen as a circulating stream with much better heat transfer coefficient 
a I > ce , one can write approximately

"g,i (2.155)

Then the surface area would have to be just twice as large for indirect heat transfer at 
the same same MCp, and the same heat rate Q, compared to direct transfer in one 
exchanger. So one will choose an intermediate circuit only in those cases where direct 
transfer is forbidden by inevitable reasons.

7 REGENERATORS

7.1 Description

The coupling of two heat exchangers by a third heat carrier that circulates between 
the two has been described in the previous section. Similarly, the so-called regenera
tors also use a third medium as an intermediate store for the energy to be transmitted 
from the hot to the cold stream. In a regenerator, however, this intermediate storage 
medium is a solid matrix, which is heated and cooled (or charged and discharged) by 
the two fluid streams during alternate periods. The solid matrix may be built as a 
slowly rotating cylinder or disc as shown in Fig. 2.45.

This type of regenerator with a rotating storage mass has come to be known as 
the Ljungstrom air preheater [H2]. One can immediately recognize the similarity to 
the scheme shown in Fig. 2.41. The circulating heat carrier—here the slowly rotating 
disc—is in crossflow, however, to the fluids 1 and 2 in this case.

Figure 2.46 shows a schematic representation of this process from which not 
only the similarity, but also the differences to the problem treated previously (see Fig.
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Figure 2.45 The rotating regenerator—the Ljungstrom 
air pre-heater.

2.41) may be clearly seen. In principle we have here a cross-counterflow connection. 
The older type of regenerator with fixed storage masses, of which the “ classic” 
Cowper’s towers for blast furnaces is an example, is shown schematically in Fig. 
2.47. The hot and the cold gas streams alternate between the two storage beds period
ically. Here it is not so easy to recognize that we have to deal with a countercurrent 
connection of two heat exchangers coupled in crossflow again. The role of the trans
verse coordinate y (corresponding to the flow direction of the coupling medium Mg in 
Fig. 2.46) is here taken over by the elapsed time after each switching of streams.

7.2 The ‘‘Short” Regenerator

To analyze the transfer performance of regenerators, we start, as for crossflow in 
section 2.1, with the relatively simple case of crossflow over one row of tubes or 
crossflow, one side laterally mixed. In Fig. 2.46, one can easily imagine this case as 
a disc-like section of the matrix (cut along the broken line), containing only a short 
slice of the rotating mass, corresponding to one of the circulating arrows in the 
scheme of Fig. 2.46.

Figure 2.46 Scheme of the regenerator 
with circulating storage mass.
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Figure 2.47 Scheme of the regenerator 
with fixed storage masses.

Figure 2.48a, b, shows the corresponding case of a ‘‘short” regenerator with 
fixed masses. The temperature of the solid does not depend on the longitudinal (or 
counterflow) coordinate z, but only on the transverse coordinate y (see Fig. 2.46) or 
on the time (see Fig. 2.48a, b). The energy balance for an element of the storage 
mass is

d z \  d,9c dz .p' z: ) ̂  z: ̂ (2.156)

For the steadily rotating mass, we put d  ̂ = {M JM ^ dy/Ly, L̂ , and Ly being the total 
lengths in the two directions. A corresponding balance for the gas-side (stream 1 or 2) 
is

o<t<t,

Figure 2.48 The “ short” regenerator.
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cz
dz

( A / C p ) , ^ d z =  ( 9 s - .9 , )
L.

(2.157)

if the storage capacity of the gas is neglected in comparison to that of the solid 
(“ quasi steady state approximation” ). In dimensionless form, we can write in the 
same fashion as for cross flow, one side laterally mixed (see eqs. [2.16 and 2.17])
a  = 1, 2):

dj9
k- ^  = 9s -  5,-dr ^

99,.

(’Ci

(2.158)

(2.159)

The dimensionless time—or length—coordinates vary between 0 and a number of 
transfer units N^i or N̂ , respectively. Since the differential equations are identical with 
those for crossflow, one side laterally mixed, one can use the solution developed in 
section 2.1. The mixed stream had the subscript 1 there and corresponds to the 
storage stream S here. From eq. (2.27), we can calculate the outlet temperature of the 
storage stream from exchanger 1 (or the final temperature of the storage mass after 
the “hot blowing period” ij) (“ S” := “ 1” , “ 1” := “2” ):

Cc t - *̂ S, max ’̂ S, min
SI Q' _  Q

^S, min
= 1 — exp[— (1 -iVj

)] (2.160)

We take iVsi = ^i^i^i/(^s<^ps)i or (dimensionless hot blowing period or
NTU of the storage mass), and as well as
Ny = Similarly, for the cooling of the storage mass in exchanger 2
or the “ cold blowing period” t2, it follows that

S S, max ^S. min
Ŝ2 ==

^S,max-^2
= 1 -e x p [-K 2 (l - c  ^2)] (2.161)

with N2, and R2 defined as for and R̂  above. With = (Â i/Â si)̂ si =
and €22 similarly defined, the outlet temperatures of the gas streams can also be 

determined:

£11 —

£')'> —

>9;- '9 ', ' 
'91 -  '9s 

9;' -  9;

^S. max

1 — exp[—i?| (1 )]

- 9;

9̂1

1 -e x p [-K 2 (l - e ”^-)]
R.

(2.162)

(2.163)

From these four equations (2.160-163) the four temperatures ^ 2 , i?srain. and 
t?smax. as well as the overall effieiency e, = (!?,' -  ?7,")/(«?,' -  can be found. The 
solution follows the same path as in section 2.6 and, as expected, leads to the same 
result (see eq. [2.142]):
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-f
R.1 (2.164)

For the frequently encountered case of equal capacities = R 2 and equal exchang
ers Ny = N 2, eq. (2.164), along with eqs. (2.162) and (2.163), yields, after some 
rearrangement.

N  ̂ /N o  \ ~ e  
-  tanh ‘ ^
N N

From eq. (2.165), the following limits may be derived:

(2.165)

lim e = i
N->oo 2

(2.166)

and

lim c. = ------
Ns-̂ O 2

(2.167)

The highest efficiency is thus reached with the smallest switching period Â si ^  U or 
for the highest circulating stream > k^A^. Then, the storage temperature is
constant and lies exactly between the inlet temperatures of streams 1 and 2. There
fore, efficiencies above 0.5 cannot be obtained (under these conditions) with the 
“ short” regenerator, i.e., with ^  order to approach the linear tempera
ture profile of an ideal counterflow with equal capacities, a corresponding longitudi
nal profile i?s(z) has to be set up in the storage mass. Longitudinal conduction in the 
solid ought to be kept as low as possible. This can be fulfilled to a high degree by 
increasing the thermal resistance in longitudinal conduction path, e.g., by gaseous 
gaps between the solid particles of a “ classic” fixed bed regenerator or by thin walled 
material for the solid matrix of a rotating disc.

7.3 The ‘‘Long” Regenerator

The difference in the mathematical description of the long, compared with the short, 
regenerator is simply to be seen in the fact that the total first order derivative of the 
solid temperature with respect to time (or transverse coordinate) in eq. (2.158) has to 
be replaced by a partial derivative (just as in proceeding from crossflow over one row 
of tubes to ideal crossflow). Now, the solid temperature also depends on both 
independent variables [t (or y) and z] (i = 1,2):

(59,
CT

_  n

(2.168)

(2.169)



For the initial start-up of a regenerator, i.e., when the solid mass has a uniform 
temperature at i = 0 (or at = 0, Fig. 2.46), the solution is exactly the same as for 
ideal crossflow (see eq. [2.51] and [2.52]). The crossflow profile established in the 
storage mass after the first (hot blow) period (or at the outlet edge y  = LyOi the first 
apparatus) now becomes the initial condition for the second (cold blow) period (or the 
entrance condition at the inlet edge of the second apparatus) and so forth. After 
sufficiently long operation, a periodic pattern of temperature profiles is established in 
the solid corresponding to the steady state of a rotating regenerator. The calculation of 
these temperature profiles is not possible in a simple closed form. The various mathe
matical methods for the solution of this problem are discussed in detail by Hausen 
[H2]. In the limiting case of short periods Asj, N 2̂ 0, however, the efficiency of a
long regenerator (see Fig. 2.46) can be given as that of a countercurrent cascade of 
short regenerators. In the case of equal capacities for such a cascade of n
equal short regenerators with efficiences
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1 -  e
= n

1 -
(2.170)

At short switching periods ê R is to be calculated from eq. (2.167), using the NTU of 
the element, i.e., (IM)th of the total NTU of the cascade:

1 -N/n

l - ^  1 -fc -^ ’A
(2.171)

Considering the limit of the cascade for n ^ o o  to be a continuous counterflow ar
rangement, one obtains (through series expansion of the exponential function)

lim —
Nsi-O 1

N
(2.172)

The maximum efficiency of a ‘Tong” regenerator for short periods (Â si,2 with
out longitudinal conduction thus becomes

N /2
1T Â 72 (2.173)

Let us further consider the fact that the overall heat transfer coefficient in N  is defined 
for the transport only from the gas to the solid, while it is to be calculated from gas 1 
to the wall and from the wall to gas 2 for a simple counterflow exchanger. Then, one 
can identify (A/2) for the regenerator with the whole number of transfer units A of a 
corresponding gas-to-gas heat exchanger without intermediate storage. Even then the 
double surface area is still required, since, in and N, the area is always that of one 
of the two exchangers required in a regenerator. Figure 2.49 shows the efficiency of 
the regenerator versus N  with the dimensionless period as a parameter. The broken 
lines are calculated from eq. (2.165) for the “ short” regenerator, i.e., with a solid 
temperature independent of the longitudinal coordinate (or an infinitely large heat
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Figure 2.49 Efficiency e of the regenerator vs. the 
NTU of a fluid stream N { = = N2) with the
nondimensional period ( = NTU of the storage 
mass) as a parameter:—“ long” regenerator (without) 
-— “ short” regenerator (with longitudinal 
conduction).

conductivity of the solid in z-direction). The full lines are obtained from numerical 
calculations [VI], while the uppermost curve for 0 corresponds to eq. (2.173).

Since the most favorable case is obviously equivalent to the simple ideal counter
flow (with NI2 := AO, it is convenient to use an LMTD correction factor F here too. 
This enables one to design a regenerator exactly like a simple counterflow exchanger, 
where only the LMTD has to be corrected subsequently for > 0. With equal 
capacities and equal exchangers, one can define

F -
N \ - c

(2.174)

This F  is identical to the quantity denoted as k/kQ by Hausen [H2]. Hausen denotes N  
as a reduced length of the regenerator A and as a reduced period H. Hence, his 
diagram for k/k^ (A, H) that is also found in the VDI-WA [VI] and in the HEDH [H3] 
can also be applied to determine the efficiency. Numerical methods to calculate tem
perature profiles and efficiencies may be found in the same sources [H2, H3, VI].

Figure 2.50 shows a periodic pattern of solid temperatures for A = 9, = 10
calculated using a finite difference scheme recommended by Hausen [H2]. Addition
ally, Hausen has given an approximation formula to calculate the LMTD correction

Figure 2.50 Periodic temperature pattern of 
storage mass (example).



94 HEAT EXCHANGERS 

factor, which reads

F  =
(4/Vs/5)-3tanh(M s/5)

N (2.175)

in the notation used here and is valid for N^/N = R < 0.5. From this, we obtain

N . =  l : F,„ =

Ns = 2 :  = 1

0.208 
N

0.460
’ N

1.715
^ s  = 3 :  =  ^

For switching periods used in practice, one can easily estimate now the deviation 
from ideal behavior for 0 (see example chapter 3, section 4).

7.4 Thermal Coupling of Two Streams by Heat Pipes

A regenerator effect with ^  0 can also be achieved by using heat pipes [D2]. The 
fluid in the heat pipe—which evaporates at the hot end, condenses at the cold end, and 
is recirculated to the hot end by gravity and/or capillary forces in a porous matrix 
(wick)—serves as the circulating heat carrier. Two gas streams in parallel ducts, for 
example, can be coupled very effectively by bundles of finned heat pipes [PI] and can 
be treated as a cascade of short regenerators with ^  0.

8 CONCLUSIONS

8.1 Summary and Compact Presentation of the Formulas

The investigation of the influence of flow configuration on heat exchanger perfor
mance has shown, through the comparison of simple configurations, like stirred tank, 
parallel flow and counterflow, and the various crossflow configurations, that the type 
of flow configuration is crucial in the range close to thermal equilibrium (Â  ^  oo) 
(see Fig. 2.8). This is particularly so for equal or nearly equal flow capacities on both 
sides. For small number of transfer units (N  < 1) or short relative residence times of 
the fluids in the apparatus (should NTU not be better interpreted as “ nondimensional 
time unit” ?), the transfer performance is affected far less by the flow configuration 
than by N  itself.

Often the flow configurations occurring in real heat exchangers can be repre
sented by cascades of interconnected “ cells” or sub-exchangers, in each of which a 
simple configuration is realized. In such cases, the formulas that have been derived



for the normalized mean temperature difference 0  or the normalized change in tem
perature e of the simple configurations can be applied with good approximation, as 
shown in sections 3 to 7. It seems to be convenient, for a quick analysis of such 
equipment, to keep these formulas ready for application in a simple and compact 
form. For the design problem, the form 0(ei, would be best suited. As shown in 
Table 2.1, this function can be represented generally by the logarithmic mean of the 
temperature differences at both ends (subscripts “ 0” , and “ 1” ) of the apparatus for 
the simplest configurations. The normalized temperature driving forces A??o and 
and their differences are given in terms of the efficiencies ej, €2 below each sketch of 
the temperature profiles. If AÙq = Ad^, as for counterflow with equal heat capacities 
and for stirred tank, both sides, then 0  = A??o = A??i. In these cases, the formula for 
0  gives an indeterminate expression and leads to 0  = AÙq = A??i by series 
expansion.

The crossflow formulas in general cannot be solved explicitly for 0(ei, €2). In 
these cases, one has to content oneself with a parametric representation 0  =
N 2), €; = Â i0€j = N 2). Only for crossflow, one side mixed can the function
0(e,, €2) be calculated explicitly (see eq. [2.29]).

The formulas for simple flow configurations are conventionally given in many 
text books in the e(N, R) form. For asymmetric cases, such as crossflow, one side 
laterally mixed, two formulas are needed, depending on whether the reference NTU 
for the mixed stream is meant to be N (= N^) or RN{= N 2). Writing the formulas in 
the form N 2) avoids the need for a priori definition of the reference NTU.
Table 2.2 is a compilation of the formulas for the most important simple flow configu
rations. By multiplying 0  with or N2, the required non-dimensional change in 
temperature or €2 of the corresponding stream is easily obtained. In the asymmetric 
cases (stirred tank, one side, and crossflow, one side laterally mixed) the stream 
designated as 1 is regarded to be the mixed stream. If, for any reason, it is desired to 
address the mixed stream as 2, one has just to interchange the subscripts 1 and 2 in 
these formulas (see the results in section 1.1.2 where 2 was the mixed stream). All 
the others are symmetric cases, where interchanging the subscripts has no effect.
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Table 2.1



the mixed stream). All the others are symmetric cases, where interchanging the sub
scripts has no effect.

In Table 2.2, one often comes across a term such as N/(\ -  e~^). In order to 
write the formulas in a more compact form, this term may be denoted as a function
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cpiX) ~
X

1 -
(2.176)

As may be seen from the right hand column of Table 2.2, substituting Ni, Â 2> the sum 
(Â i + or the difference respectively, for the variable X, extremely
compact expressions can be obtained for the reciprocal of the normalized mean tem-

Table 2.2

Configuration e{N „ N ,)  £.
1

Stirred vessel, 
both sides

1

Stirred vessel, 
one side (1)

1
N, +  (piN,)

Parallel flow
1 _e-(A l̂+N2)

cp(Nj -f- N2)

Counterflow
1 _^-(N i-Â2)

A', ^

1
1 + N

(N, =  N,)

<p(N̂

Crossflow, 
both sides 
laterally mixed

1 -
+

N,
1 -N2

- 1
cp{N,) + cp{N2)-l

One side (1) 
laterally mixed

1 — exp[—Aj (I —e -) /N 2\
N, <P

N,
cp{N,

cpiN,)

Unmixed e  = E 1 -  Z :.o  N,’/ « ! I - e-X '-N!/« !

m=0 iv, N,

' Short form using the auxiliary function (p{X) = X/{\ — e
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Figure 2.51 Graph of auxiliary function < (̂X).

perature difference 0 . This does not work for unmixed (ideal) crossflow, but even 
there one can recognize that the terms of the series are a form similar to It
may be recalled that the algorithm for the evaluation of this series has been given 
earlier in Fig. 2.7. The characteristics of the function (p{X) are shown in Fig. 2.51. 

At Z  = 0, (p{X) has a limiting value of unity,

<p{0) = 1 (2.177)

which may be seen from a series expansion ot the exponential function. Its slope at 
X  = 0 is 1/2, and it tends to its argument for large values of X

( p { X ) ^ X  { X > \ ) (2.178)

Thus, the compact formulas in Table 2.2 and their limiting cases are very easily 
handled in practice. For example, one can find the normalized temperature change e, 
of both streams in parallel flow from the very simple formulas

q>(N̂  + N 2
(2.179)

and

£7 =
N,

cp{N,+N,J
(2.180)

and their limiting values may be immediately arrived at, if the behavior of (p(X) is 
kept in mind. Here, the argument X  is the sum of the NTUs, and the physical 
meaning of <p is the ratio of the maximum temperature difference (i?/ — éì  ) the 
mean temperature difference -  ??2)m parallel flow. For counterflow, the dif-



ference of the NTUs replaces the sum, but the expression could be written as a vector 
sum

I  =  <p(N ,+N ,)-yv2
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Note that in Table 2.2 the Ni are meant to be absolute values. While two formulas, for 
^  N 2 and = N 2, are needed in the conventional way of writing, as in the left- 

hand column, a single and much simpler one suffices in the new way (right-hand 
column). The efficiencies are now obtained from

£1 = (p[N̂  — N 2) 4-^2

and

£0 cp{N 2 -N ,)+ N ,

(2.181)

(2.182)

The counterflow limiting cases are C = - 1  and C = 0. For C = - 1 ,  the flow 
capacities are equal, -  N 2 = 0, and e for this case, with v?(0) = 1, is

N
£ = (C =  -\)1 + N

For C = 0, A 2̂ is also zero since N 2 = |C|7Vi, and we get

(C = 0)
<P{N,)

(2.183)

(2.184)

As the flow direction is of no importance when C = 0, the same result can be found 
for parallel flow from eq. (2.179). Note that, due to the property of the function ip(X) 
according to

cp(X) =  c p { - X ) + X (2.185)

the subscripts in the 0-formula for counterflow can be freely interchanged. There
fore, the denominators in eq. (2.181) and (2.182) are always equal

(p{N̂  -N 2 )+ N 2  = (p{N2- N ^ ) + N ^ (2.186)

The formula for crossflow, one side laterally mixed, results in the efficiency expres
sion

N,/(p(/V,)
<p(N,/<p(N,))

(2.187)



For equal flow capacities, NilipiN^) can reach a maximum value of unity for = 
N 2 oô  and its maximum efficiency becomes
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(p(^)
= 0. 632 (2.188)

The function (p also figures in the case of crossflow over n rows o f  tubes. The short 
notations g (eq. [2.36]) and b = gNJn  that were introduced in section 2.2 for this 
case can be seen to be related to <p. Writing further abbreviated symbols a, b, B, and 
Z as

a = e-Ni/n

b = \ —a =
N.Jn

(p{N2/n)

(2.189)

(2.190)

B

Z  = bB

A', nb 
~  1<

nh-
R

(2.191)

(2.192)

we can put down the efficiency formulas for number of tube rows n = 1 to 6 in 
tabular form:

(1 -c,)c® crossflow over n row of tubes

1 + 2 ^  (2.193)

l +  ^[(o + 2 )Z + Z V 2 !]

1 +  ^ [(u- +  2a +  3)Z +  (2fl +  2)Z-/2! +  ZV3!]

1 +  ^ [(«■’ + 2cr +  3o +  4)Z + (3a-.+ 4a +  3)Z^ 2 !  +  (3a +  2}Z ^/3 ! +  Z V 4 !]

1 +  ^ [(a-* + 2a-’ +  3a’ +  4a +  5)Z +  (4a’ +  6a’ +  6a +  4)Z’/2 !+

+(6a’ +  6a +  3)Z’/ 3 ! 4- (4a +  2)Z V 4 ! -f Z ’ / 5 !]

A solution for an arbitrary number of tube rows is given in Appendix A. The 
properties of the function (p(X) reveal that, as N 2 0, b and Z tend to zero while



^  Â i- Thus, all the terms except unity in the set of eqs. (2.193) vanish, and the 
correct result ^1(^2 ^ 0 )  = 1 -  obtained. The validity of the result is
obvious since the heat capacity rate goes to zero for 7V2 ^  0 and the temperature of 
stream 2 remains constant. More interesting is the result corresponding to the other 
limit N 2 ^  00 3i  fixed flow capacity ratio R. As may be seen again from the behavior 
of (p, in this limit the quantities a, b, Z, and B tend to the values
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lim
N 1-̂ 00

(  =  0 \
b =  1
Z Zco = nIK

\ b ) \ B ^  = nlR J
(2.194)

So, all terms containing a vanish in this limit and finding the asymptotic values of the 
efficiencies is easier. At equal capacities on both sides (R = 1), these values for 
n = 1 to 6 yield

ôc,l  ̂ ^
-1 =  0.632 

= 0.729

= 0.776

- 1  - ^x,4 ^ ^

. 625
 ̂ -

- 5

^x.6

24

7 776 
120

= 0.805

-  0,825

.-6 = 0.839

Using the relation n"" ^!{n -  1)! = rf/n\, these first six values calculated may be 
generalized as

t f
- -cc,n fl (2.195)

This result can also be derived in a general way for arbitrary number of rows n from 
eq. (2.34) and (2.40) as shown in Appendix A. For larger n, the calculation can be 
considerably simplified using Stirling’s formula for the factorials of large numbers:

1
(2.196)

Against the number of tube rows n, Fig. 2.52 plots the limiting efficiency calcu
lated from eq. (2.195), as well as from eq. (2.196), using Stirling’s formula for n\. In 
practice, the asymptotic approximation of eq. (2.196) is sufficient for n > 4. The
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Figure 2.52 Maximum possible efficiencies Coo,« for cross flow with n rows of tubes at equal flow 
capacities (/? = l,A ^^oo).

maximum possible value of unity, to be reached for ideal crossflow, requires an 
infinite heat transfer area in infinite number of tube rows. From Fig. 2.52, the 
approach to this efficiency 6oo,oo is seen to be very slow. From eq. (2.196), we can 
calculate the number of tube rows in crossflow at equal capacity rates required to 
achieve a given efficiency:

” ( £ o o .n )  =

1
2n{\ (2.197)

To obtain of 90%, 95%, and 99%, the corresponding number of tube rows are 
determined to be 16, 64, and 1600! From this, one can see the practical implications 
of designing crossflow heat exchangers having high efficiency, as, for example, in 
heat recovery. In such cases, the answer lies in a multiple cross-counterflow arrange
ment.

For an apparatus with two passes and many baffles, typified by a shell-side 
stream laterally mixed, the compact 1/0 form can be written using the function ip\

— = (p(N^2) +  -f/V2 — (2.198)

With the notation used earlier for this, we can now write eq. (2.88) as

[2(p{(oN)/N] +  {\ + R - Ù ) )
(2.199)
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W -  {l+R"] 1/2

Here, too, the limiting value ê o of eq. (2.89) for N  — oo is derived, considering that 
(p(o)N)/N — CO in the limit. The passes being connected one in parallel flow and the 
other in counterflow, the argument of the function turns out to be the root mean 
square of the sum (for parallel flow) and difference (for counterflow) of the NTUs:

1/2 _ 2[(n ,+ /V 2)’ +  ( /v ,-/V 2 )-] |
1/2

(2.200)

For numbers of tube passes greater than two in a laterally mixed shell-side stream, 
the formulas become more complex. As shown by Gardner [G5, G6] and Hausen 
[H2], the limiting case of an infinite number of tubeside passes in a laterally mixed 
shell-side stream is treated very easily, it being identical with crossflow both sides 
laterally mixed (why indeed?)!

At low values of NTU, the efficiencies for two passes and an infinite number of 
passes are not very different. At R = 1,

(2.201)
(pW 2 N ) + {\ -  /2 /2 ),V

and

iV
passes c p ( N )  -  1 (2 .202)

With (p{N) = 1 + (M2) for A 1, both equations give e = M(1 + N). For an 
infinite number of passes (=  crossflow, both sides mixed), the efficiency e traverses 
a maximum value of passes = 0.5645 (at A  — 3, for = 1) and decreases to 
^00,00 passes = for A  ^  00. Figure 2.53 shows the efficiencies of heat exchangers 
with 2, 3, 4, and an infinite number of tubeside passes and one shell-side pass, 
laterally mixed, at equal flow capacities plotted versus the mean temperature differ
ence 0  with A as a parameter (see upper right quarter of Fig. 2.8 for comparison).

From this, it can be found that the multipass heat exchangers with even numbers 
of internal passes lie in the lower crossflow region between curve d for crossflow, 
both sides mixed, and the curve for az = 2 from eq. (2.201). For odd numbers of 
internal passes, the efficiency is higher or lower than for the next lower even number, 
depending on flow direction (more counterflow passes are, of course, better). The 
analysis for three passes is somewhat cumbersome, as one has to solve four coupled 
differential equations and determine 16 constants from these equations and the bound
ary conditions. Fischer [FI] has given an analytical solution for the case where two of 
the three passes are in counterflow with respect to the shell-side stream. Fischer’s 
solution, written in the new way 1/0 (A^, Ny) reads
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f i N „ N y
[2 -  a/(p(a)](p(Z) -  a -  4c cp(-c) 
[2 — b/(p(h)](p(Z)—b + 4c (p{+c)

Z = { N ^ ^  + - N y ( N y - N ^ )
1/2

Nv Ny
" =  2

A 7b = Z  — a c = ——

The subscript X  here denotes the outer, laterally mixed stream, which is in counter
flow to two of the three inner passes (stream Y) (see Fig. 2.53). Due to the asymme
try here, we did not use the subscripts 1 and 2. For equal flow capacities, /? = 1, 
i.e., iVy = Nx, tq. (2.203), as for pure counterflow, leads to an indeterminate expres
sion. The limit is not obvious from this somewhat more complicated function.

In Appendix B, a rigorous solution of the problem for the specific case R = I is 
derived from the fundamental equations. With this, too, the correctness of Fischer’s 
calculations can be checked. Now in place of eq. (2.203), one obtains
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1 9N— = N +  ---------------
0  ^ N  +  8/,(/V)

' +  X -  X-’ -  x “*
f^iN)

1+x^

(„ =  3, K = 1)

-N /3

(2.204)

The values of the LMTD correction F  tabulated by Fischer [FI] as a function of e, 
deviate from those calculated from eq. (2.204) (F = 0 /0 lm with 0 lm = 1 -  e at 
C = -  1) by up to 7.5%. At e = 0.603, F is  0.416. According to Fischer, however, 
it is 0.450. The reason is that he could calculate the limit of equal capacities only 
approximately from his formulas with R = 0.999 or F = 1.001, for example. The 
asymmetry of eq. (2.203) shows itself if the normalized mean temperature difference 
and the efficiency are calculated first for Ny = 15, Nx = 10 (F = 2/3) and then for 
Ny = 10, Nx = 15 (F = 3/2). In the first case (stronger shell-side stream), one 
obtains 0  = 0.0570 and ey = 0.856 (e  ̂ = 0.570) and, in the second case, 0  = 
0.0520 and e;, = 0.780 (e  ̂ = 0.520).

The curve shown in Fig. 2.53 for az = 3 was calculated from eq. (2.204). While 
the differences to the cases of two or an infinite number of passes remain compara
tively small for NTU below about four, they become significant at very high NTU. In 
the limit, the dominant counterflow behavior comes to light; and, in principle, one 
can reach maximum efficiencies of e«, ^  1 with such a configuration. The results of 
Fischer’s calculations were shown only up to F  = 0.450, i.e ., up to a maximum N  of 
about 3.4 at F  = 1, so that this interesting behavior at large NTU could not be 
recognized. The LMTD correction does not tend to zero as it does for two passes, but 
it reaches an asymptotic value of F^ = 1/9, as can be derived from eq. (2.204). Here 
(n = 3, C = - 1 )  the same efficiency can only be reached in the limit with nine 
times the number of transfer units required in an ideal counterflow exchanger. But 
contrary to two passes, efficiencies above 0.6 are, in principle, not impossible at 
equal capacities.

It seems to be logical to increase the efficiency by insulating the middle parallel 
flow pass, i.e., to transform it into a pure bypass with no heat transfer and, thus, 
come to an apparatus with two counterflow passes. Recently, Roetzel [R3] has pre
sented calculations and design ideas for such an apparatus. The corresponding for
mula for an apparatus with two internal counterflow passes and one shell-side stream 
can be written rather simply in the new way as (problem!)

1

0
= cp

Nv
+

Nv
1 +

(pjNy)
2cp{Ny/2)

^X,Y

= = 2) (2.205)

(2.206)

At F  = Ny/Nx = 2, the argument of the first term becomes zero and (^(0) = 1. The 
expression in the second term varies between 3/2 and 2 for N y  0 and N y  oo, 
respectively. At the particular value of F = 2, the apparatus has the same asymptotic 
efficiency ey as an ideal counterflow exchanger at F  = 1 [e = N/(l + N)].



As an energy balance will show, the corresponding efficiency ex of the stronger 
stream cannot surpass the value of 0.5. However, the apparatus with two counterflow 
passes ai R = 1 is not at all an ideal counterflow exchanger! Its efficiency is indeed 
higher than that of a crossflow exchanger, one side laterally mixed, but it reaches a 
terminal value far below unity: ê o at J? = 1 is 2/3 as shown by the dotted curve in 
Fig. 2.53. At very high N  and equal heat capacities, it would, therefore, make little 
sense to insulate the parallel flow pass in an apparatus with n = 3.

As in the case of n = 2, for four passes an analytical solution has also been 
found by Underwood [Ul, FI] in the 1930s. In the 1/0 form, it can be written in a 
much simpler way than for three passes (problem!).

With X  -- N ^ , Y  = Ny, and Z  = [X^ + ( Y / 2 f f \  one obtains
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0
<p(Z) +  cp{Y) -  (p X +  - - Z {n = 4) (2.207)

For infinite capacity flow rate and, hence, no temperature change of the X-side fluid, 
X  becomes zero, and 0  should be the well-known function of only Y; likewise, for 
y  = 0. It is easily checked that eq. (2.207) satisfies these conditions: 1/0 = (p(Y) for 
X = 0 and 1/0 = (p{X) for F = 0. In its original form as given by Underwood, the 
mean temperature difference was represented in terms of hyperbolic tangents and 
cotangents. These are related to the auxiliary function (p(x) by:

cp(4x) (p{2x) 
tanh X ==---------------------- 1

coth X =
cp(2x)

1

Actually, n = 4 is a weakly asymmetric case: with 7  = 5, X = 10, one finds 1/0 = 
13.715, €;, = 0.7292, and Y = 10, X = 5 leads to 1/0 = 13.507, = 0.7403, a
difference of 1.5%. In most cases, the asymmetry is even less. At 7  = X" (/? = 1), 
the asymptotic efficiency for N ^ o o  (Y  = X  = N, Z  V5"A/2) becomes

e J R = \ , n  =  4) =
5 -f" \/5

= 0.5528 (2.208)

about 6% below the corresponding value for n = 2. This is not the maximum, 
however, for R = 1; at N  -  3.25, one finds ê ax = 0.5691 (see Fig. 2.53).

For the series-parallel arrangements that are frequently encountered in plate heat 
exchangers (see section 4.3), the efficiencies are suitably calculated from a general
ized form of eq. (2.121):

^r)ixn — ~  y) ""

Y ¡n

(2.209)

cp((7/n)+X) (Parallel flow)
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£c 1- =
Y In

( p { ( Y / n ) - X ) + X
(Counterflow)

Stream Y flows through the apparatus in n-fo\d series connection, while stream X  is 
subdivided into n parallel substreams (see Fig. 2.54). The exponents and are the 
number of parallel and counterflow passes, respectively. For even numbers n, we 
have rip = = nil.  For odd numbers n, the more favorable ^  {n — l)/2 and
= (n + l)/2 should be chosen. If the capacity rate ratio is equal to the number of 
passes, R = n, and Y  = n X  in the formula for we again have <̂ (0) = 1 and two 
different formulas, as required in eq. (2.117), are not needed. The maximum possible 
efficiencies of such series-parallel arrangements are easy to recognize from this as

1
f;p y, max + n/R

^  ”) =

Thereby, the maximum efficiency of the whole arrangement is always

(2.210)

(2.211)

> «) =  1

R V
y ,1 XM, max (R < n) = I -  1

\ + n / R
(2.212)

For example, with n = 2, i.e., = 1, and R = 1, the maximum efficiency is

■'1x2, maxa x ( «  =  l )  =  1
1 2
2 3 3

=  -  =  0.667

and for n = 3 with = 2, = 1 and R = \ also, it is the same value:

e|x3,max(^ ^   ̂ ~  ^ 5

For the less favorable case = 1, = 2, it follows that

^1x3, max (R = i,„^ =  1) =  1 2 / 3 \ -  5
=  -  =  0.625

(2.213)

(2.214)

(2.215)

As n increases, the maximum efficiency at /? = 1 begins to decrease gently, and, in 
the limit « — 00, the lowest value of at /? = 1 is reached:

lim ( 1 — -n-.oD V n = e

( R = l )  = l - e ~ '  =0 .632

-1

•"1 XX, max (2.216)



This coincides with the corresponding value for crossflow, one side mixed, eq. 
(2.188).

The Ì X n series-parallel arrangement terminates in crossflow, one side mixed 
(see Fig. 2.53 curve c) just as the arrangement of n inner passes in a laterally mixed 
outer stream leads to crossflow, both sides mixed (see Fig. 2.53 curve J) as a lower 
limit for n-*oo. The two crossflow limits have already been discussed by Gardner 
[G5, G6] in 1941.

The development of these two fundamental families of flow configurations, from 
parallel or counterflow to crossflow, one side or both sides laterally mixed, is shown 
schematically in Fig. 2.54. The differences and similarities of various flow configura
tions may be best recognized from such simple symbolic figures. The multiple passes 
are denoted by the number of passes n, the number of parallel flow passes and the 
number of counterflow passes n .̂ One of these three could have been omitted since 
+ is always equal to n. The corresponding calculation formulas are again compiled 
in Table 2.3 in a unified and compact manner. As before (eq. [2.207]), Zhere stands 
for the NTU of the outer stream and Y, the NTU of the inner stream. The NTU may 
indeed be regarded as the terminal values of a nondimensional length coordinate (0 < 
X < X). Table 2.3 contains expressions for 1/9 (X, Y), which can be formulated very 
compactly with the auxiliary function <p(x), with the exception of the slightly more 
complicated case with three passes. The normalized changes in temperature or effi
ciencies e are again easily obtained from = XO  or = T0. For the exchangers
with even numbers of passes n = 2m and rtp = m, = m, one can even find a
general equation which is in agreement with the results of the analyses for « = 2, « 
= 4, and n ^ o o  (see Table 2.3). From this the asymptotic efficiencies of the (2m, m, 
m) arrangements are
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^ j R  = )̂ = 1.5 +  ( v T + T ?  — l)/(2m )
(2.217)

£y, oc(^ = 2 'h)
1 + ( v / 5 - l ) / ( 2 m )

(2.218)

In fact, the generalized equation for (2m, m, m) given in Table 2.3 is mathematically 
correct also for 2m = 6, 8, 10, etc., passes, as may be seen from a comparison (see 
Appendix C) with a generalized solution obtained by Kraus and Kern in 1965 [K4]. 
(This reference has been brought to my attention only recently by B. Spang, from 
Wilfried Roetzel’s laboratory in Hamburg).

Without rewriting the known solutions for two and four passes in the new way, a 
simple closed form of the generalized solution for (2m, m, m) would probably not 
have been found.

Since lateral mixing of the shell-side streams lowers the efficiency, one can 
obtain a connection in parallel in baffled shell-and-tube heat exchangers by using a 
suitable longitudinal shell-side baffle [G6]. These configurations with multiple passes 
on the shell side may be treated by the equations for countercurrent cascades and 
series-parallel arrangements.
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A Y
Parallel flow

X

( 2 . 1, 1)

Stream X laterally 
mixed, stream Y in 
n passes (n, Pp, n̂ )

Counterflow

E E E E E E zd c

( 1- 2)

_ -J ^ ---------------

(3 . 1 , 2 ) (1*3)

r
i i  ( 4 . 2 . 2 ) (1*4)

__________________________ )

Stream X in parallel, 
stream Y in series, 
n passes (1 x n)

Crossflow 
both sides, one side 

laterally mixed

Figure 2.54 Heat exchangers with n passes in a laterally mixed shell-side stream and series-parallel 
arrangements (scheme, see Table 2.3).
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Table 2.3

kA
(Me),

Y = kA
( M e

s ^ = x e ,  sy = Ye, (p{x) =
pn

for n internal passes in
0(X, y) laterally mixed outer stream

1 0  cp(XY Y)
0 1 (p(X-Y) + Y

1 1 (p(Z,) + X + Y - Z ,

Parallel flow 
Counterflow

Zi = [^2 + y2ji/2

Y \  X + YI 2 - Z 22 2 (p(Z;) +  ( p ( 7 ) - ( p |  ^  1  ̂ Z , =

/ Ym m m (p(ZA-\-(piY) — (p\ —\m
Y \ ^ L ^ Y / m - Z ^ x^ + © ■]

1/2

1/2

0 00 00 (p{X) Y (p(Y) -  I Crossflow, both sides laterally mixed

0 2 (p Y \  Y
y  ) Y

1
2<p{YI2)

1 2  X +

f iX,Y)  =

X - Y  
f { X , Y ) - \

[2 — a / ( p ( a ) ] ( p { Z )  — a  — 4 c  (p(—c)

X^ + - Y { Y - X )
1/2

AT
\ - e - ^

£oo Ŷ,oo
( Y=X) (Y =

0.5 0.5
1.0 1.0

0.586 0.764

0.553* 0.866

0.5** 1.0

0.667 1.0

1.0 1.0

[ 2 - b l ( p { b ) \ ( p { Z ) - b  +  4 c  ( p{ +c)

z  X Y  ̂ ^ Y
a =  — — —  — —  b =  Z — a c =  —  2 2 3 3

' 0 (a:, y )
for series-parallel arrangements (1 X n)

i n„ n ̂  ̂ 1 — (1 — 8p)"p(l —

Yin Y/n
P (p{Y/nYX)  ̂ (p(Y/n-X)YX 

o 00 00 (p( ) (p{X) Crossflow, one side*** laterally mixed
\(pW J

£max(  ̂ = r  = 3.25) = 0,569 ”  = F = 3) = 0.565 *** (T-side)

0.632 1,0
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Equation 2.142 for the efficiency of a pair o f  heat exchangers, coupled by a 
circulating heat carrier (“ S” ) (see Fig. 2.41) may be written in the form 1/0 {X, Y, 
Z|, Z2):

Z J Z ,
0  e ( X , Z . )  ‘ Q(Y,Z-,)

+ (2.219)

A' =
kA

Wei
Y =

kA
Wei 2 , =

(kA),
(Afe

Z, =
(kA),

( ^ S ) s-p/ 1 \^ -^ p /2  v-^-p/S
This is also valid for the ‘‘short” regenerator (see eq. [2.146]). With equal exchang
ers (Zj = Z2 = Z), this form is simpler than the one written with e. The function 
0(Z, T)—or its reciprocal—is generally suited for a compact representation of the 
relationships between the transfer performances and the residence times of the fluids 
in an apparatus. The function ey), which would be more suitable for the design 
problem, is not available in an explicit form in most cases. Roetzel and Nicole [R2] 
have, therefore, suggested an empirical approximation formula for 0(e;^, ey) with 16 
constants that can be fitted to the exact implicit calculation. The constants so deter
mined have been given along with the diagrams 0(e^, ey) in the fifth edition of VDI- 
Waermeatlas. Perhaps it is simpler and safer to use the exact implicit form 0(X, Y), 
e{X, Y) from Table 2.3, as the copying of 16 constants is fraught with the risk of 
errors.

8.2 Premises and Limitations of Linear Theory

A com mon feature o f all the analyses and, therefore, all the results o f the first and 
second chapters was the simple linear law for the kinetics of heat transfer from the 
hot to the cold medium (eqs. [1.12, 1.49, 1.59, 1.60, 1.81, 1.82, 2.16, 2.17, 2.49, 
2.50, 2.58, 2.59]) and the energy balance (e.g., eqs. [1.50, 1.51]), in which only the 
change in enthalpy in the flow direction and the heat flux perpendicular to it are 
accounted for in steady state. The validity of the results is, therefore, necessarily 
restricted to the range of validity of these fundamental equations. Moreover, it has 
been assumed, during integration of the fundamental equations, that the overall heat 
transfer coefficients k and the specific heat capacities Cp of the fluids are independent 
of temperature or temperature difference. This does not imply, however, as often 
stated in papers and books in this context, that the whole “ linear theory” would be 
valid only for constant overall heat transfer coefficients k. The overall heat transfer 
coefficient k may indeed depend on the flow path z, as it actually does to a high 
degree in laminar flow, for example, while the length dependence is restricted to a 
short developing zone for turbulent flow. In the equations to calculate the outlet 
temperatures or the mean temperature difference, the overall heat transfer coefficient 
is, then, an integral average over the whole surface area A

(2 .220)
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From measurements on industrial heat exchangers, usually only these average values 
of k can be determined. If the distribution is not known, one certainly cannot 
calculate the exact variation of temperatures inside the apparatus. Nevertheless, the 
linear theory is still correct, within the framework of its premises, if the calculation is 
restricted to the determination of outlet temperatures. Usually the following addi
tional processes are not accounted for in the balances: heat exchange with the sur
roundings (“heat losses” ), heat conduction in flow direction in the fluid and in the 
separating walls (“ longitudinal conduction” ), dissipation of mechanical pumping 
power, and expansion or compression power of the fluids. The influence of these 
energy terms, negligible in many cases, may easily be estimated roughly by simple 
calculations, as has been done, for example, in the first chapter for the heat losses and 
the dissipation of the stirrer power.

In comparison to the heat transfer across the wall from the hot to the cold fluid, 
longitudinal conduction in the fluid may be neglected as long as

Nil {Re Pr)~ (2 .221)

remains valid, as can be easily shown from an analysis accounting for longitudinal 
heat fluxes (problem!). The inequality of eq. (2.221) is valid for nearly all industrial 
heat exchangers. In laminar duct flow with Nu^ = const, and low Peclet numbers, 
the longitudinal conduction in the fluid can no longer be neglected. Especially for 
liquid metals {Pr < 1), this assumption, otherwise quite justified, does not hold. 
Further, and sometimes much more seriously, the restrictions of the validity of our 
analyses may be seen in the idealizing assumptions on the various degrees of longitu
dinal and lateral mixing of flow configurations. Real situations can be approximated 
only by these idealizing limiting cases—from “ stirred tank” to “plug flow.”

Besides the idealizing assumptions with respect to lateral and longitudinal mix
ing, it is frequently taken that the fluid flow is uniformly distributed. The effect of 
maldistribution can not always be completely avoided, especially in parallel flow 
channels (tube bundles, plate packs). It can, in fact, be surprisingly large and ex
tremely unfavorable to the performance of exchangers, especially at high NTU [S4, 
M2]. In shell-and-tube heat exchangers, the effect of maldistribution is compounded 
by the effects of bypass flows. The usual design procedures these days choose the 
easier, though approximate, route of accounting for these effects by modifying the 
heat transfer coefficient [H3, VI]. This is not a logical approach as the effects ought 
to be accounted for in the balances, not in kinetic parameters. It is, nevertheless, 
better than completely ignoring these effects, so long as it is borne in mind that this 
approach is a temporary expedient. If theoretically expected efficiencies are to be 
achieved in practice, considerable attention has to be paid in the design and manufac
ture of heat exchangers, to ensure that the flow is distributed evenly among the 
parallel channels.

When numerous parallel channels are connected to common distributing and 
collecting ducts (Fig. 2.55), the usual approach for achieving uniform flow distribu
tion among the channels has been to choose much larger cross-sectional areas for the 
distributor and collector ducts than those of the connecting channels. Recently, the
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Figure 2.55 Flow distribution into n parallel channels.

Figure 2.56 Flow distribution into 10 parallel channels, measured in the arrangement from Fig. 2.55 as 
a function of the ratio of distributor to collector cross sections SJŜ .



analysis of the manifold problem by Bassiouny and Martin [B2] revealed an alterna
tive solution for nearly perfect uniform flow distribution in parallel channels that does 
not require large distributor and collector cross-sections [Bl]. Only the ratio of dis
tributor to collector cross-sections (^ 1 )  needs to be chosen properly. Friction in the 
distributing and collecting ducts is neglected in the theory [B2] compared to the 
change of momentum arising from the withdrawal of mass into the parallel channels. 
A completely uniform flow distribution is possible if, and only if, the cross-sections 
of the distributor and the collector, and 5 ,̂ are in the ratio:
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(2.222)

The quantities jŜ  and are velocity ratios, defined as the local velocity components 
parallel to the distributor (collector) axis measured at the entry to (exit from) the 
parallel flow channels as related to the average flow velocity in the distributor (collec
tor) cross-section at the location of the branch. These quantities, in the form (2-j8), 
appear in the momentum balances written for each junction of the ducts and the 
branching channels. According to literature data and from Bassiouny’s measurements 
[Bl], the values of ¿8̂  are close to unity (actually somewhat larger, «1 .3) while 
values of around zero (or even slightly negative, «  -0 .0 5 ) are found on the 
collector side. From this, optimal ratios of cross-sectional area of distributor and 
collector are found which significantly differ from unity:

0 .5 8 ...0 .7 (2.223)
opt

Experiments have shown that uniform distribution can indeed be achieved with 
(SJSc) — 0.58 for an arrangement of ten parallel tubes between distributor and 
collector tubes of only slightly larger size (Fig. 2.56). The diameter of the collector 
tube ought to be chosen about 30% larger than that of the distributor tube, in order to 
obtain uniform distribution among the parallel channels [(1/0.58)^^^ «  1.3].

In the following chapter, some examples will be given on how to treat the thermal 
and hydraulic design of different types of heat exchangers. In certain examples, not 
all the premises of our analyses in chapters 1 and 2 will hold good. This is mostly the 
case if the fundamental heat transfer process in an apparatus is coupled with other 
phenomena such as mass transfer, evaporation, and condensation.
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CHAPTER

_______________________ THREE
EXAMPLES IN HEAT EXCHANGER DESIGN

1 WHAT IS THE OPTIMAL FLOW VELOCITY?
EXAMPLE: DOUBLE-PIPE HEAT EXCHANGER

1.1 Problem Statement

In the following example, the design of an apparatus for a certain task will be demon
strated under relatively simple conditions, the data being set out below:

• In a continuous operation, 10,000 kg/h of aqueous leach (lixivium) are to be cooled 
from 60°C to 20°C. Cooling water at 10°C is available, also at 10,000 kg/h.

1.2 Check for Feasibility, Minimum Heat Transfer Area 
Required

From the problem statement, the required efficiency (in other words, normalized 
temperature change) can be calculated immediately (subscript 1, leach; 2 cooling 
water):

115
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£i =
T[ -  T['
T[ -  n

6 0 -2 0  4 ^
“  6 0 -  10 ~ 5 “  ■

(3.1)

The aqueous leach and cooling water have roughly the same physical properties: as 
they also have the same flow rates, one can put R = {Mc^J{Mc^2 = 1. At equal 
flow capacities, the required efficiency of 80% can only be reached by ideal counter 
flow, ideal crossflow, or countercurrent cascades (see Fig. 2.8 and Fig. 2.11). For 
ideal counterflow at equal flow capacities (C = -  1),

N
8 =

Ì + N MO) = 1] (3.2)

Therefore,

N  =
1 — E

0.2

(3.3)

The minimum required number of transfer units is, thus, 4 and the minimum required 
surface area is

Me
\A = N  ■ ---- -K  req '' ''m in  ^

(3.4)

1.3 Physical Properties, Heat Duty

The average temperature is = 40 °C on the leach side, and = 30 °C on the 
cooling water side. For an approximate calculation, one may use the properties of 
pure water at 35 °C (on both sides):

specific heat capacity ^pl,2 = 4.2-10^ J/(kgK)
density P i,2 = 1000 kg/m^
conductivity ^1,2 = 0.62 W/(Km)
viscosity V\,2 = 720-10“' P as
Prandtl number (Pr = r/Cp/X) Pr = 4.9
The heat duty to be transferred is Q = M c / r ;  -  T[') = 467 kW



1.4 Choice of Dimensions of One Heat Exchanger Element

We choose a double-pipe (see Fig. 3.1), the center tube made from stainless steel 
(leach) with a heat conductivity of X = 12 W/(K m). First, an order of magnitude of 
the area can be found from eq. (3.4) using an estimated value of k (water-to-water, 
double-pipe) «  1000 W/(m' K) to be = 4(10000/3600)(4.2 • lOVlOOO) m' = 47 m  ̂

Choosing conventional tubing dimensions, as, e.g..
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central tube 
outer tube (shell)

25 X 2.5 [mm X mm] 
38 X 3.5 [mm X mm]

(̂ o
(̂ o

X s)j 
X s)^

and a length of L = 6 m, then the transfer surface area of one element according to 
Fig. 3.1, the outer diameter of the central tube being chosen as the reference diame
ter, is

^Element = ird ĵL =  7i25 10  ̂ m • 6 m = 0.4712 m̂ (3.5)

About 100 such elements would, therefore, be needed for the task at hand. These 
elements may be connected partly in parallel and partly in series. By means of the 
flow cross-sections of one element and the number of elements connected in parallel, 
one can change the flow velocity w and, consequently, the heat transfer coefficients.

The flow cross-sections of a heat exchanger element are

tubeside cross-section 
shellside cross-section

=  x/4(4 -  2s)\ = 3.142 cm"
Ss = 7t/4[(4 2i)s -  dlj] = 2.639 cm"

The cross-sections of central tube and shell side (annulus) are roughly equal 
(5j/5's = 1.190). The flow velocity is obtained from continuity with the number of 
parallel elements:

M

Qn̂ S
(3.6)

with «p = 1 (all the elements connected in series), we would get a maximum flow 
velocity in the annulus of about ^ With /ip = 100 (all the elements in

¥

3 8 * 3 .5  

/  2 5 * 2 .5

- 6 0 0 0 -

Figure 3.1 Double-pipe heat exchanger element.



in parallel), «  0.1 m/s would be obtained. Which arrangement, i.e., which 
flow velocity, would be most favorable?

1.5 The Economically Optimal Flow Velocity

It is well known that heat transfer coefficients a  for flow through ducts increase with 
increasing flow velocity w, with heat conductivity X, density p, and specific heat 
capacity Cp of the fluid, while they decrease with increasing viscosity r] of the fluid, 
and with the diameter d as well as the length L  of the duct. The exact relationships 
may be found from the standard equations [H3, VI] valid in the laminar or turbulent 
regimes, respectively, at specified thermal boundary conditions (problem!).

Once the physical properties (X, p, Cp, r/) and the dimensions of the heat ex
changer element (d, L) are fixed, the choice of the highest possible flow velocity w 
leads to the smallest transfer surface area, i.e., to the smallest number of exchanger 
elements required. The investment costs for the apparatus will, therefore, diminish 
with increasing flow velocity. High flow velocities, however, cannot be obtained free 
of charge. The fluids have to be transported through the apparatus by means of pumps 
or compressors. The pumping power for given mass flow rate and density is 
proportional to the pressure drop across all the elements connected in series:
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. A p
fV p=M  —

From the equation

Ap =  ^ (R e )^ w ^ ^

(3.7)

(3.8)

where n̂ L is the total length of all elements placed in series, one can recognize that 
the pumping power and, therefore, the cost of operation will strongly increase with 
flow velocity. An economically optimal flow velocity will, therefore, be found, if 
the sum of the investment costs, decreasing with w, and the costs of operation, rising 
with w, reaches a minimum.

Such an economic optimization will be demonstrated in principle below using 
rather simple assumptions.

1.6 Calculation of Required Transfer Surface Area

First, as a base value, a velocity o f w j -  1 m/s in the inner tube is chosen. From eq. 
(3.6), it is seen that n̂  =  9 tubes connected in parallel will suffice. The flow veloci
ties are then

Wt =
M

gn^S y T = 0.982 m/s

and
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Wc =
M

Qn S
= 1.17 m/s

For the inner tube, this results in a Reynolds number of

R€t = =  27 300 (-> turbulent)

With

and

c?hT 20- 10-

Pr = 4.9

one obtains from eqs. (1.124) and (1.140)

Nuj = 172 = 0.0242 a, = 5 330 W/m' K

On the shell side (in the annulus) with

dhs =  (do -  2i)s -  i/„K = 6 mm

Res = = 9 750 (-  ̂ turbulent)

K  =

=  1 0 - ’ 

25
(tf„ -  2s)s 31

fi = 0.86 W “ ’'' = 0.8901

Pr =  4.9

one finds correspondingly:

Nus = 60.9 = 0.0317 a, = 6290 W/m'K

The overall heat transfer coefficient, defined for the outer surface of the central tube 
(^ot) follows from

1 ôT T̂̂ oT . 1 , r>+ :---̂ + - +
T̂ mT

(3.9)

Herein is
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ôT
(do

A . -

---------— = 1.250
2s)j 30

A ' ‘o 25 , 25 1 1 1 ^A^ = -------------- ------- = — In— = 1.116
ln(^,M,) A^r 5 20

Rf is an additional heat transfer resistance, accounting for fouling of the transfer 
surfaces during operation. Empirical values for this may be found in the literature 
depending on the kind of fluids and the conditions of operation [H3, VI]. The compo
nent resistances in eq. (3.9) are best expressed in [m̂  K/kW]:

1 = (0.235 -h 0.232 -f 0.159 -h 0.1) m^K/kW
inside wall outside Rf

-  = 0.726 m 'K/kW k =  \31S W/m"K

In this case, obviously all the resistances are of the same order of magnitude. The 
fouling resistance has been chosen to be Rf =  OA m̂  K/kW. From eq. (3.4), the 
required transfer surface area becomes

y4req = 33.87 m
*req = 71.9

* Element

i.e.

and

= 8-9 = 72

^ = 72 = 33.9

1.7 Calculation of Pumping Power

The calculation of pumping powers from eqs. (3.7) and (3.8) is now relatively sim
ple, as the friction factors  ̂ had already been calculated to find the heat transfer 
coefficients. In addition to the straight lengths of tubing, pressure losses in the 180° 
bends on the tube side and in the sharp-edged T-junctions on the shell side, as in Fig. 
3.2, have to be accounted for.

Tube side

Apj — ¿180° Bendy ^ (3.10)

The loss coefficient for smooth 180° bends depends on the radius of curvature r and
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Figure 3.2 Double-pipe heat exchanger, series connection of double-pipes.

weakly on the Reynolds number. From information given in HEDH 2.22-16, one 
finds

¿ . 8 0 -  Bend = 1.38 • 0.216 dJ2
0.95 + 17.2 ( -\d,l2

-1.96-1

R e -0.17

which can be written more concisely as

?180- Bend =  0 .2 8 3 7 ? ^ - «  ' ’ i r .  . 8 , .  ( ^ :
d,

With (2r/dj) = 200/20 = 10, we obtain

Bend *

with

Rê  = 27 300 — ^ j g o °  Bend “  0*41

A/7t = 8(7.26 +  0.41) ^  (0.982)  ̂Pa

and

(3.11)

(3.12)
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Apt = 29 600 Pa (= 0.296 bar)

With this, the pumping power becomes Wpj = 82.2 W. Dividing this by the pump 
efficiency, taken here as 70%, the electric power required to drive the pump works 
out to liVr,ei = 112 W.

Shell side

^Ps “ ŝ( + ?180° sharp j “ (3.13)

The loss coefficient for a sharp bend of 2 X 90° in a T-junction may be taken from 
suitable diagrams in HEDH, VDI-WA or other handbooks. One, thus, finds

180° sharp « 1.3 + 1.05 = 2.35 (3.14)

i.e.,

Aps =(31.7 + 2 .3 5 )^ (1 .1 7 )2  Pa

Aps = 186 000 Pa (= 1.86 bar). 

The pumping power is, therefore.

Wps = 518 W

and the electric driving power becomes

= 740 W

1.8 Calculation of Costs 

Costs of investment

Heat exchanger elements such as the one shown in Fig. 3.1 cost 500 $ each including 
all fittings (screws, gaskets, etc.). With an amortization of 10%/a, this amounts to an 
investment of 50 $/a. The investment costs required for n elements are, therefore.

C =  rr 50 $/a (3.15)

At Wj = 0.982 m/s, we have n 12

C, = 3 600 $/a
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Costs of operation

If the plant is to be in operation for r = 6000 h/a (out of the maximum possible 8,760 
hours per year) and if the price of electrical energy would be = 0.15 $/kWh, the 
operation would lead to the costs

Cq —  T +  lips,el)

Co = 900lVpgi $/(akW)

(3.16)

and with

Total costs

1.9 Optimization, Discussion of Results

The calculations from sections 1.6 {A, n), 1.7 {Wp, lipei), and 1.8 (Q, Cq, O have to 
be repeated now with other velocities, or numbers of parallel elements (problem!). 
For these repeat calculations, it would be best to proceed by halving and doubling the 
velocity used initially:

a. «P = 4 Wj =  2.21 m/s Ws = 2.63 m/s

b. «P = 18 — Wj =  0.491 m/s Ws = 0.585 m/s

One obtains:

a. n. = 14 n =  56 C, = 2 800 $/a
Apj = 217 kPa 
F̂T,el = 863 W

Aps = 1 348 kPa 
lTps,ei = 5 351 W C = 5 539 $/a

C = 9 393 $/a

b. «S = 6
Apj =  6.61 kPa 
l̂ PT.ei = 26.2 W

n =  108 
Aps = 42.3 kPa 
lLc,e, = 168 W

C, = 5400 $/a 

C = 175 $/a

C = 5 575 $/a

or all together:
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Q/($/a) Q/($/a) C/($/a)

0.49
0.98
2.2

18
9
4

6
8

14

108
72
56

5400
3600
2800

175
771

5593

5575
4371
8393

In Fig. 3.3, individual and total costs are plotted versus the veloeity in the inner tube. 
One can see a minimum in the total cost at a velocity of somewhat above 1 m/s. 
Precise calculation would show that the most favorable apparatus has n̂ -n̂  =  8-8 = 
64 elements. With a tube pitch of 200 mm, the envelope dimensions would be roughly 
(1.6 X 1.6 X 6) m\

In order to demonstrate the principle, the calculations of costs were kept as 
simple as possible. In practice, many more individual costs will have to be accounted 
for. So the result obtained here is of a more-or-less qualitative nature.

The pumps will have to overcome not only the flow resistances in the heat 
exchanger but also in the connecting pipes and other components of the plant. An 
economic optimization, then, has to be extended to the whole plant. Heat exchanger 
design will, therefore, usually be based on a given allowable pressure drop which has 
been specified by a plant designer for the entire heat exchanger flow circuit. The 
designer of the heat exchanger, then, has to use this given pressure drop as well as 
possible, to keep investment low.

The problem of fouling of heat transfer surfaces may also lead to the choice of 
high flow velocities. Conventionally used flow velocities of liquids in heat exchangers 
are in the range

0.2 m/s < w, < 2 m/s (3.17)

and those of gases at atmospheric pressures are in the range

Figure 3.3 Investment-, operation- and total 
costs vs. flow velocity in inner tube.



EXAMPLES IN HEAT EXCHANGER DESIGN 125

5 m/s < < 50 m/s (3.18)

i.e., at velocities higher by a factor of around 25. This can be explained from the fact 
that the costs of investment (Q oc oc \/k) are much higher for gas-gas heat 
exchangers at the same thermal task and flow velocity than those for liquid-liquid heat 
exchangers (k̂ /k̂  oc 500), while the costs of operation (Cq oc 1̂ , oc p̂ŵ ) are much 
lower for gases than for liquids because of the much lower densities of gases. There
fore, the minimum in total cost shifts to much higher velocities. In specific applica
tions, the given ranges of velocity may be exceeded on either side.

2 WHAT ARE THE OPTIMAL DIMENSIONS 
OF A HEAT EXCHANGER?
EXAMPLE: SHELL-AND-TUBE APPARATUS

2.1 Problem Statement

In the preceding example, the question for an optimal flow velocity was treated for an 
apparatus with specified dimensions of one element. The result was an arrangement 
of 8 X 8 double pipes (eight assemblies in parallel, with each assembly having eight 
tubes and annuli in series) in an envelope of 1 .6  X 1.6 X 6  m \ In place of individual 
shells, one could also have used one common large shell for all the inner tubes, i.e., a 
shell-and-tube (bundle) apparatus. At a given flowrate and pressure drop, one can 
realize the required total flow cross-section 5 by a few large or by many small tubes. 
Is there an optimum for the tube diameter d, and thus for the number of tubes in the 
bundle? To simplify the treatment of this question, we assume that the shell-side fluid 
evaporates at constant temperature and that the heat transfer resistance is on the tube 
side (C = 0, k »  «i). One could imagine, for example, that air flows through the 
tubes and is to be cooled from T' to T”. On the shell side, a refrigerant may evapo
rate, as shown schematically in Fig. 3.4.

Because k -  ol,, the tube wall temperature is constant and equal to the 
refrigerant saturation temperature corresponding to its pressure. With the duty to cool 
the given flow rate M of air from T' to T", the efficiency e and the required number 
of transfer units are fixed:

£ r  -  V '
“  0  "KJ LMr̂eq (3.19)

2.2 Feasibility

The required NTU

kA
N  = —

M e . M ^
(3.20)
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S R e P r

can also be expressed in terms of the dimensionless numbers Nu and Re Pr d/L = 
Gz for duct flow {M = pwS, A/S = 4 L/d̂ .̂ From this, the ratio of length to diameter 
of the tubes has to satisfy the condition

L _  R eP r
(3.21)

In turbulent duct flow, the Nusselt number has only a weak dependence on L/d (see 
eq. [1.140]). In the turbulent range, 2300 <  Re <  10̂  and at fixed Prandtl number 
(say, Pr = 0.7, air) the factor Re Prl{A Nu) varies from 56 to 155, a less than 
threefold variation. Thus, once the thermal task, i.e., is specified, the ratio of 
length to diameter is more or less fixed in the turbulent range of operation.

Large NTU requires long tubes!

(See problem 2.8 and Fig. 2.12) This can also be seen from a graph of the function 
Nu(Gz, Pr)—a Nusselt-Graetz chart—as shown in Fig. 3.5 for Pr = 0.7. In that 
diagram, as favored by Schlünder [H3], the lines N =  const, from eq. (3.21) are 
straight lines (radii through the origin) with a slope of N/4. In a log-log plot, these are 
lines Ig Nu =  Ig (Â /4) + Ig Gz with a slope of unity and an intercept Ig (Â /4). The 
curves calculated from eq. (1.140) for turbulent duct flow are shown for some values 
of L/d as a parameter. Over a wide range, they are nearly parallel to the lines of 
constant NTU.

A tube with a diameter of 100 mm and a length of 10 m does not transfer more 
heat than one with a diameter of 10 mm and a length of 1 m at the same throughput, 
though it has a hundredfold larger transfer surface area. The pressure drop in the 
smaller tube would be higher, however, by almost a factor of ten thousand! In the 
turbulent range, high efficiency (e ^  l , i . e . ,A >  1) can only be achieved with long

| r 12 Vapor

Figure 3.4 Cooling of air by vaporizing refrigerant 
in shell-and-tube heat exchanger.
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Figure 3.5 Nusselt-Graetz chart for tube flow, air {Pr = 0.7).

tubes (large L/d). Also shown in Fig. 3.5 is a single curve of Nu(Gz) at a constant 
Pr = 0.7 for laminar flow. One may conclude from the figure that it is possible to 
realize any required NTU with laminar flow too. In this case, with a specified NTU, 
the value of Re Pr d/L = Gz is also fixed immediately:

AT ANu{Gz)/Gz

AMcQC'wd̂  
G z =  L L  

/ X 71?mL

(3.22)

(3.23)

Here M =  pwmrd l̂A is the total mass flow through the n parallel tubes in the bundle. 
Now the thermal problem (flow rate, physical properties, change in temperature, i.e., 
NTU and, consequently, also Gz given) can be solved under the condition

n L  =  Ct =  const (3.24)

with bundles of various numbers n and lengths L  of the tubes if only the product n-L  
is kept constant. The pressure drop and, thus, the pumping power remain constant, 
according to the Hagen-Poiseuille law (see eq. [1.114] with A' = 0 and M  M/n) if 
the condition

L
= C|T — const (3.25)

is also fulfilled. Both the thermal condition (cj = const) and the hydrodynamic 
condition (c„ = const) may be simultaneously fulfilled by keeping the ratio
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(̂ T̂ h)1/2

constant. With that is also fixed the relation

U  I  ̂Tnd =  '
1/2

= const

(3.26)

(3.27)

i.e., the tube-side total cross-section S = n{Trl4)d  ̂ and, thus, the flow velocity are 
kept constant. Therefore, the transfer surface area

A = mrdL (3.28)

can be expressed as a function of the number of parallel tubes alone:

>1 = (3.29)

The transfer surface area of a tube bundle apparatus can be arbitrarily reduced, 
inversely proportional to the square root of the number of tubes at the same perfor
mance and the same pressure drop within the range of laminar flow!

As an example. Fig. 3.6 shows three tube bundles the dimensions of which are 
related as

A,

"2 «3 =  1 4 16,
¿ 2 L , =  16 4 1,
d. d, =  4 2 1 and
A2 A, = 4 2 1

Figure 3.6 Three shell-and-tube heat exchangers with the same pressure drop and the same transfer 
performance.
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Figure 3.7 Compact crossflow plate-fin heat 
exchanger.

from eqs. (3.24), (3.27), and (3.29). All three bundles can transfer the same heat at 
laminar flow in the tubes at the same pressure drop.

2.3 Optimal Dimensions of a Heat Exchanger

From the considerations of the preceding section, the costs of operation, resulting 
from pumping power, may be kept as low as desired if only the flow cross-section 
S = n{'irl4)d  ̂ is chosen large enough. For laminar flow, the pumping power Wp = 
Ap'V is related to the constant % in eq. (3.25):

n Wp
Ï28 ^ (3.30)

Now the transfer surface area from eq. (3.29), A oc can be made arbitrarily
small in principle, if only more and more ever smaller tubes (with d oc 1/v^and 
L  oc \/n) are arranged in the same total cross-section.

The optimal dimensions of a heat exchanger would, then, be those of a disc with 
a huge number of tiny tubelets, the diameters and length of which could tend to zero 
with increasing number n. Volume and surface area of that optimal heat exchanger 
would then also tend to zero\

What are the practical limits of such a miniaturization of heat exchangers? If the 
length L, according to eq. (3.24), is reduced more and more, inversely proportional 
to the increasing number of tubes n, then, at oo and L ^ O , there will be no space 
left for the other fluid (e.g., the evaporating liquid here) to enter and leave the shell 
side at the rate required by the heat duty. Thus, we end up with the design problem to 
distribute two fluids in one plane into two spaces enclosing each other in extremely 
fine dispersion.

The miniaturization of the flow channels is also limited by fouling, which can not 
be avoided in every case. Nevertheless, diameters of flow channels in the range of 
millimeters can certainly be realized in practice. The discs of the rotating regenera



tors consisting of a solid matrix with fine parallel channels (see Fig. 2.45) obviously 
come close to the optimal geometry. The distribution problem is solved in this case by 
pumping both fluids through the same channels successively.

Even without rotating storage masses one can build and operate very compact 
exchangers with channel diameters below one millimeter [Kl, C4] provided that the 
operation conditions are favorable (very clean fluids required).

Only recently an extremely compact plate-fin crossflow heat exchanger with 
rectangular flow channels of 90 X 95 (¡junf and wall and fin thicknesses of 18 jitm 
has been built (see Fig. 3.7). The manufacturing process developed at the nuclear 
research center Karlsruhe would allow for even smaller dimensions [B4]. In a cube of 
edge 1 cm, about 4000 channels can be placed on the side of each fluid with a total 
transfer surface area of 150 cm̂  (i.e., a specific surface area of = 15 X 10̂  veil 
m \ in the same order of magnitude as that of the human lungs). Operated with water 
as the fluid on both sides and flowrates of about 6 liters/min, volumetric overall heat 
transfer coefficients {ka )̂ as high as 200 MW/(m  ̂ K) have been achieved [B4]! For 
the operation of such micro heat exchangers, a high purity of the fluids is required, 
which may be possible in some special applications with closed circuits. It is difficult, 
however, to build such exchangers for larger flowrates. The plate heat exchangers 
described in chapter 2 , section 4, with their gap widths in the order of a few millime
ters are certainly a reasonable compromise in this respect.
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3 HEAT EXCHANGERS WITH COMBINED FLOW 
CONFIGURATIONS
EXAMPLE: PLATE HEAT EXCHANGERS 
AND SHELL-AND-TUBE HEAT EXCHANGERS

3.1 Problem Statement

Wastewater from the bottle cleaning plant of a brewery with a flow rate of 36 mVh 
and a temperature of 80 °C is to be used to preheat 90 mVh of freshwater at 20 °C to 
the highest possible final temperature. The wastewater has to be cooled down to 30 °C 
to be led into the purification plant.

3.2 Check for Feasibility, Performance

The normalized change in temperature of the wastewater is

1̂ =
T[ -  r ;
T[ -  T' (3.31)

., =  5 . 0 . 8 3 3

At (pCp)i = (pCp)2 = 4.19* 10̂  J/(m̂  K), the capacity ratio becomes
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pM M(QC,). V.

iecph^i

36

(3.32)

90
= 0.4

and so we get €2 = 0.4-e, = 0.333. The 2.5-fold larger freshwater stream can, 
therefore, be preheated to T"2 =  40 °C. The heat duty is

e  =  (ecp), V , ( T [ - T [ ' )

Q = 4. 19 . 10  ̂ • 0.010 • 50 W = 2.095 MW
(3.33)

With pure counterflow, this would require a minimum number of transfer units 
of

TV.l,min ©LM

From

®LM —

®lm -  2 in4

(1 - £ 2 ) - ( 1  -£ ))  
l n [ ( l - 82) / ( l - £ i ) ]

1
= 0.361

(3.34)

(see Table 2.1) one finds:

^ i .™ „  = 2.31

The transfer surface area required, thus, becomes

A = N^ re q ,m in

iQC,V), (3.35)

3.3 Choice of Type and Determination of Size

3.3.1 Plate heat exchanger. It makes sense to choose a relatively compact type like 
the plate heat exchanger (chapter 2, section 4) since corrosion resistant, hence expen
sive, materials (stainless steel) are necessary because of the aggressive cleansing 
agents in the wastewater.

With an estimated overall heat transfer coefficient of = 2 000 [W/(m  ̂ K)], 
we find a minimum surface area required from eq. (3.35) of

_   ̂ 4.19 10̂  0.01 2 ^  2
"^req,min * 2  0 0 0  n i  ^  m

, ( 0 )



From the plate sizes available, the plate chosen should yield the smallest possible 
ratio of envelope surface to the volume of the stack built up from the plates. The plate 
pack has the dimensions (B L  -D) = V. The ratio of outer surface of the packet
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to its volume is

^envelope = 2{BL +  BD +  DL)

A \"̂ envelope \
packet

= 2 ( 1  + 1  + I
B L  D

(3.36)

The thickness of the plate pack, termed D, follows from the number of plates re
quired Hp = and the sum of gap width h and wall thickness .y:

D = rip(h -f s) (3.37)

From Table 3.1, showing typical dimensions of pressed plates [P2], one can find the 
lowest values of (̂ envelope/K)pack ^^m eq. (3.36) for plates of the sizes 4 = 150), 5
(Wp = 100), and 6 (n̂  = 80).

The flow velocity should be chosen in the range w = 0.5 to 0.8 m/s for plates 
with a “hard” pattern. In the case of the larger stream of freshwater, this requires a 
flow cross-section of

w. (3.38)

With S = n^Bb and size 5 plates (from Table 3.1), a number of parallel channels of 
=  20 . . .  31 can be found. We choose = 25 channels in two passes for the

Table 3.1 Typical dimensions of pressed plates.

Size
Width
B/m

Length
L/m

Plate surface
Ap/m̂

Port diameter 
Dp/m

1 0.15 0.70 0 .1 1 0.08
2 0.30 0.50 0.15 0 . 1 2
3 0.30 0.80 0.24 0 . 1 2

4 0.40 0.80 0.32 0.15
5 0.40 1 .2 0 0.48 0.15
6 0.60 1 .0 0 0.60 0.15
7 0.60 1.40 0.84 0.15
8 0.80 1 .00 0.80 0.18
9 0.80 1.40 1.12 0.18

10 0.80 1.60 1.28 0.18

Gap width ¿7 = 4 mm, wall thickness 5 = 0.65 mm.
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Y-flow:
4 passes per series

X -flow:
2 passes per series

Counterflow cascade from 2 
series-parallel arrangements

Figure 3.8 Flow configuration in a plate exchanger, example: 2 and 4 passes.

freshwater side, i.e., 50 channels, and, therefore, «p = 2* 5 0 + 1  = 101 plates of 
size 5. Then, the flow velocity on the freshwater side becomes

90
3600-25-0 .4 -4- 10-

m/s

VV2 = 0.625 m/s

If we choose two passes on the wastewater side also, we would get a velocity of only

Wi = 0.250 m/s

A higher heat transfer coefficient could be gotten by choosing four passes on the 
wastewater side and, thus, =  0.5 m/s.



In the case of two passes on

a. both sides, we get a countercurrent cascade of two counterflow elements (see Fig. 
3.8a)

b. the freshwater side, and four passes on the wastewater side, the flow configura
tion could be described as a countercurrent cascade of two 1 x 2 series-parallel 
arrangements (see Fig. 3.8fo).

For an estimate, let us assume that, at w= 0.5 m/s, a heat transfer coefficient of o: «  
10,000 [W/(m  ̂ K)] would be reached, and that a  oc is valid. With fouling 
resistances

Rfi = 0.15m^K/kW (wastewater)
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= O.lOm^K/kW (freshwater)

and a wall resistance

0.65
Î4 5

m'K/kW

we can find the overall heat transfer coefficient in case (a) to be around:

-  (0.0846-f 0,2 948 -h 0,1682) m^K/kW

^ 1 830 W/(m^K)

and in case (b) to be:

-  (0.0846 4- 0.2948 4- 0.100) m'K/kW

— > kb ^  2090  W /m 'K

From this kjk^ «  1.14. The countercurrent cascade of two series-parallel arrange
ments (Fig. 3.Sb), however, has a lower mean temperature difference AT^ =  {T{ -  
T^'Q than the countercurrent cascade of two counterflow elements. The latter is, in 
fact, a pure counterflow configuration (Fig. 3.8a). Recalling eq. (2.82), at R  I, 
the efficiency of one element of a cascade can be found from

1 -  Rgj _  _ f A9, (3.39)

6 iî = 0.4, J =  2

Sj =  0.625



®LM —

EXAMPLES IN HEAT EXCHANGER DESIGN 135

ln(A9o/AS,)^.
0.5410

From eq. (2.209), with Y  = N,/2, X  = 0.4- Y, we get for the (1 x 2) series-parallel 
arrangement

Y/2

= l - ( l - e j ( l - 6e)

P (p[iY/2) +  X y

0

=
Y/2

(p [{Y / 2 )-X ]+ X

7(1x2) Y

0 ,
F/1 — 7(1x2)

Cx2) -  0 ,.
LM

(3.40)

(3.41)

(3.42)

TV) has to be somewhat greater than 2.31, the value of Âi caleulated by way of 
feasibility check in section 3.2.

^1 2.31 2.4 2.5

Y/2 0.578 0.600 0.625
X 0.462 0.480 0.500
h 0.359 0.367 0.375
1 0.380 0.389 0.400

0.603 0.613 0.625
®7(lx2) 0.522 0.511 0. 500

(̂1x2) 0.964 0.945 0.924

The mean temperature difference in case (b) will be reduced by the factor F  = 
0.924 compared to pure counterflow (case a). As it has a 14% higher overall heat 
transfer coefficient, option b is more favorable (0.924 X 1.14 = 1.053), as long as 
the slightly higher costs of operation are not important.

The transfer surface area required is

, „  (ecp^)i 2.5-4.19-10^ 0.01 2 . .  2
= ----------m , ---------

From this, the number of plates and the velocities now become

rip =  105, Hq =  52, Ĉ,parallel,! ~ Ĉ,parallel,2 “

Wi = 0.481 m/s, W2 = 0.601 m/s



A more accurate recalculation can be carried out if equations for Nu, such as eq. 
(2.122) for example, are available for the actually used plates. Often the effort to do 
such a recalculation may not be justified with respect to the uncertainty of the fouling 
resistances. The plate pack is 1.20 X 0.40 X 0.49 m̂  (vertical height L  X width of 
the plates B x thickness of the plate pack or depth D). To mount and remove the 
plates, an additional depth of the frame of about 0.5 m will be needed, so that the 
whole apparatus can do with outer dimensions of about 1.50 m in height, 0.5 m in 
width, and 1.10 m in depth (1.5 X 0.5 X 1.1 m̂  = 0.825 m̂ ).

The choice of plate size not only depends on the above mentioned criterion 
[(̂ enveiope'̂ K)min]? t)ut also on the crosS'Section of the plate ports. If too small plates had 
been chosen for a large flowrate, then the velocity in the channels could still be kept 
reasonably low by a correspondingly larger number of parallel plates; but the velocity 
in the distributor and collector ducts may, however, become unduly high (danger of 
erosion). It should be kept below 4 m/s for pure liquids, and less than 2.5 to 3 m/s if 
solid particles are suspended in the liquid [P2].

In our example, for =  (tt/4)DI and port diameter of 0.15 m, the inlet
velocity on the freshwater side becomes
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w =in

(Tr/4)lfp 

W:_ = 1.41 m/s

(3.43)

With the smallest plates (size 1 from Table 3.1) with Dp = 0.08 m, one would get an 
inlet velocity of nearly 5 m/s! The total pressure drop might be around 1.5 bars on 
each side for the pack of 105 plates. The pumping powers, therefore, become

PI 1.5 kW P2 3.75 kW

and, with a pump efficiency of 70%, the electrical power required is 7.5 kW.

3.3.2 Shell-and-tube heat exchanger. The problem posed in section 3.1 can be 
solved with other types of heat exchangers, too. For the sake of comparison, we will 
perform preliminary calculations for the design of a multipass shell-and-tube heat 
exchanger in the following steps: Using an estimated overall heat transfer coefficient 
of = 1200 [W/(m  ̂ K)], we first obtain from eq. (3.35) a minimum required 
surface area of

4 (0) 
^req,min

2000 
1 200'

48 m̂  = 80 m̂

With an outer tube diameter of do = 25 mm, a total length of tubes nL =  Aliirdo) of 
about 1000 m would be required. In order to reach a flow velocity of around »  1 
m/s of the wastewater stream inside the tubes (see eq. [3.17]), the number of tubes to 
be connected in parallel is
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w^ndf (3.44)

With = 20 mm, one finds «  32, i.e., with four tubeside passes, n =  = 128
tubes. The required surface area would, in this case, be obtained with a tube length of 
L = 8 m. To arrive at a more compact design, it is better to choose eight passes of 32 
tubes each, i.e., 256 tubes with a length of L = 4 m. With a relative tube pitch of 
s/c1q = 1.2, the shell diameter has to be roughly «  550 mm (problem!).

The flow velocity of the freshwater on the shell-side can be controlled within 
certain limits by baffles. For pure longitudinal flow without baffles, the shell-side 
cross-section in the bundle is

(3.45)

leading to a flow velocity of

Sc «  0.11 m"

> - ■^2,longitudinal  ̂ 0.223 ITl/s

for one pass on the shell-side. Now it has to be checked whether the required effi
ciency of e, = 0.833 can be reached with one shell-side pass and eight tube-side 
passes: From Table 2.3, for 2m =  S, X =  OAY {Y  =  Ni and Z4 = [(0.4)  ̂ -I- 
(1/4)Y'^T = 0.4717 Y, the calculation formula is

- ^ < p (0 .4 m Y )  +  cp(Y) cpl ^ )  + (o.4 -h^-0.4717) y  (3-46)

e,, =  £, =  T ©

Y 2.3 3 4 5 6 20 00
1 / 0 2.969 3.694 4.806 4.921 5.976 7.181 24.49 00
8y = 0.775 0.812 0.832 0.833 1 0.837 0.836 0.817 0,763

The calculations show that ey =  =  0.833 can indeed be achieved with the
chosen configuration. However, this requires 4.1 transfer units, instead of the mini
mum of 2.31 required in pure counterflow. The factor F  now is 2.31/4.1 = 0.563. 
This means that 77.5% additional surface area would be needed (e.g., tubes of 7m 
length in place of 4m) or correspondingly higher heat transfer coefficients had to be 
obtained. Still higher efficiencies could be attained by the use of multiple passes also 
on the shell-side. This could be realized by a longitudinal shell-side baffle or by 
connecting two smaller heat exchangers in a countercurrent series. A more accurate



recalculation according to [VI] or [H3] can show which actual size of these appara
tuses is finally needed (problem!).

3.4 Discussion of Results

The two examples have shown that, in every single case, it has to be checked whether 
losses in the mean temperature difference can be compensated for by gains in the 
overall heat transfer coefficients, if heat exchangers with a multipass flow configura
tion are used. Under the conditions chosen in this example, a plate heat exchanger 
can usually be more compact and economically more favorable than a shell-and-tube 
exchanger. The operational limits (pressure, temperature) of the plate heat exchanger 
are considerably narrower, however, than those of the shell-and-tube type.
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4 HEAT EXCHANGERS IN THE FLUE GAS 
CLEANING PROCESS OF POWER PLANTS 
EXAMPLE: REGENERATOR

4.1 Description of the Flue Gas Cleaning Process

The intensified requirements of environmental compatibility of our energy supply 
have led to the need to remove to a high degree, the noxious substances from the flue 
gas of power plants using oil or coal before they can be led off to the atmosphere 
through the stack. Today, mainly two process steps are applied: The Flue Gas Desul
furization Plant (FDP) and a plant to reduce the nitric oxides (NOJ, the ‘‘DeNO^” 
plant. Both exist in a number of process variants. Here, as an example, we choose the 
process described by Klapper, Linde, and Müller [K3] (see Fig. 3.9).

First the SO2 (along with other noxious substances such as HF, HCl, and heavy 
metals) is removed from the flue gas in the FDP by scrubbing with water and using a 
regenerative absorption-desorption circuit. Therefore, the flue gas has to be cooled 
down first and then heated up again with the incoming raw fluid gas (by the regenera
tor Rl). It leaves the FDP more-or-less dustfree at a temperature of about 80 °C. For 
the selective catalytic reduction of the nitric oxides (NOJ still contained in it, with 
ammonia in a fixed bed reactor, it has to be heated to about 350 °C. The inverse 
sequence of the two process steps—i.e., first DeNO ,̂ then FDP—would, of course, 
be more favorable from the viewpoint of thermodynamics as no reheating would be 
necessary. But the noxious substances in the gas before passing the FDP (dust, HF, 
HCl, heavy metals, and SO2) would rapidly poison the catalyst of the DeNO  ̂reactor 
or require other, considerably more expensive and less sensitive catalysts.

The flow-sheet contains a total number of six heat exchangers, two of them 
carried out as regenerators here. Figure 3.10 shows the construction of a DeNO  ̂
plant according to [K3]. Since the unit has often to be retrofitted into an existing 
power plant, the regenerator and the catalyst beds are arranged one upon the other in 
a tower construction. The arrangement of two catalytic beds connected in parallel is 
chosen to keep the pressure drop low. Due to the large volumetric flow rates of the
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Purified stack gases

flue gas, the operational costs for the flue gas blower can be kept within economically 
reasonably limits only through low pressure drops in all parts of the process. The flue 
gas streams are in the order of 100 000 to 300 000 m /̂h in these units. In larger 
power plants, the flue gas cleaning may be subdivided into several parallel process 
paths.

4.2 The Thermal Task

Consider, for example, a flue gas stream of 160,000 m /̂h at 80 °C coming from the 
desulfurization plant to be heated to 330 °C. The temperature is then raised by another 
20K to the reaction temperature of 350 °C by a natural gas burner. The hot flue gas, 
more or less free from NÔ  at 350 °C, shall be used to preheat the gas coming from
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Figure 3.10 Plant for reduction of nitric oxides from flue gases (“ DeNOx” ) with regenerator, design as 
in Klapper, Linde, Müller [K3]. M static mixer, N NH3, E natural gas, air, K valve, AR flue gas from 
FDP, AK flue gas to the stack.

the FDR Thereby, it shall be cooled to about 100°C. If we approximate the properties 
of the mixture of N2, CO2, H2O . . .  by those of air, for M «  56.7 kg/s and «
1.03 kJ/(kg K), we obtain the heat duty as 2  = 14.6 MW.

4.3 Feasibility

Due to the large flue gas streams and the low overall heat transfer coefficients in gas- 
to-gas heat transfer (/: «  5 . . . 35 [W/(m  ̂ K)]), very large exchangers will be 
required. Since the efficiency e has to be very high—it being in our example, e = 
(330 -  80)/(350 -  80) = 0.926—only counterflow or cross-counterflow configura
tions come into consideration. Possible types of design are, for example. •

• bundles of plain tubes in multiple, counter-directional, cross-counterflow (gas-to
gas)

• coupling of two finned-tube bundles by a circulating heat carrier (multiple cross
counterflow) (gas-to-liquid-to-gas)



• coupling of two finned-tube bundles by heat pipes (gas-to-liquid/vapor/liquid-to- 
gas)

• rotating regenerator (gas-to-solid-to-gas)
• regenerator with fixed masses (gas-to-solid-to-gas)

Each of these types has specific advantages and drawbacks, which should be checked 
and considered in every particular case of design. Very compact exchangers with 
small flow channels cannot be applied here, because the flue gas still does contain 
dust, in spite of the pretreatment; and, therefore, the exchangers have to be cleaned 
from time to time (if possible during operation). Substances like (NH4)2S04 and 
NH4HSO4 may condense on the cooling surfaces as a liquid as viscous as honey.

As pressure drop has to be kept low, this requires low flow velocities and, 
therefore, large cross-sections. The coupling by a circulating heat carrier may lead to 
more compact exchangers, but it has the disadvantage that the catalyst might get 
contaminated in case of a leakage of the heat carrier circuit (oil). An exact tuning of 
the circulating stream between the flow capacities of the two gas streams is required 
(see chapter 2, section 6, Fig. 2.44). Hence, measurement and control may also be 
expensive.

Coupling of two finned-tube bundles by heat pipes, i.e., by internal natural 
convection streams with evaporation and condensation in closed tubes, is certainly an 
elegant solution for gas-to-gas heat transfer. In order to reach the required counter
flow effect, the individual rows of heat pipes have to operate at the corresponding 
local mean temperatures between the two streams, i.e., at the cold end at 90°C and at 
the hot end at 340°C in our example. With water as a working fluid, the inside 
pressure of the heat pipes at the hot end would have to be about 150 bars.

Regenerators with fixed storage mass have the advantage of a relatively simple 
and robust design (e.g., simple packed columns). A particular disadvantage is the 
switching losses: At each switching, at least one gas volume (regenerator hold-up) 
passes the plant uncleaned. This limits the possible degree of removal of noxious 
components but may be kept very small, however, in practice. These switching or 
rinsing losses also occur in rotating regenerators. In addition, the leakage past the 
sliding gaskets compounds the problem of loss of fluid.

As an exercise it is recommended that the design calculations be redone for all 
these types of heat exchangers. As an example, we show the design of a regenerator 
with fixed masses in the following (see Fig. 3.10).
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4.4 Design of a Regenerator with Fixed Storage Masses

According to eq. (2.172), the ideal regenerator (without longitudinal conduction and 
with = 0) requires the number of transfer units

2e
1

(3.47)

With the specified temperatures (see Fig. 3.10), one obtains Âreq,min = 25 and.
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thereby,

Mcv
N.req,min (3.48)

r̂eq.min = 1.46’10*’ (W/lIl̂  K)/L

The heat transfer coefficient k (gas-to-solid) is here in the range of 10 . , . 100 [W/ 
(m^K)], so that transfer surface areas in the order of 15 000 to 150 000 will be 
required. If we choose a bed of 50mm ceramic saddles (see Fig. 3.11) with a voidage 
of 0 = 73% and a volume specific surface of =  120 mVm  ̂ we obtain from this a 
bed volume of 125 . . .  1 250 m̂  (a cube with edge length of 5 . . .  11 m).

To keep pressure drop low, a sufficiently large flow cross-section is chosen, e.g., 
5* = (6 X 9) m̂  = 54 m  ̂ Then, the velocity in the bed

Figure 3.11 Characteristic data of ceramic packing material.
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QXpS
(3.49)

with = p(350°C) »  0.56 kg/m  ̂becomes less than about »  2.6 m/s. 

Calculation of the gas-side heat transfer coefflcient

The gas-side heat transfer coefficient is calculated, according to Gnielinski [G8; VI, 
Ghl; H3]:

/V “ bed =  / a  N U ,single sphere (3.50)

/̂  = 1 + 1 .5(1 -  xj/) for spheres,
/a = 1.6 for finite cylinders and cubes,
/a = 2.1 for hollow cylinders (Raschig-rings), 
/a = 2.3 for saddles (Berl-saddles).

For a single sphere, one has

^single sphere = 2 + (Nul^ + (3.51)

with

Nu,̂ „ =  0.664Pr''  ̂Re''̂

Nil
0.031 Pr

turb 1 -f 2.44Rc-^ i(Fr2/3 -  1)

The characteristic length in the dimensionless numbers Nu and Re is the diameter 
of a sphere with the same surface area:

= (3.52)

The characteristic velocity in Re is from eq. (3.49). The surface of a particle Ap 
may be easily calculated from the data given by the manufacturer. The volume spe
cific surface area and the volume specific number

A/ ip  —
riv

(3.53)

With the data from Fig. 3.11, one obtains for the 50 mm Berl-saddles:

=  69 mm

The physical properties of flue gas ( — as for air) at the mean temperature of -  220 °C 
are [VI]
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p «  0.71 kg/m̂

Cp = 1.03 U/kgK 

X « 0.0403 W/Km 

r] «  26.4 • 10"̂  Pas

From this, with lii = 56.7 kg/s,

Re =  2,159 = 35.62

ÂWsingle sphere = 44.94

Oía

a = 60.4 W/nrK

Pr  «  0.67

.'V'hurb = 23.98 

Nu^, = 103.4

Estimation of the internal heat conduction resistance

The solid volume of one saddle particle is

(3.54)

and, with eq. (3.53), the ratio of volume to surface becomes

Kp l - r p
(3.55)

i.e., VflAf = [(1 — 0.73)/120] m = 2.25 mm. The mean wall thickness ip of the 
saddle is, therefore, about 4.5 mm. The internal heat transfer coefficient is greater 
than [H3, VI]

> 6 (3.56)

With an estimated heat conductivity of the ceramic particles of Xp = 1 W/(Km), we 
get from this

a¡ > 1 333 W/m^K

The overall heat transfer coefficient k then becomes

1 1 1
7 —---- 1----k ag (3.57)

about k = 57.8 [W/(m^K)]. The required transfer surface area from eq. (3.48) results 
in r̂eq = 5̂ 260 m̂  and the bed volume V  = A/a^ = 210 m  ̂ With the chosen base 
area of 5 = 54 m̂ , we, therefore, find a bed height of L = V/S — 3.90 m.



Determination of the period (switching time of the regenerator)
On one hand, the period has to be short enough, so that the deviation from an ideal 
regenerator remains within reasonable limits; on the other hand, it has to be chosen 
long enough to minimize switching losses. The latter condition means that the dura
tion of the period must be much longer than the residence time of the gas in a bed:
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1̂.2 ^ —R,g vv„.
(3.58)

The gas residence time is roughly two seconds. The first condition means that the 
number of transfer units of the storage mass has to be kept small:

(()c)pVp
‘ 1,2 (3.59)

The time constant in is thereby (N̂  =  ti,2/k,s)'

(1 -  V’)(i?f)p
R̂,S - /cCJv

(3.60)

With  ̂ = 0.73, k =  57.8 [W/(m' K)], =  120 m“', and (pc)p,,„a™cs «2-10* J/(m'
K), one gets

s — 11.9 s

If a duration of the period of 1̂,2 = 6 min is chosen, as given in [K3], then

6-60
77,9

= 4.62

From this, with N =  25 from eq. (2.175), one gets the LMTD-correction factor F:

(4Ns/5) -  3 tanh(Ns/5)F = 1 -  — — ------------ —̂  = 0.939
N

This deviation from the ideal regenerator can be accounted for by slightly increasing 
the bed height {NF =

N  = + [(4(Vs/5) -  3 tanh (N,/5)]

TV «  25 + 1.51 = 26.51

(3.61)

In practice, one will choose a bed height of about 4.10 m in place of the 3.90 m 
calculated for the ideal regenerator. The whole arrangement of two packed beds with 
the valves and the flue gas ducts will have roughly the dimensions shown in Fig. 
3.10.
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Calculation o f pressure drop

Pressure drop can be calculated approximately from Ergun’s equation [B5, H3, VI]

A  2 ^

2 dn
(3.62)

 ̂ _  s —
V? /  300(1 — yO

\  Re
+ 3.5

,, ,  ,  í l L z i í

Re =

/ip

Qwdp

From this, one obtains

M
ow =

H’ = 1.479 m/s,
, 6 (1 -0 .7 3 )

120 m = 13.5 mm

7̂ c = 536.9 c -  2.534 A p -  597.6 Pa.

For two beds, therefore. A/? « 1 200 Pa. With the volume flowrate of M/p — 80 
mVs, this leads to a pumping power of «  96 kW to overcome the flow resistances 
of just the packed beds.

4.5 Discussion of Results

In a more accurate recalculation, one should account for the fact that, due to the 
additional heating with the natural gas burner, the streams are no longer exactly 
equal. The hot stream is slightly stronger, i.e., it will correspondingly not cool down 
to 100 °C, but only to a somewhat higher temperature. Also, the temperature depen
dency of the physical properties might be taken into account in a more detailed 
recalculation. The calculation could also be repeated with other data (bed material, 
bed cross section) and for other types of heat exchangers for comparison, in order to 
find the most favorable solution for a given problem in each particular case. The heat 
exchangers HX 1-4 in Fig. 3.9 are mainly designed as plate heat exchangers [K3]. 
For their design, the flow rates of water, wash-solution, cooling- and hot-water 
streams have to be known. For the design of absorption and desorption columns, see, 
e.g., [S3].



5 EVAPORATION COOLING 
EXAMPLE: FALLING FILM CONDENSER 
FOR REFRIGERANTS

5.1 Problem Statement

In the condenser of refrigerant cycles (refrigerators, heat pumps, heat transformers 
[HI, S5]), a heat rate gc has to be transferred to the surroundings corresponding to 
the product of the mass flow rate of refrigerant to be condensed, and the specific 
enthalpy of vaporization.
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Qc ~ MqAHv,c (3.63)

Eq. (3.63) is an energy balance for the condensate side, assuming that a pure refriger
ant enters the condenser as a saturated vapor and is withdrawn from the apparatus as a 
condensate without significant subcooling. Then the temperature of the condensing 
refrigerant remains constant, as long as the slight change in condensing temperature 
due to the pressure drop on the condensate side may be neglected.

As an example, we will design a condenser for a heat duty of gc = 580 [kW] for 
ammonia at a condensing temperature =  40 °C, corresponding to a saturation 
pressure of NH3 of about 16 bars. As a coolant, water is available at a maximum 
volume flowrate of 10 m̂ /h and a temperature of T' = 15 °C. The apparatus is to be 
designed for operation in a hot, dry climate (desert climate) with an air temperature 
of = 45 °C and an absolute humidity ofT^o = 6-10“^(T = mass of water 
vapor/ mass of dry air).

5.2 Check for Feasibility

Since the condensation temperature is below the temperature of the surrounding air, 
direct air cooling is impossible. The cooling water available could take up a maxi
mum heat load of

0 w , m a x  “  ^ W ^ p w C ^ c  T ' ) (3.64)

if it is heated up to T” = = 40 °C in the limit, i.e., with Cp̂  ^ 4.19 [kJ/(kg K)],
Pw = 1000 kg/m^

ÔW, max = 10 m̂  • 1 000 kg/m  ̂ • 4.19 kJ/kgK (40 -  15) K/3600 s

^W, maxgw = 291 kW

Thus, water cooling will not be adequate for the required condensation duty. We will 
check if evaporative cooling is feasible here. If the water temperature would rise to, 
say, = 35 °C, for which the saturation moisture content is 7* (35 °C) = 37* 10"^ 
there is a considerable driving force for evaporation.



5.3 Energy Balances, Rate Equations

Figure 3.12 shows schematically the principle of a falling film condenser with the 
cooling water streams Mp = stream, Mr = recirculated stream, My = evapora
tion stream (vapor). At steady state, the cooling water side energy balance is

ÔC + +  Q ^~ -  (Mp -  = 0 (3.65)

Here we have made use of the mass balance -  My. A balance around the
mixing junction of feed and recirculation streams gives
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^ F ^ p W ^ ^  — ( ^ F  ■ b ^ R )^ W ^ M (3.66)

As an approximate mean film temperature between (top) and T” (bottom), we use 
the arithmetic mean

Tfìlm “■
+ T"

(3.67)

Eq. (3.65) can also be written as

Gc = MpCpw(r" -  r )  -  Q̂  + MyAh 

The rate equations, or heat transfer kinetics, are

Qc ~ ĈŴ (̂ c ■”

(3.65a)

(3.68)

M.

^ N H 3  vapor' "^C r—f

•— —

liquid '"^C

A:/ . ^v;: (Mp + Mr), Tm

(M p -  M y ) , T "

S )

Mp, T'
o -

Cooling water

Mo, T"

(b

Figure 3.12 Falling film condenser.



EXAMPLES IN HEAT EXCHANGER DESIGN 149

and

Q a  ~  ^ A W ^ ( ^ o o  ^ f i lm ) (3.69)

The evaporation rate is formulated with a corresponding equation for mass transfer 
kinetics [S2]:

Mv = pa0aA[y *{Tp.) -  r, (3.70)

The conductive resistance in the falling film can be neglected; and the temperature at 
the film surface (phase interface) can, therefore, be put equal to the mean film 
temperature 7 1̂̂ , with a reasonable degree of approximation. The overall heat trans
fer coefficient from the air to the water film, thus, becomes practically equal to 
the outer air side heat transfer coefficient Regarding Qc, kcy ,̂

Pw. ^ 0 0 ,  5̂ 00, P a , Y ^ { T ) ,  and Ah{T) as given quantities, with eqs. (3.65)- 
(3.70), one has six equations to determine the unknowns A, My, M r, Qa, Tfiim» T”, 
and T^. Since these are seven unknown quantities, it is necessary to choose one 
additional relation between the unknowns and the given quantities.

5.4 Determination of the Film Mass Velocity

The recirculation rate Mr should be chosen such that the tubes are wetted uniformly 
by a thin but continuous film of water. If the film mass velocity B = (Mp + M r) //  
(mass flowrate per length / of the horizontal tubes) is too small, the film will break up 
into single rivulets, and the surface is not completely wetted; if B is too large, the 
liquid will splash away from the tubes, which would be useless for the cooling pro
cess. If the film mass velocity is divided by the liquid density and by twice the mean 
film thickness 2-5^ (the film flows along the perimeter of a tube on both sides), a 
mean flow velocity of the falling film results:

B

With this, we may define a film Reynolds number in the form

= ewW'filr
M r + M p

21%

(3.71)

(3.72)

A favorable film mass velocity—umlorm wetting, no splashing—is found from expe
rience at a film Reynolds number of

Ref «  300

The film mass velocity should, therefore, be chosen to be about

is = 600»/„

i.e., for water with = 10“  ̂ [Pas]

(3.73)

(3.74)
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B ^  0,6 kg/(ms) ^  2000 kg/(mh)

5.5 Choice of Dimensions of Tubular Element

A row of tubes as in Fig. 3.12 may be built from 48 parallel tubes (24 U-tubes) of yet 
unspecified length / with X  s = 3S X  3.5 [mm x mm]. With a tube pitch of 2d^, 
this results in a heat exchanger element of height H = 48 X 2 X 38 [mm] = 3.648 
[m]. The transfer surface area A per length / of the element, thus, becomes

/
= 487tJ o = 5.730 m^/m

Together with eq. (3.74), one can fix the film flux (mass flowrate divided by the 
surface area) as a constant

(Mf + M r)//
Wb = ------— ------ ---  const (3.75)

From the numerical values, we get

2000 kg/(hm)
3 600 (s/h) 5.73 m^/m

= 0.09696 kg/(m^s)

5.6 Calculation of Reflux and Surface Area Required

The key to the determination of surface area and reflux required is the mean film 
temperature Tfilm (see eqs. [3.65a], [3.67], [3.70]). For abbreviation and for elimina
tion of unknowns, it is convenient to introduce a recirculation ratio v:

Mp -h Mp
Mp

= mn (3.76)

With it, the water outlet temperature T” and the mixing temperature can be ex
pressed in terms of the Tfiim and the feed water inlet temperature T' (eqs. [3.66] and 
[3.67]):

rjif! rĵ ! _ 2v
2 v - \ (Tr,m -  T ') (3.77)

With this prelude, the balance eq. [3.65a] can be written as an equation for (after 
division by A and with eqs. [3.68]-[3.70], [3.75]-[3.77]):
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^Cw(^c
2mRC,B‘-pW

(Tfi,, -  T ' ) -  -  T , J

or shorter

(2v -  1)

+ -  Y J A h

(Jq — 4" ITly^hy

(3.78)

(3.78a)

The transfer surface area A is related simultaneously to the recirculation ratio v (from 
eq. [3.76]), and with via eq. [3.68],

M .r
mp (3.76a)

A  =
^Cw(^c

From these two equations, a second relationship between v and f̂ilm is obtained

Gĉ b

(3.68a)

V = (3.79)
^F^Cw(^c

From eqs. (3.78) and (3.79), the two quantities v and can now be calculated. 

Estimation of the transfer coefficients

The overall heat transfer coefficient from the condensing ammonia to the falling 
water film is estimated to be ^  600 [W/(m^ K)] [VI]. A recalculation can be 
done later with the methods given in the handbooks [VI, H3]. The air side heat 
transfer coefficient and the mass transfer coefficient 0^, related to it via Lewis’ 
law, are chosen here as

«A «  30 [W/(m^ K)] 

and

P a ^A  ^  <^A^(^pA "f ^00 ̂ pv)

The numerical values obtained for the individual terms of eqs. (3.78) and (3.79) are 
given in the table below. From these are found, iteratively, the mean film temperature 
and recirculation ratio and, thus, the surface area A and so the length /, i.e., the 
whole dimensions of the apparatus (see Fig. 3.13)
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temperature.

25 30 34.7 34.8 35 40

Y' /[g/kg] 20.3 27.6 36,4 36.6 37,1 49.6

V 2,25 3.37 6.37 6 .49 6.75 00

mpA/z^/lW/m^] 2 321 2119 1 364 1 342 1300 0

mvA/zy/[W/m^] 1 0 0 0 1497 2103 2118 2148 2 997
-^^ /[W /m 2] -6 0 0 -450 -309 -306 -3 0 0 -1 5 0

S (right-hand side) 2 721 3166 3 158 3 154 3147 2 847
¿/[W /m^] 9000 6000 3 180 3 120 3 000 0

A /[W /m 2] 6 279 2 834 2 2 .1 -3 4 ,5 -147 - 2  847

The difference A between the values of the left and the right sides of eq. (3.78) 
from this becomes zero at a mean film temperature of

From this follows

= 34.73 °C

4  = 3 162 W/m' 
A =  183.4 m-

and

/ = 32.0 m



i.e., eight tube row elements with a length of 4 m each. The recirculation rate is v = 
6.40, i.e., the reflux stream Mr must be chosen to be 5.4 times the feed stream Mpi

M r = 5.4(1 000 kg/m^)10 mV(3 600 s) = 15 kg/s

The calculation should be repeated with calculated values of the transfer coefficients.
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6 EVAPORATION AND CONDENSATION 
EXAMPLE: HEAT EXCHANGER WITH VERTICAL 
TUBES, STEAM HEATED INTERNALLY [M3]

6.1 Problem Statement

Vertical tubes, internally heated by condensing steam (“ heater candles” ) are used in 
many applications to heat up or to evaporate liquids. Figure 3.14 shows a bayonet 
heat exchanger with vertical tubes (Field tubes) offered as standard items by some 
manufacturers. In these apparatuses, steam flows upward through the inner tubes; 
condenses at the inner wall of the outer tubes, which are closed at the top; and forms 
a condensate film flowing downward by gravity. The enthalpy (“ latent heat” ) re
leased as heat in condensation flows past the wall of the tubes to the liquid in the 
heated vessel and vaporizes it, if sufficiently high temperatures are reached.

The design of such an apparatus, or its sizing, i.e., determination of the transfer 
surface area required for given heat duty, at first sight seems to be rather simple, 
because the driving temperature difference AT = Tq — Ty is constant over the whole 
surface area (so long as the pressure drop of steam flow as well as the static pressure 
difference of the liquid over the height are neglected). Once the mean overall heat 
transfer coefficient k is known, the surface area required is easily calculated from

Boiling liquid ' 
Ty(Pv)

"Heating candles"

Tc(Pc)
Vapor

H

' d

g -

Condensate

Figure 3.14 Bayonet heat exchanger as a reboiler.
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A = Q
k A T (3.80)

in which Q is the heat duty to be transferred. The difficulties here are only in the 
determination of this mean overall heat transfer coefficient k. First, the local overall 
heat transfer coefficient has to be calculated from the individual heat transfer 
coefficients—«c on the condensate side, for conduction through the wall, and 
on the vaporization side.

1
'"loc Ôw Oi\r 1,

(3.81)

K c  =
dQ

A7(L4„
l̂oc

A T

The heat transfer coefficients and a^, in turn, depend on the local heat flux = 
/:,ocAT. For the vaporization side, one can write

^Vl oc ~  ^^loc (3.82)

with n = 0.6 . . .  0.8 for pool boiling, n = 0.25 for natural convection, and n = 0 
for forced convection. According to Nusselt [Nl], one finds for laminar film conden
sation

s{x)
(3.83)

where the local thickness of the condensate film 5’(x) is related to the local heat flux 
via the differential equation [Nl]

dA,
. i/o

 ̂Q\̂ r — = --------- 5" dx
(3.84)

To calculate only the local overall heat transfer coefficient a simultaneous solu
tion of eqs. (3.81)-(3.84) is required. To come to the mean overall heat transfer 
coefficient k eventually, another integration has to be performed:

(3.85)

In the following, we will first show how to calculate the mean overall heat transfer 
coefficient kina, commonly used approximation from mean heat transfer coefficients 
ac, ciy] subsequently, we shall derive and discuss a rigorous solution of eqs. (3.81) to
(3.84).
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6.2 Approximate Calculation of Mean Overall Heat 
Transfer Coefficients

Writing an approximate relation for the mean overall heat transfer coefficient k in the 
form of eq. (3.81), we get

k Gif' (3.81a)

In this, «V is directly expressed as a function of k via cq"; and g = kAT, aQ, however, 
has to be calculated from eqs. (3.83) and (3.84). Integration of eq. (3.84) yields

. djd,
3 (3.86)

and thus

— i  ^
~ (Vf/g)'/' \ m d j d , ) x .

(3.87)

The term q{d(/d¡)xliAh^r]f) is the film Reynolds number usually defined in condensa
tion as Rcf  ̂ = M^Jibr]^, b = xd^. Using it and the definition \oc(y]l%)'' l̂
Xf, eq. (3.87) can be shortened as

Nuc, = (3Refc)' (3.87a)

The mean heat transfer coefficient or the corresponding Nusselt number Nuq can be 
obtained from this via

NUr =
Rc,

(3.88)

to be

Nu^ = 3(3RCf)-'/' (3.89)

In the original form, this reads

OLc — 4 /  A\>]f
(v f/g ) '/ ' A M d J d , ) l

1/3

(3.89a)

With eq. (3.89a) and oiy = ccf, eq. (3.81a) yields an equation for the mean heat 
flux q{l):

1 djd, d jd ^  1
OL(^iq)/\T (Xy^AT cq'^AT

(3.81b)
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This cannot be solved explicitly for q. The solution may be found, however, in the 
form of the inverse function l(q). With the abbreviations.

ivm = ( c A r ) ! -

(gg,-A/i,;.^7 vy)(Ar)^ 
(iVm djdi)"*

Z  = dVn avn, cl-" A T '- "

(3.90)

(3.91)

(3.92)

B _  q ^ ^ d j d ^  _  a y ^ d M d J d x )
«wAT 2;.w

one eventually obtains

(3.93)

Z  % -
3 /3 A
4 V Z

1/3

+ B + Z" (3.81e)

or, solved for the length,

z [ 4  „ 1
3

^ - 3
- ( Z - Z " - f t ) (3.94)

The result of this approximate solution will be compared with the rigorous solution 
after the next subsection.

6.3 Calculation of the Mean Overall Heat Transfer 
Coefficient from the Local Variation

The local overall heat transfer coefficient from eq. (3.81) depends on the local 
film thickness 5(x). The dimensionless condensate thickness is

G =_  ‘̂ Vm{djd,\
s(.v) (3.95)

The local dimensionless overall heat transfer resistance written in similar form to eq. 
(3.92) is
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7  —  ^Vm _
l̂oc l̂oc

(3.96)

= cl-« ATi--«

With these and the relative conductive resistance of the wall already defined in eq. 
(3.93), eqs. (3.81) to (3.83) now condense to

Z = ( T - f  B + Z "

and eq. (3.84) with  ̂ = x//* becomes

= a
, da

(3.81d)

(3.84a)

Now eq. (3.84a) could be integrated if z(a) could be explicitly obtained from eq. 
(3.8Id). This, however, can only be solved inversely for a(z):

a ( z ) = z - z ^ ^ - B  (3.97)

The integration of eq. (3.84a) is, therefore, executed over dz in place of da:

. dada =  dz 
dz

d i  = z a ^ ' ^ d z  = f { z ) d z  
dz

f{z) = { z - t i z ' - ) { z - z ' '  - B f  

^ = F(z) -  F(zo)

(3.98)

(3.99) 

(3.100)

F{z) dz.

The integral function F{z) is found by multiplying the terms on the right side of eq. 
(3.99) and subsequent integration term by term with 0  = = ATJAT:

F i,)
4 3 +  n 2 -j- 2/1 1 — 3n

-0
3̂ 2 + n l + 2 n  J \ 2  l + n  /  (3101)

The mean overall heat transfer coefficient k is then obtained from eq. (3.85)
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-  ] J  ko. (x) dx- (3.85)

or, in dimensionless form,

1
Z = ' i -J ^

d(!

In this integral, d^/z can be substituted from eq. (3.84a) by a^da: 

or, with eq. (3.97) and Gq = = 0) = 0:

-̂VM

(3.85a)

(3.102)

(3.103)

(see eq. [3.94] for comparison).
Now, with eqs. (3.100) and (3.103), one has a parametric representation of the 

function k{[). Equation (3.100) yields l(z) and eq. (3.103) corresponding values of 
k(z)- The relative local overall heat transfer resistance z = (oi^Jk^oc) QwJQxoc or, 
alternatively, the relative local vaporization side temperature difference 0  = AT^IAT 
= may be used as parameters.

In order to evaluate eq. (3.100), i.e., the relation between the position a and the 
local overall heat transfer coefficient (or the local heat flux or the local 
vaporization side temperature difference ATy), it is necessary first to calculate Zo = 
z{x = 0) from eq. (3.97). This can be done explicitly only for Uq = 0 and 5  = 0, 
i.e., for vanishing condensation film thickness and vanishing conduction resistance of 
the tube wall. In this limiting case, one simply obtains Zo = 1 (̂ ioc(-̂  = 0) = QZvm)- 
For finite values of Gq and/or B, Zo is best obtained iteratively as the root (zero) of a 
function <̂ (z),

(p{z) =  2 B (3.104)

with

by Newton’s method:

(p'{z) =  1 — nz” ’ 

<P'(2o,v)
"0,v + l (3.105)

As a starting value, one can simply choose Zo,o = 1- The iteration converges very 
rapidly. To calculate Zi = z(^i), i.e., the local heat flux 4ioc(0 at a certain specified
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total length / or at a certain position X;, eq. (3.100) again has to be solved iteratively 
for Zi-'

With

<t>(z) = F(z) -  Fiz,) -  

(h '(z )= /( r )

from eq. (3.99) we get

“■/.V+l

(3.106)

(3.107)

(3.108)

To calculate the variation of the local and the integral mean heat transfer coefficients 
and overall heat transfer coefficients between x = 0 and x  = I, the iterations from 
eq. (3.108) need not be carried out at each positon. One can simply give arbitrary 
values Zu Z2, Z3, . . . Z/c (with Zq < z^ ^  zi) as parameters and calculate the corre
sponding values of x  and k from eqs. (3.100) and (3.103), respectively. The evalua
tion can be made easier for a user by a graphical presentation of the function (1/Z) = 
k/ay^ vs. with B and n as parameters.

Figure 3.15 shows such plots for {a)\ n = 0 (forced convection); {b)\ n = 0.25 
(natural convection); and {c)\ n = 0.7 (pool boiling) in the range 0 <  ̂ < 3 with 
relative conduction resistances of the tube wall oi B = 0, 0.25, 0.5, and 1.0.

Figure 3.16 shows, additionally, for n = 0.7 (pool boiling) and B = 0.25 the 
variation of inner and outer wall temperatures and, therefore, the local variation of 
the individual temperature differences A TV, AT^, and A7V divided by the total tem
perature difference AT From eq. (3.8Id), one can find these values with

ATv
A T

AT,w
A T

A Tq 
A T

-  =V (3.109)

B
z (3.110)

a B z”
z z z (3.111)

Also shown in this diagram is the variation of the local overall heat transfer coeffi
cient /cioc, divided by «vm (dotted curve).

6.4 Comparison between the Approximation and the More 
Rigorous Analysis

The approximate calculation of the mean overall heat transfer coefficient from eq.
(3.94) shall now be compared with the result of the more rigorous analysis. This can 
be done with the least expenditure of iterative calculations in such a way that local
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Figure 3.15 Mean overall heat transfer coefficients vs. tube length, (a) n = 0 (forced convection), 
(h) n = 0.25 (natural convection), (c) n = 0.7 (pool boiling).
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relative resistances z are given as parameter values, and the corresponding values of 
position  ̂ and mean overall resistance Z are calculated from eqs. (3.100) and (3.102) 
or (3.103), respectively. With the value of Z so calculated, the position âpprox can be 
calculated from eq. (3.94) for comparison. For n = 0.7, B = 0.25, Zq = 1.66996 
(from eqs. [3.104] and [3.105]), one obtains in this way the values
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? l/Z i.approximation

3
6
9

12

0.1866
18.922

168.02
715.43

0.3713
0.1933
0.1362
0.1035

0.1843
18.633

165.54
705.41

- 1.12%
-1 .52%
-1.48%
-1.40%

The deviations are in a range of only 1 to 2% in As ¿/«vm vs.  ̂ is a relatively flat 
variation, the differences in k for a given position  ̂ are even smaller. In a diagram k/ 
“ vm vs. the curves calculated from eqs. (3.100) and (3.102) would practically 
coincide within the line thickness with those approximately calculated from eq.
(3.94). This is shown in the range 10"^ <  ̂ <  10̂  in Fig. 3.17 with n = 0.7 and 
B = 0, 0.25, 0.5, and 1.0. The figure supplements the results already given in Fig. 
3.15c for 0 <  ̂ <  3 and may be used to find the mean overall heat transfer 
coefficients for greater lengths (larger values of ¿).

In spite of the good agreement between the approximation and the more rigorous 
analysis, the application of the approximation eq. (3.94) has one serious disadvan
tage: to be able to check whether actual pool boiling exists over the whole length, the 
local heat flux (i.e., z not Z) or the local vaporization side temperature difference 
ATy must be known. This shall be demonstrated in the following with a numerical 
example.

Figure 3.17 Mean overall heat transfer coefficients vs. tube length, comparison of approximate and 
more rigorous solutions.



6.5 Numerical Example

With steam dXpQ = 2 bars (7^ = 120°C), 98 kg/h of water are to be evaporated at 
Pv = 1 bar (Jy = 100°C). What transfer surface area A is required if the heating 
candles are to be built from stainless steel tubing with ¿/q X ‘5’ =  28 X 1.5 [mm X 

mm] and a wall thermal conductivity of = 20 [W/(K m)]? For water at pv = 1 
bar in the range of boiling, one has cxy = cif  with c and n specified to be c = 2.0 
[W° V(m^^ K)] and n = 0.7 [VI]. The pool boiling range is limited by the values 

<  A7V < A7V,max with A7V,̂ in «  7 [K] and A7V,̂ ax ^  30 [K]. At temperature 
differences larger than AJy film boiling is reached, while, at temperature differ
ences below ATy îin, one comes into the range of convective boiling, i.e., natural 
convection without bubble formation. For water of 100 °C, natural convection can be 
described by [VI] c = 104 [W°^^/(m*^ K)] and n = 0.25. The boundary limit 
between these ranges, i.e., the beginning of bubble formation, is found from making 
the heat transfer coefficients equal:
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i c q \pool boiling = icif) free convection

.0.7
^min

Cq c .0,25 
„ "imin
B̂s

_  1^104^^^^
W /m'

^ _  = 6 506 W/m^

Corresponding to this is = 934 [W/(m^ K)] and ATy = 6.97 [K]. 

Calculation of parameters

The total temperature difference AT = -  Ty — AT = 20 [K]. From eq. (3.90)
follows

gvn, = (cA7’)t̂  = (2-20)f  w V  

ivm = 218 877 W/m^ 

avm =  10944 W/m^K

The characteristic length I* from eq. (3.91), with the physical properties at 7) = 
120 °C,

= 943 kg/m'f 

A/i^ = 2202.9- 10  ̂ J/kg 

;.f =  0.687 W/(K m)
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vy =  0.24'4- lO“ '̂  mVs 

and, with = 28 [mm], d, = 25 [mm] becomes

/* = 59.99 mm

The relative conduction resistance of the stainless steel wall is

B  = = 0.8682
2X̂

If a vertical height of the tubes of / = 1 [m] is chosen, then follows = ///* = 
16.67. With this value, one can read from Fig. 3.17 the mean overall heat transfer 
coefficient divided by a.y^ (see broken lines in Fig. 3.17). One obtains k  ~  1860 [W/ 
(m  ̂ K)]. The transfer surface area required becomes, with

Q = M ,^ A h ,(T ^ )  =  1 ^ 2 2 5 7 . 3  kJ/kg

Q = 61449 W

req = 1,652 m*"

A  = UjTrdJ (rij = number of tubes)

From this, we get

^T,req ^  = 18.8 
irdj

In this case, one will need at least 19 tubes of 1 [m] length each. The mean tempera
ture difference on the vaporization side is ATy = AT-klay,  with ay = c{kA T f  ̂ = 
3165 [W/(m^ K)], ATy = 11.75 [K], i.e., greater than Arv m̂* The question, whether 
ATy loc {x = 1) is also greater than ATy however, can only be checked with the 
rigorous calculation. From eqs. (3.100), (3.103), and (3.105), one finds:

-0 = 3.052 F (zq) =  0.4222

- 0 / /  [mm] fc/[W/(m2K)]

3.052 0.7155 0 3 586
4 0.6598 9.018 2904
5 0.6170 103.9 2416
6 0.5842 455,9 2066
6,5 0.5703 809.8 1927
6.702 0. 5651 1 0 0 0 . 0 1 875



At / = 1000.0 [mm], a local vaporization side temperature difference of Ary î  ̂ = 
0.5651-20 [K] = 11.30 [K] and a mean overall heat transfer coefficient of /c = 1875 
[W/(m^ K)] are found.

If copper tubes (X^ = 380 [W/(m^ K]) are chosen in place of the stainless steel 
tubes (Xw = 20 [W/(m^ K]), the relative wall resistance from eq. (3.93) becomes 
only B = 0.0457. From this, we obtain:

Zo = 1.145 F(zo) = 0.0009865
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© / /  [mm] /c/[W/(m2K)]

1.145
3
4
5
5.5985

0.9601
0.7192
0.6598
0.6170
0.5965

0
26.10

153.0
541.2

1000.0

9 555 
4 238 
3 254 
2 641
2 373

In this case, one would require only = 1.295 [m ]̂ of transfer surface, i.e., 15 
copper tubes in place of the 19 stainless steel tubes.

Figure 3.18 shows, for this example, the variation of the local heat transfer 
coefficients o;c(7c), «vW» ^^d the local overall heat transfer coefficient Obvi
ously, the larger heat transfer resistance is on the vaporization side in this case. 
Nevertheless, it would be wrong to conclude from this that an enhancement on the 
condensation side (where the resistance is much less) would not pay. Such a conclu
sion would be wrong because the individual heat transfer coefficients in this case are 
not independent of each other. Measures that contribute to make the condensate film 
thinner (such as longitudinally corrugated tubes [G9] or inserts which strip off the 
film) lead to the fact that a larger part of the total temperature difference AT will be

Figure 3.18 Variation of local heat transfer 
coefficients.
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Figure 3.19 Flow diagram for the calculation procedure, 
e = error limit.

left over on the vaporization side. Since the heat transfer coefficient for pool 
boiling depends very strongly on the temperature difference AT^ (â  ̂ oc AT^^), such 
measures may lead to considerable savings, especially if expensive materials like 
tantalum or titanium are required. To check whether the assumption of laminar film 
condensation holds, that has been used to calculate the condensation side heat transfer 
coefficient, the film Reynolds number should be calculated:

Rer
k A T (d J d ,) l

Ah^rjf
= 104.9

In this range, the film flow of water is practically purely laminar still. The film 
thickness at / = 1 [m] is only  ̂ = 124 [fim]. For the convenient evaluation of eqs. 
(3.100), (3.103), and (3.105), a short computer program is used. Figure 3.19 shows a 
flowsheet of such a program.



7 COOLING AND PARTIAL CONDENSATION 
OF ONE COMPONENT FROM INERT GAS 
EXAMPLE: FIN-TUBE AIR COOLER 
AND DEHUMIDIFIER

7.1 Problem Statement

Air at a mass flowrate of 36 [kg/s], a temperature of 40 °C, and relative humidity 
(water vapor) of 30% is to be cooled down to 10 °C. As a coolant, a freon boiling at 
about 5°C is to be used.

Questions

• How does the state of the air change?
• Will water vapor condense, and if so, how much?
• How should the apparatus be designed, and what size is required?

7.2 Calculation of the States of Air

Since the heat transfer coefficients of boiling freon are much higher than those of 
flowing air, externally finned tubes should be used. The resistance on the freon side 
can be practically neglected. For the changes of state of the air, one can assume that 
the temperature is Tq = 5 °C at the whole tube surface. If the resistance on the freon 
side were not completely negligible, one could lower the pressure and, thus, the 
boiling temperature a little on the freon side to keep this surface temperature Tq 
constant. The change of state of the air may be best represented in the Mollier- 
diagram (/z-F-diagram) for moist air (see e.g., [S5]). This is shown schematically in 
Fig. 3.20.

The change of state from the inlet conditions T' = 40°C, ( '̂ = 3 0 %  towards
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Figure 3.20 Change of state of moist air in
Y / ( g / k g ) the Mollier-diagram.



the state at the tube surface Tq, = \ closely approximates a linear path. As Tq = 
5°C is far below the dewpoint of Ty = 19°C, a condensate film will form on the 
surface. Moisture content Y, relative humidity ip, specific enthalpy (per unit mass of 
dry air) and temperature can be read from the Mollier-diagram or can be calculated. 
With the specific heat capacities, which may be regarded as practically constant [VI]
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Sw  ~  p̂, H20,1 — 4.190 kJ/kgK

p̂V p, H 2 O . g = 1.861 kJ/kgK

V  =  ^ p ,a ir,g  = 1.006 kJ/kgK

and with the enthalpy of vaporization at the reference state

A/Zvr = 2 500 kJ/kg Tr = 0°C

the specific enthalpies are calculated according to Mollier from

^ “  ^pÂ  ^  (^^VR <̂ pV̂) (3.112)

Here ù is not, as in chapters 1 and 2, a dimensionless normalized temperature, but a 
temperature difference

Ù = T  -

numerically equal to the temperature in °C because = 0°C, which, nevertheless, 
should be correctly given in [K]. The moisture content Y depends on the relative 
humidity <p, on the saturation vapor pressure of water /?*(t^), the ratio of molar 
masses (here, = 0.622) and the total pressure p:

Y =
0 ,622(pp*(S) 
p - ( p p ‘(B) (3.113)

With a suitable equation for the equilibrium vapor pressure, one obtains from this 
at the total pressure of p = 10̂  Pa (=  1 bar):

State of the air at the inlet

r  = 40 "C (p' = 0.3 p‘ (40 °C) =  7.38 • 10  ̂ Pa

(/j, Vy = (76.50 k.I/kg, 14.08 g/kg)

at the phase interface (the conduction resistance of the thin condensate film is
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neglected)

(Po = i-0  / ( 5 "Q  = 0.872-10"^ Pa

(/i, P)o = (18.76 kJ/kg, 5.47 g/kg)

at the outlet (linear variation, Le «  1)

T" = 10°C

h' -  h0

Y "  -  P q 

P '- P n
h — CpLi9 -k P (A/tvR + Cpvi?”)

P ' =
Po + (ì'pa>^"-/'o)A } 7 A / ì 

I^ T À / ìvr + Cpvt7")AP/A/i (3.114)

A P  P ' - P
A/i If — it

^ =0.1491 (10“  ̂ kg)/kJ

(/), P)" =  (26.89 kJ/kg, 6.68 g/kg)

7.3 Energy and Mass Balances, Surface Area

a. Balance volume—air side without the condensate film:

M
j ^ y 7 ( ^ ' ' - ' 0 - M c / t v o  - 2 o  =  0

b. Balance volume—air side including the condensate film: 

M
1 + P

_ ( / , '_ / ," )_  Me/iwo -  e  M- = 0

(3.115)

(3.116)

The third possible balance around the condensate film has to coincide, of course, with 
the difference of the two eqs. (3.115) and (3.116). Here one has to distinguish care
fully between the heat flow rate (¿o transferred to the film surface and ¿w transferred 
to the wall (and thus to the vaporizing freon):

éw = éo +  Me A/ivo (3.117)

In the balance equations, M is the total mass flow rate of moist air at the inlet (M = 
36 kg/s), and M/(l + P ')  is the fraction of dry air, i.e., the carrier stream remaining 
constant. The condensate rate Mq follows from the air side mass balance:

M
1 + Y'

(P ' -  P") -  Me = 0 (3.118)



Together with the values given or already calculated, we get

Me = 0.2627 [kg/s]

The specific enthalpy of water vapor at the phase interface follows from

/Zy 0 “  T ^pv^o (3.119)

/Zy 0 = 2 509 kJ/kg

That of liquid water at is

^̂ wo ~  (3.120)
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/zwo = 20.95 k.T/kg

The difference between these two specific enthalpies is

A/zvo = /ivo “  ^wo = 2488 [kJ/kg]

From eqs. (3.115) and (3.166) or (3.117) follows:

2o = [35.5(76.50 -  26.89) -  0.2627-2509] [kW]

a  = (1761.2 -  659.1) [kW] = 1.102 [MW]

= (1-102 + 0.654) [kW] = 1.756 [MW]

The transfer surface area required can be found either from the condensation rate and 
an equation for the kinetics of mass transfer, or from the heat rate Qo from gas to film 
surface with an equation for the kinetics of heat transfer. The reason that only one of 
the equations of kinetics is needed here is that the outlet state has been calculated 
using an assumption on the ratio of the two transport phenomena (Lewis law, with the 
Lewis number Le -  \ \ see [S2]). As the temperature of the film surface is constant, 
the logarithmic mean temperature difference can be applied:

With an estimated value of a® = 50 [W/(m“̂ K)] and

(3.121)

{ T '~  T^) -  (T" -  Tq) 3 5 - 5
\n[(T  - T ^ ) / { T "  - T , ) ]  ln(35/5)

K

AT,LM 15.4 K

the required transfer surface area becomes A,(0) 1430 [m^].



7.4 Choice of Dimensions of Tubes and Flow Cross Section

Finned tubes as shown in Fig. 3.21 are to be used. The fins may be manufactured as 
continuous sheets for a whole row of tubes. On the air side, therefore, small channels 
of gap width 4.5 [mm] are created. With p «  1.2 [kg/m^], i.e., F «  30 [mVs], the 
flow velocity will be w = 6 [m/s] for a flow cross section of 5 «  5 [m ]̂ (see eq. 
[3.18] for comparison). This is the velocity that would be found in the free cross 
section, the superficial velocity. As about half of it is blocked by tube and fm in the 
narrowest cross section, a velocity around 12 [m/s] is to be expected at the tubes. The 
flow cross section can be attained, e.g., with 30 tubes per row height H  = (30 X 
60) [mm] = 1800 [mm], and a length of L = 2750 [mm] ( ^  H  X L = 4.95 [m^]). 

The surface of such a row of tubes is then

^Rt,o = TrdJ^n  ̂ = 7T • 25 • 10~  ̂ • 2.75 • 30^

^Rt,o = 6.480 m̂  (without fins)

The surface of one fm (see Fig. 3.21):

= 2[{2sf] -  irrl

= 2[60" -  7t(12.5)'] mm" = 6 218 mm"

Surface enlargement ration:
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^  _  Am  + 'n-dXs, -  6) 
A  T̂ d̂ s,

4 -  = 15,83 +  ^  =  16,73

(3.122)

= 16.73 • 6.48 m  ̂ = 108.4 m^

With the first estimation for â Q (and a fin efficiency of one), this would mean that 
about 14 of these rows of finned tubes would be needed.

Figure 3.21 Dimensions of the finned tubes.
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Toir T-fr

Fin efficiency

Figure 3.22 Temperature variation in 
the fin.

7.5 Calculation of Fin Efficiency

The fin surface cannot be inserted into the calculation of transfer surface area with the 
total temperature difference -  Tq, since, with increasing distance from the base, 
the fin temperature deviates more and more from the tube base temperature Tq due to 
the radial conduction in the fin and the transfer from the air to the fin surface, as 
schematically shown in Fig. 3.22. A fin efficiency is defined

V fin
âir ^0

(3.123)

accounting for this diminution of the driving temperature difference. Fin efficiencies 
can be approximately calculated under the assumptions of one dimensional heat con
duction (“ thin” fins) and constant heat transfer coefficients at the whole transfer 
surface (see, e.g., Kern and Kraus [K2]).

For annular fins, one obtains the solution shown in Fig. 3.23 for fin efficiency rj 
as a function of the “ fin number” $  and the ratio p of base radius to edge radius of 
the annular fins. In the limit p — 1 (plane fin with (r  ̂ -  Tq) = I = fin height), the 
solution becomes especially simple:

Vñn =
tanh $ (3.124)

For radius ratios less than one, the fin efficiency can be calculated from the 
equation given in Fig. 3.23 in terms of the cylindrical functions Iq, / j, K q, (modi
fied Bessel’s and McDonald’s functions [Al]), or simply read from the diagram. The 
quadratic fins are treated approximately as circular fins of having the same area with 
the edge radius (see Fig. 3.21):
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V Xo6 j
X = 0 / ( 1 - p )

2p Ki(pX)/Ki(X)-li(pX)/li(X)
°  (Up)«’ ' Ko(pX)/Ki(X)«lo(pX)/Ii(X)

dimensionless fin height 4> and radius ratio p.

n r] = (2s)2

and from this

e = -r.
12 .5v^

60
= 0.369

The “ fin number” (dimensionless fin height)

with

(3.125)

(3.126)

Xf.„  ̂ 200 • 0 .5  ■ 1 0 ^  w /(m ^K ) % 110 W /(m2K)

and

becomes

2 (r,-ro )2  2(21.35)210-6

Xa,u™„u™ = 200 W/(m2K)

a = a<0) = 50 W/(m-K) 

(D<°> = 0. 675

The fin efficiency is, therefore,



?/(0.675; 0.369) ^^0.80.
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7.6 Calculation of Heat Transfer Coefficient

For the calculation of mean heat transfer coefficients, a correlation by Schmidt [S6] 
based on experimental data with bundles of finned tubes of various dimensions (in
line arrangement) is recommended in HEDH [H3, p. 2.5.3-11]:

Nu^ ^
-0A75

P r 1/3 (3.127)

The maximum velocity, i.e., the volume flowrate divided by the narrowest flow cross 
section is to be used as the characteristic velocity in the Reynolds number, and the 
tube diameter J q is the characteristic length in the dimensionless numbers Nu^ and 
Re^.

The smallest open fraction of the cross section can be calculated from Fig. 3.21 
to be

-  1
s^2s

= 1
2s

V’. in =  0.525

Physical properties at 20°C;

Pr =  Q.l 

Q = 1.19 kg/m^

Nu¿ =  0.3 • 19400°“ ^(16,73)-“” 50.7'/^ =  44,32

«g = (\!d„)NUi

V = 15- lO-o iTiVs 

M' , =  11.64 m/s

=  46.1 W/(m-K)

(3.128)

2 = 0.026 W/(mK)

-  Re^ = = 19 400

As the fins are not charged with the outer heat flow rate 2o (gas-to-film surface), but 
with the greater heat flow rate ¿w. the fin efficiency rj has to be calculated with an 
effective heat transfer coefficient a f  enlarged by the ratio Gw/Go-

(3.129)



174 HEAT EXCHANGERS

* Qw

<  = 46.1 ■ 1.586 W/(m'K) = 73.1 W/(m"K)

(3.130)

a > = ( Z M V  =0.815
110

?;(0.815; 0,369) = 0.745

A 7,LM

^O.req ~
So

a [ ( \ - ò / s , )  + rìAJA,]^T^

*0,req

1.107 • 10'’
46.1 • 12.69 • 15.4

n r  = 123 m*

^O.rf 123
R̂t.o 6.48

19

(3.131)

i.e., 19 rows of tubes will be needed. The dimensions of the whole block (see Fig. 
3.24) are, therefore, L x  H X B = 2750 X 1800 X 1140 [mm^]. The volume is F 
= 5.64 [mT

7.7 Recalculation of the Heat Transfer Coefficient 
by a Different Method

In place of eq. (3.127) for bundles of finned tubes, the plane channels between the 
fins could also be regarded as parallel plate ducts (see eq. [1.140] with/  = 0.86). As

Figure 3.24 Fin-tube air cooler, outer dimensions.



a characteristic flow velocity, one should use not the maximum but rather a mean 
velocity in this case (to be calculated from a volumetric void fraction):
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i - i
St 4V25

(3.132)

tp =  0. I l l
d^ = 2 { s , - d )

Re

L

V

60’

=  4719

= 50.2 W/(m^K)

w =  7.87 m/s 
d̂  ̂ = 9 mm

Eq. (1.140) w i th /=  0.86 

Nu = 17.36

This value is only 9% higher than the one calculated from eq. (3.127).
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CHAPTER

________________________ FOUR
IMPORTANT DATA FOR THERMAL DESIGN

OF HEAT EXCHANGERS

In the following, we will give only a few numerical values and simple formulas for a 
first estimation of the most important data for thermal design of heat exchangers. For 
more accurate data and calculation procedures, see VDI Warmeatlas [VI, pp. Da- 
Df], HEDH [H3, volume 5] or Reid, Prausnitz, and Sherwood [Rl].

1 HEAT CAPACITIES

The energy storage capacity of a body is expressed by the amount of energy that has 
to be transferred to it relative to its amount of substance or its mass to raise its 
temperature by one degree under certain specified experimental conditions. As the 
experimental conditions to be kept constant, one can choose constant volume or 
constant pressure. At constant volume, the energy added can only be stored in the 
form of internal energy, i.e., as the energy of molecular and atomic motion. At 
constant pressure, expansion work is done on the surroundings additionally. One 
defines

cu
d f

di^
dT
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1.1 Gases

The heat capacities of ideal gases, according to the kinetic theory of gases, depend on 
the number of degrees of freedom of translation, rotation, and vibration. For 
monoatomic gases with three degrees of freedom of translation, the molar specific 
heat capacity at constant volume becomes
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115 J/(mol K) (4.1)

and with R

= J/(mol K) (4.2)

at constant pressure.
For diatomic and triatomic gases, two or three degrees of freedom of rotation are 

added, so that one obtains

S . 2 A  = ^ « « 2 9 .1 J /( m o l  K) (4.3)

= 4 R k  33.3 J/(mol K) i4,^)

Since the rotational degrees of freedom are only excited at higher temperatures, the 
heat capacities of these gases are temperature dependent. In practice, one will often 
need the mass specific (Cp) or the volumetric heat capacities (pc^). Because of p = nM 
and c = c /M, one finds for the volumetric heat capacity

pcp -  ncp (4.5)

For ideal gases, we can replace n by p/{R 7), so that the volumetric heat capacity of 
gases can be easily estimated from the simple relation

{QC,p̂ g (1 5 .. .5 ): (4.6)

Ax p  = 10̂  [Pa], T = 298 [K], one obtains for diatomic gases (numerical factor = 
3.5)

{Qc,p/2A-Gas (1 bar, 25°C) si 1.2-10^ J/(m^K)

1.2 Liquids

The volumetric heat capacities of liquids are usually in the range

10*̂  J/(m^K) < (0C )| <  4.2 • 10  ̂ J/(m^K) (4.7)

i.e., three orders of magnitude higher than for gases at ambient conditions. Most



organic liquids have values in the range 1 . . .  2 [MJ/(m^ K)] and water has the 
relatively high value of 4.2 [MJ/(m^K)].

1.3 Solids

All compact, i.e., non-porous, solids have volumetric heat capacities lying in the 
same range as those for liquids:

IMPORTANT DATA FOR THERMAL DESIGN OE HEAT EXCHANGERS 179

10  ̂ J/(m^K) <  (^c ), <4-10® J/(m^K) (4.8)

2 THERMAL CONDUCTIVITIES

The thermal conductivity X is defined by Fourier’s law

X ~  —r//grad T (4.9)

For some solid, liquid, and gaseous substances, it is plotted vs. temperature in Fig. 
4.1. Characteristic values for a few materials at 20°C and 1 bar are

Material zl/(W/Km) Material 2/(W /Km)

Silver 460 Glass, Ceramic 1. . . 3
Copper 380 Water 0 . 6
Aluminum 2 0 0 Hz 0.18
Stainless steel 1 2 . . . 2 0 Air 0.026

3 HEAT TRANSFER COEFFICIENTS

Heat transfer coefficients are defined by the linear relation for the kinetics of heat 
transfer, which is sometimes referred to as “ Newton’s law of cooling”

'12
A{ T ^ - T 2 )

corresponding to the integral form of Fourier’s law. They can, therefore, be reduced 
to the conductivity X and a length s thickness of the thermal boundary layer) by 
the expression

a = X/s (4.11)

For flowing media, 5", in turn, depends on X, pCp, ry, the flow velocity w, and the 
geometric parameters of the fluid dynamic problem. These dependencies are usually 
written in dimensionless form as

(4.12)N u  =  N u (  R e , P i \ ~ ,  . ..
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-100 100 too 300 m  j  500 X 600

Figure 4.1 Heat conductivity of various solid, liquid and gaseous substances vs. temperature 
(VDI-WA).



Formulas of this type are found at various places in the text. For

• duct flow
tube and annulus: eqs. (1.128) and (1.140), in plate heat exchangers: eq. (2.122), 
in spiral-plate heat exchangers: eq. (2.132)

• single bodies in cross flow: eq. (3.51)
• fixed beds: eq. (3.50)
• bundles of finned tubes: eq. (3.127)

For Other cases, see HEDH and VDI-WA.
A first approximation for heat transfer coefficients in turbulent forced flow may 

be obtained from the formula
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^ fo r ce d  convection ~  0 .  0 0 4 p C p V V
/ 2/3

(4.13)

For air with (rjĈ /X) =  Pr =  0.7, pĉ  «  1000 [J/(m̂ K)] and velocities in the range of 
1 to 50 [m/s] (see chapter 3, section 1.9), one obtains

«  5 to 250 [W/(m' K)]

For water with Pr ^ 2 (at 90°C), pĉ  «  4.2*10  ̂ [J/(m̂  K)], and flow velocities of 
0.2 to 2 [m/s] (see chapter 3, section 1.9), we find

o:,,,er «  2 000 to 20 000 [W/(m' K)]

Note: The factor 0.004 in eq. (4.13) is not a true constant. It depends, in reality, onflow velocity w and on 
geometric parameters. The heat transfer coefficient does not increase linearly with w, but with a smaller 
power: a oc w”, n ~ 0.6 . . .  0.9. Equation (4.13) should, therefore, only be used as a first approxima
tion for a! It gives the correct order of magnitude for various fluids.

For liquid films flowing downward under the effect of gravity (e.g., during 
condensation of pure vapors) the order of magnitude of the heat transfer coefficient 
can be estimated from the equation

^ F ilm (0.1... 1)/, ^
1/3

(4.14)

For water with \  ~ 0.6 [W/(K m)] and Pf -  10  ̂ [mVs] (at 20°C), one finds

«  2 600 . . .  26 000 [W/(m  ̂K)]
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APPENDIX

_________________________A
CROSSFLOW OVER n  ROWS OF TUBES

CALCULATION OF TEMPERATURE VARIATION 
AND MEAN OUTLET TEMPERATURE

With üj for the temperature of stream 1 in the tubes of row j, Qj for the temperature of 
stream 2 flowing over the tubes perpendicular to the tube axes, after the row j (see 
eqs. [2.71] and [2.72]); and the dimensionless length coordinate jc = îl<p{N2 ln) in 
flow direction of stream 1 through the tubes, the eqs. (2.34) and (2.35) are brought 
into the most compact form:

d5.
(Al)

(A2)

The temperature 0y_i of medium 2 after the row (/ -  1) can be calculated from eq.
(2.40) as a function of x, if and 0̂ _2 are known as functions of jc:

0y_J — (3©y_2 + hl9y_j (A3)
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b =  ----= 1 — a (A4)
(PiNi/n)

0 < X  < B, « 4 (A5)

N. M,Cp,
A, M j C p ,

Starting with the value Go = 0 (inlet temperature of medium 2) and alternately 
applying eqs. (A2) and (A3), one obtains the temperature variation in successive rows 
of tubes (??/0) = 1 , inlet temperature of medium 1):

= 1

8̂2 = 1 “1" bx 

e''9. = 1 + (a + l)bx +

e^0 , = b 

ê @2 = (fl + l)i’ +

e>̂ 0 = +  a + l)b +  (2iJ + i)b^x +  b̂  -

x̂
= 1 + (â  + a + l)fex + (la  + l)b^ Y  T (A6)

x-2
=  I +  {a‘* +  +  a +  l)i»x + (4a  ̂+  3a  ̂+  2 a +  1) '̂^1  ̂+

+  (6a‘ + 3a +

The mean outlet temperature from n rows of tubes is calculated from

liB)
7=1

(A7)

Via an overall balance, this can also be calculated from the integral average tempera
ture of stream 2:

D

(A8)

To calculate the maximum efficiencies at a fixed capacity rate ratio R, one now 
considers the case V2/« ^  00, which results in simple numbers for the quantities a, b, 
B:

/« o o = 0  '
lim h ) = i) = 1

\ B l  =  n/R,
(A9)
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From eq. (A3), we find in this limit

© y _ l  (X ) =  (X ) (AIO)

i.e., stream 2 leaves each row of tubes in local thermal equilibrium with the corre
sponding local temperature of stream 1 in these tubes.

The temperature variations t?/x) are then simply

= 1
=  1 -f X

=  1 -I- X -I-
2 !
x-2 x-3

_  I + X + — + —
2 3X X

e =  1 X -H —  -b —  -f • • • -f

(A ll)

O '-l)!

e S „ - l + x + -  +  —  +
^n- 1

+ (n -1 )!

In this case, the progression of the power series becomes immediately obvious and 
the validity of the solution

m=0
ml

(A12)

can be proven for arbitrary j at 0y_i = by inserting it into the differential eq. 
(Al). The mean outlet temperature is again obtained from eq. (A7) with =  n/R:

n ;-l

»::» = ; E E ml
(A13)

;■=] m=0

This sum can be rewritten by rearranging its terms in the form

n-2
- A

R

\n-\(n/RT 
(n -1 )!

(n/Rr

m=0
ml (A14)

At equal capacities (R =  1), the mean outlet temperature is just equal to the last term 
in the sum of eq. (A ll), which can be seen to be the case for x ^  n. For an arbitrary 
number of rows, the maximum efficiency at = 1 is given by

8 =1  — — € ^ (A15)

and for large n (practically, for n >  5), using Stirling’s formula, by
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(A16)

The general progression of the series in eq. (A6) may be recognized, too, by regard
ing the coefficients Aj ,̂  of the power of x in the row j:

j ^jl • 9̂3

1 0
2 1
3 1 +  a 1
4 1 +  a +  a“ 1 + 2 a 1

5 1 +  a +  <3̂ -f 1 2 fl -r 1 4- 3a

6 1 +  4- ¿7“ -t- <3̂ + 1 + 2« +  3â  4- 4â 1 +  3fl 4- 6â 1 +4a

These coefficients are, in turn, power series in a, whose coefficients form the 
sequences 1,1,1,1 . . . , 1,2,3,4,5 . . . , 1,3,6,10 . . . , 1,4,10 . . . , and so on. 
These sequences may be recognized as binomial coefficients by using Pascal’s trian
gle, e.g..

j —m—1

A =  yj.m
k=0

(A17)

This can be explained by the generation of these coefficients from the addition of two 
corresponding coefficients of the previous rows. With this, the general solution be
comes

m=0

./-I

m=l

sion formula is obtained for the coefficients

{bxr (A18)
ml

(ftx)'"-'
-------— e (A19)

Tal expressions for and 0y_i, a recur-

(A20)

This condition is, in fact, fulfilled by the coefficients from eq. (A 17) as may be seen 
from the table (see, e.g., = ^52 + ^ '^ 53)- The mean outlet temperature is
eventually obtained from the mixture of the n streams:

(A21)
;=i
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The solution of this problem was already given, in a slightly different form in 1968 in 
the Dr.-Ing. dissertation (Ph.D. thesis) of Schedwill [SI] and presented in diagrams 
e{N, R) for row numbers one to three (there denoted as operation characteristics 
{̂kF/W ,̂ fVi/JV2)). Schedwill’s calculations have also been the basis of the diagrams 

for €i vs. €2, with 0  and Â i, N 2 as parameters given by Roetzel in the VDI-WA [VI] 
for crossflow with one, two, three, and four rows of tubes. Schedwill [SI] has also 
shown that his solution tends to Nusselt’s series solution for ideal crossflow (see eqs. 
[2.51], [2.52], and [2.56]) in the limit of infinite numbers of rows.
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APPENDIX

B

TEMPERATURE VARIATION AND EFFICIENCY 
OF A HEAT EXCHANGER WITH THREE PASSES 

IN A LATERALLY MIXED SHELL-SIDE STREAM

Special case. Equal capacities of both streams.
Assumption: First and third pass of the F-stream in counterflow, second pass in 

parallel flow to the laterally mixed shell-side stream X (see Figs. 2.53, « = 3, and 
2.54 [3, 1,2]).

Normalized temperatures of the three internal passes: Gj, 02, 63 
Normalized temperature of the shell-side stream: Gq 
Dimensionless length coordinate: 0 < f  < (F/3)
Y  = kAI(Mc^)y, X = kA/(Mc )̂ ,̂ C  = X/Y, special case: C = -

Differential equations:

1.

i ^  = -C (3 0 ,. 0| ©2 ©,) (B l)
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d0

d0;

d03
■ dC'

= 0 , - 0 0 (B2)

= 02 - 0 0 (B3)

= 03 - 0 0 (B4)

or in matrix notation

dC
= M] 0 ,

with

[A] =

/ —3C +C d“C -\~C' 
+1 -1  
-1 +1 

V +1 -1

The eigenvalues r, are found from this with eq. (2.99) as the roots of the charac
teristic equation

to

r(l  -hr ) [ r ’ - 3 C r - ( l  -hC)] = 0 (B5)

3C
( f ) V ( .  + c ,

1/2

(B6)

' 2

1/2
(B7)

T3=-1

r4=0

(B8)

(B9)

In the special case, C = -  1 follows r, = 3, /"j = 4̂ = 0 (double root), rj = - 1 .  
The general solution for C = — 1, therefore, reads

0 . = /I. + +  q  -h D ¡  ( i = 0,1,2,3) (BIO)

and its derivative
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dC
1 = 5 . - C , e “  ̂ +3£»,e3C (¡ = 0,1,2,3) (BID

The constants are determined using the differential eqs. (B1)-(B4) and the 
boundary and coupling conditions {X =  — Y = N f o r C =  -1):

0o(lV/3) = 0  

0 , ( 0 ) -  I = 0  

0,(1V/3)-02(1V/3) = 0  

0 ,(0) - 03(0) = 0

From the differential equations, one finds, first

(B12)
(B13)

(B14)

(B15)

= ^0 “  ^0 B, = Bo Co = 0 ^1 (B16)

A. =  Aq-^Bq Bj = Bo 02 = 0 Z>2 = -Do/2 (B17)

■̂3 =  Aq — Bq B, = Bq C 3 = - C , ^3 =  Do/4 (B18)

Then, from the boundary and coupling conditions

N
^0 + y^ o + Do = 0

A o - Bq + Cl + 5i>„ = i

-  2Bo + + T c'" T>n = 03
4

2Bo + C] -h 4 ^ 0 = 0

From these, the constants are found with x =  e to be

(1 - xDA' + 8(1 + x )
Aq —

Bo =

C, =

^ 0  =

O

- 3 ( 1 -x-D 
4)

6(1-x-^)
(b

-8x-^(l -X-) 
4)

(B19)

(B20)

(B21)

(B22)

(B23)

(B23)

(B25)

(B26)



With the common denominator

<t> =  (N + 3)(1 + A-'') + 6(1 -  A-’ ) + (1 + a-)(8 -  2x )̂ (B27)

The normalized change in temperature e = 0o(O) = /Iq + froin this follows to

N + 8/,(iV)
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£ =
9 +  N +  Sf^{N) (B28)

with

\ +  X  —  —  x"*

1 +

In the form 1/0(AO, one finally obtains

(A = (B29)

1  = /V 9/V
0  ■^N + 8/i(lV) (B30)
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EFFICIENCY AND MEAN TEMPERATURE 
DIFFERENCE OF HEAT EXCHANGERS WITH ONE 

SHELL PASS AND EVEN NUMBERS OF TUBE PASSES

In 1965, Allan D. Kraus and Donald Q. Kern [K4] derived the following expression 
for the efficiency of heat exchangers with one shell pass (laterally mixed) and n =  2m 
tube passes {m =  1, 2, 3, . . .):

(Cl)
I +  R  +  -  y / l+ inR / lf  coth

NTuVl + {nR/2f 2
+ -f iz )n

Az)

n n

= yV + ( / -  2)z^~‘ + (/• -  4)z^~  ̂ + 4)z" -  a  -  2)z -  j
1 + z + ẑ  + + . . .  + rJ-l +

(C2)

z = exp(2NTU/n) j = (n -2) /2 (= m -  1)

With Y =  NTU and R = X/Y (7 is the tubeside NTU), the generalization of the 
equations for 2m = 2 and 4 passes from Table 2.3 (2m, m, m) is:
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1 X  + {Ylrri) -  Z„
1  = ^(ZJ + ^(y) -  <p{Y!m) + ------- ^ ^
x) 2

(C3)

Z„ = VA'" + {YImf e =  7 0  <p{x) = x/(l -  e’ O (C4)

In the following, it will be shown that the efficiencies calculated from eqs. (Cl, C2) 
[K4] and from eqs. (C3, C4) are, in fact, the same. To do so, we first rewrite eq. 
(Cl), with (1/0) = 7/e:

(1/0W = — + %  coth ^  +  ^ A z )  Z =  exp(7/m)
2 2 2 2m

and with x coth .r = <̂ (2;r) -  x into

X  +  Y(i/ew = + <p{zj - ~  +  ^ A z )2 2 2m
(C5)

Comparing eqs. (C5) with (C3) yields and expression for the equivalent of the func
tion /(z) in our shorter notation:

or rewritten with the original meaning of (p(x) and using z gives:

z'" + 1 z + 1
fuXz) =  m

hA z) =

z” -  1 z -  \

=̂0__________

k = Q

(C6)

(C7)

(C8)

Eq. (C8) is Az) from eq. (C2). With the sum of the finite geometric series

^Z^ =  =
_ z^*‘ -  1 ^ z" -  1 

z -  1 z -  1
(C9)

the functions /(z )‘S„, = F{z) from eqs. (C7) and (C8) become

^Mniz) =  m l  S „  +
z -  1

~  S„( 1 +
z -  1

(CIO)
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Fk^̂ z) = $;(/■ -
k = 0

Eq. (CIO) may be rearranged into

FMa(z) =  (m -  1)S„ + -  SJ
z -  1

Dividing the polynomial S^by (z — 1) results in

—  + y,k-z-J-k
Z -  I Z

which, when introduced into eq. (Cl2), with m -  \ =  j, leads to 

FuXz) = ^ k - e - ^  -  =  ¿ (/-  -  lk)z^~

(Cll)

(C12)

(C13)

(C14)

So F̂ Ĵ z) is identical to /Vk(̂ )- From this, it is clear now that the simple formulas 
(C3) and (C4) give, in fact, the same result as obtained from the relationship (Cl) and 
(C2) as derived by Kraus and Kern.
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SYMBOLS

A transfer surface area
a 1 function of N 2/n (defined in eq. [2.189])
Cly m-' volume specific surface area
B m width, breadth
B 1 function of and N 2/n (defined in eq. [2.191])
B 1 relative wall resistance (defined in eq. [3.93])
B kg/(mh) falling film mass velocity (chapter 3, section 5)
b 1 = 1 -  a (defined in eq. [2.190], see also eq. [2.45])
b m gap width
C 1 capacity flow rate ratio = (%),/(MCp)2 (with

negative sign for counterflow)
Cd 1 drag coefficient
Cp. Cv J/(kg K) mass specific heat capacity (at constant pressure, and

constant volume, respectively)
D m diameter
d m diameter
d. m hydraulic diameter (see eq. [1.117])
F 1 correction factor for AJlm, LMTD

correction factor
F J 1 function symbols
Gz 1 Graetz number = pc wcf/(k L) = RePr d/L
8 1 function of N2 ln (defined in eq. [2.36])
H m height
H J enthalpy
H W enthalpy rate
h J/kg mass specific enthalpy

197



198 HEAT EXCHANGERS

J 1
i, j, k 1
K W/K
K 1
k W/(m"
L m
Le 1
1 m
1* m

M kg
M kg/s
m kg/(m̂ !
m 1
mi,2 1
N 1
Nu 1
n 1

-3«V m
Pe 1
Pr 1
P Pa
Q J
Q W
q W/m̂
R 1
Re 1
r„ 1
r m
S m
s m
T K, T
t s
U J
u m/s
V m
V 1
W J
w W
w m/s
X, Y, Z 1

J, z m
Z 1
z 1

kA/{Mc.), NTU

number of cells of a cascade 
number of a cell, counting index 
= kA (in chapter 1, section 1 only) 
diameter ratio (=  djdo) in annuli 
overall heat transfer coefficient 
length
Lewis number = \/(pĉ d̂ 2) 
length
characteristic length (defined in eq. [3.91] chapter 3,
section 6)
mass
mass flow rate 
mass flux
exponent, counting index
roots of a quadratic equation (in chapter 1, section 3) 
number of transfer units =
Nusselt number = ad/\ 
number of tubes, rows, channels, turns, etc. 
volume specific number 
Peclet number = pc^wd/X = Re Pr 
Prandtl number = r]cj\ 
pressure 
heat
heat rate, heat duty 
heat flux
capacity flow rate ratio =
Reynolds number = pwd/iq
roots of characteristic equation, eigenvalue
radius coordinate
cross sectional area, flow cross section 
tube pitch, wall thickness 
temperature 
time
internal energy 
flow velocity 
volume
recirculation rate (see eq. [3.76] chapter 3, section 5) 
work
power (mechanic, electric, etc.) 
velocity
nondimensional length coordinates (= Nx, Ny) 
length coordinates
dimensionless mean overall heat transfer resistance 
dimensionless local overall heat transfer resistance (see 
eq. [3.92], [3.97] in chapter 3, section 6)

(MCp)/(MCp)2 = |C|
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GREEK SYMBOLS

a W/(m  ̂K) heat transfer coefficient
& m/s mass transfer coefficient

1 velocity ratios (in eq. [2.222])
8 1 relative wall thickness (in chapter 1, section 3)
8 m fin thickness (in chapter 3, section 7)
¿12 m̂ /s diffusion coefficient
A 1 difference
E 1 unit matrix
e 1 normalized change in temperature ( =  efficiency)
r 1 dimensionless length coordinate
V Pa s viscosity
V 1 fin efficiency
e 1 normalized mean temperature difference
e, ^ 1 normalized temperatures
d K temperature difference (in chapter 3, section 7)
X 1 =  (kA)i î /̂(kA) in chapter 1, section 1, =  (kA)i/(kA)Q in 

chapter 1, section 3
X W/(K m) thermal conductivity

1 function (defined in eq. [1.106])
V mVs kinematic viscosity =  rj/p

1 friction factor
1 dimensionless length coordinate (in chapter 3, section 6 

=  x//*)
n, E product, sum
p kg/m̂ density
o 1 dimensionless film thickness (defined in eq. [3.96])
T 1 dimensionless time

<p 1 function symbols
<p o angle
V' 1 void fraction
0) 1 nondimensional stirrer power (defined in eq. [1.20])
0) 1 =  (1 +  in eq. (2.88)

SUBSCRIPTS

0 at z =  0
1 stream 1, apparatus 1
2 stream 2, apparatus 2
00 at steady state, far away from the surface
A air
a ambient, annulus
B film mass velocity
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b
bed
c
d
el
F
f
g
I
i
i, j, k
J
L
LM
1
loc 
M, m 
m, max 
min 
o
opt
P
P
R
req
S
s
T
V 
W 
X
Y

boiling 
packed bed
collector, condensation, counter current
distributor
electric
feed
film
gaseous
initial
inner
number index 
jacket 
lid, loss
logarithmic mean
liquid, at the position z = I
local
mean
maximum
minimum
at the surface, outer 
optimum
pump, particle (in chapter 3, section 4) 
parallel flow
recirculation (in chapter 3, section 5) 
required
shell-side, stirrer, storage mass
solid
tube-side
vapor, vaporization 
water, wall
Z-stream (see Fig. 2.54)
F-stream (see Fig. 2.54)

SUPERSCRIPTS

(0)

(dot) flow rate
(prime) at the inlet (in chapter 1, section 3: first derivative)
(double prime) outlet (in chapter 1, section 3: second derivative) 

intermediate value 
(tilde) molar quantity
(bar) integral average

estimated value, zeroth approximation
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Air cooler and dehumidifier, 166-175 
Air liquefaction, 51
Analysis, systematic, of heat exchangers, 

29
bayonet heat exchanger, 19 
double-pipe heat exchanger, 11 
stirred tank, 1 

Auxiliary function, 96, 105

Balances, 3, 111, 148, 168 
Bayonet heat exchanger, 18-24, 153 
Boiling, 153-165 
Bypass flows. 111

Capacity flowrate ratio, 16, 35, 81 
Cascade, 47-50 

cocurrent, 50 
countercurrent, 47-50

of parallel flow exchangers, 79 
Cell, method, 58 

of a cascade, 48 
model, 53

Change in temperature, normalized (see 
under efficiency)

Compact plate-fin heat exchanger, 129 
Condensation, 153, 166 
Costs, 118-124
Counterflow, 12, 35, 54, 95, 96, 98 
Coupling of two heat exchangers, 82-87,

no
Cross-counterflow, 46-50 

cascade, 47-50 
co-directional, 47, 50, 51 
counter-directional, 47, 49, 50 

Crossflow, 36-46
both sides laterally mixed, 43, 96 
ideal, 41, 96
one side laterally mixed, 36, 96, 98, 

108, 109
over n rows of tubes, 38-41, 99-101, 

183-187

Diameter, hydraulic, 25 
Double-pipe heat exchanger, 11-17, 

115-124
Drag coefficient, stirrer, 9, 10
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Efficiency, 16, 23, 30, 36, 40, 44, 59, 
98-109, 115, 125, 134, 140 

(See also: effectiveness, or: normalized 
change in temperature)

End effect, 63-68 
Enthalpy, 4, 12, 13 
Evaporation, 153 
Evaporation cooling, 147-153

Micro heat exchangers, 130 
Mollier-diagram for moist air, 166 
Multipass heat exchangers, 103, 108, 109

2 passes, 52, 59, 101-103, 108, 109
3 passes, 102, 103, 109, 189-192
4 passes, 105, 107, 109
2m passes, 107-109, 193-195 
8 passes, 137

Falling film condenser, 147-153 
Film Reynolds number, 149, 165 
Fin efficiency, 171-174 
Finned tube, 170
Flow configuration, combined, 46 

simple, 45
Flue gas cleaning plant, 138, 139 
Fouling resistance, 119, 120, 134 
Friction factor, packed bed, 146 

plate heat exchanger, 71, 72 
spiral plate heat exchanger, 82 
tube, annulus, 26, 27

Heat capacity, 177
Heat exchanger design, examples, 115-175 

air cooler and dehumidifier, 166-175 
double-pipe heat exchanger, 115-125 
evaporator, 153-165 
falling film condenser, 147-153 
plate heat exchanger, 130-136 
regenerator, 138-146 
shell-and-tube heat exchanger, 125-136 

Heat loss, 4, 111 
Heat pipe, 94, 141
Heat transfer coefficient, 10, 27, 134, 143, 

151, 164, 173, 175, 179, 181 
(See also under Nusselt number)

Heat transfer coefficient, overall, 5, 10, 
119, 134, 144, 154, 155, 160, 161

LMTD correction factor, 23, 66, 67, 68, 
76-81, 93, 104

Longitudinal conduction, 91, 93, 111

Maldistribution, 111-113 
Mass transfer coefficient, 151

Number of transfer units, NTU, 14, 23, 
30, 33, 45, 50, 63, 65, 75, 77, 90 

Nusselt-Graetz chart, 127 
Nusselt number, finned tube bundle, 173 

packed bed, 143 
plate heat exchanger, 72, 73 
single sphere, 143 
spiral plate heat exchanger, 82 
tube, annulus, 29

Optimal dimensions, 125, 129 
Optimal velocity, 115, 118,1 24

Parallel flow, 12, 35, 54 
Plate heat exchanger, 41, 60-72 
Plate-fm heat exchanger, 129 
Power, dissipated, 9 
Pumping power, 120, 122, 136, 146 
Pressure drop, 24-27, 118, 120 

(See also under friction factor)

Regenerator, 87-94, 138-146
with fixed storage masses, 89, 138-146 
rotating, 88, 129, 130

Series-parallel arrangements, 68-71, 
106-109

Shell-and-tube heat exchanger, 52-60, 111, 
128, 136-138

Spiral plate heat exchanger, 73-82,
130-138

Steam consumption, 9 
Stirred tank, stirred vessel, 1-10, 31-34, 

96
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Temperature difference, logarithmic mean 
(LMTD), 15, 17, 19, 23, 34, 95, 
131, 169

Temperature difference, mean, 17, 19, 22, 
135

normalized, 17, 22, 30, 38, 42, 96 
Thermal conductivity, 179, 181

Velocity, optimal, 115, 118 
for gases, 125 
for liquids, 124

Wall resistance, 119, 120, 134, 156, 163, 
164
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