
® THE REVIT

FORMULA
www.TheRevitFormula.com

Three Point Press

First Edition

Copyright © 2019 by Edgar E.B.

Published by Three Point Press

All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photo copying, recording, or by any information

storage or retrieval system, without prior written permission from the publisher.

Limited Liability/ Disclaimer of Warranty

Every effort has been made to ensure that this book contains accurate and current

information. The publisher and the author make no representations or warranties

with respect to the accuracy or completeness of the contents of this work and

specifically disclaim all warranties, including without limitation warranties of fitness

for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advise and strategies contained herein may not be

suitable for every situation. This work is sold with the understanding that the

publisher is not engaged in rendering legal, accounting, or other professional

services. I professional assistance is required, the service of a competent

professional person should be person should be sought. Neither the publisher nor

the author shall be liable for damages arising herefrom. The fact that an

organization or Website is referred to in this work as a citation and/or a potential

source of further information does not mean that the author or the publisher

endorses the information the organization or the Website may provide or

recommendations it may make. Further, readers should be aware that Internet

Websites listed in this work may have changed or disappeared between when this

work was written and when it is read.

Trademarks

Autodesk and Revit are registered trademarks of Autodesk, Inc. All other

trademarks are the property of their respective owners. Three Point Press and

Edgar E.B., is not associated with any product or vendor mentioned in this book.

ISBN 978-1-7335976-0-9

Websites

www.therevitformula.com

www.threepointpress.com

® THE REVIT

FORMULA
PARAMETERS AND FORMULAS

EDGAR E.B.

iv

PREFACE .. vi

INTRODUCTION ·· x

1. PRE - PARAMETERS AND FORMULAS

LEGEND GUIDE ··· 3

METAPHORS ·· 5

UNITS ··· 9

THE EDITOR ··· 11

CREATING FAMILY TYPES ·· 15

2. PARAMETERS

PARAMETERS - GENERAL ··· 19

CREATING YOUR FIRST PARAMETER ··· 21

PARAMETER PROPERTIES ·· 22

INSTANCE VS. TYPE PARAMETER OPTION ·· 27

FAMILY VS. SHARED PARAMETER OPTION ··· 31

CREATING YOUR FIRST SHARED PARAMETER ·· 33

ASSOCIATING PARAMETERS ··· 37

3. FORMULAS

RECAP ··· 43

ANATOMY OF A FORMULA ·· 45

SIMPLE FORMULAS ·· 47

COMPLEX FORMULAS ··· 51

v

 4. FORMULA IDEAS

ANATOMY OF A FORMULA PART DEUX ··· 63

PROXY PARAMETERS ··· 65

INSTANCE AND TYPE PARAMETER TRICK ·· 67

MAKE ANYTHING METRIC ·· 69

SUPPORT AND GRAYING OUT PARAMETERS·· 73

HORIZONTAL OR VERTICAL FORMULAS? ··75

NEXT LEVEL FORMULA WIDTH WITH INTERVALS ·· 77

TEXT FORMULAS ·· 85

5. POST - PARAMETERS AND FORMULAS

PARAMETER ORGANIZING ··· 91

COMMON ERRORS ·· 97

TIPS AND TRICKS ··· 101

FINAL THOUGHTS ·· 103

CONTACT US ·· 104

DEDICATION ·· 105

vi

I’ve been making families, for a leading interiors design firm in California for over

10 years, and in that time I learned that in Revit, families are king, and if families

drive the Revit platform, then I would argue that family parameters and formulas

drive Revit. If you can master these two things well; parameters and formulas, then

the rest of the platform will be a walk in the park.

When I first embarked on the now enjoyable, back then stressful task of creating

sleek, efficient, and lightweight formula driven families, I bought a 400+ page book

on Revit. The three-author homage to the platform was way, WAY over my head at

the time. I opened the book (3) or (4) times before committing it to retirement.

Although the book was good, it just covered too much. To be honest, the book

ended up being more discouraging than encouraging for a beginner.

So, years and countless obstacles resolved later, the idea for this book was born.

This book would be THE BOOK I wished I had when I first started, when I was

banging my head against my desk in frustration (true story) reading long-winded

mechanical explanations of how parameters and formulas work. Pouring over

countless scattered pages and pages of tutorials, blogs, and websites that although

helpful, in my opinion, were written for people who already were familiar with

parameters and formulas. People like me now, not people like me then.

This book is designed to have no fluff, no anecdotal stories to thicken up its pages in

an attempt to command a higher price. This book is intended to be concise,

affordable, and something you can carry, period.

The goal is, to cut through the dry, illegible, and bloated tutorials written by

software Engineers, and provide an affordable, concentrated, pocketable, and

utilitarian guide to parameters and formulas written by a Designer for

Designers.

Let me reiterate this, by a Designer for Designers, you, the Architect, Interiors

Designer, Structural, Electrical, MEP, the recently graduated, etc.

vii

Now, before we dive in, let me give you a quick rundown of how I ended up in the

position of making highly parametric formula driven families. However, before I

do, let me be clear; this book is not about me. This book is intended and organized

for you to go out and start implementing its content.

If you want to get going jump right into the introduction, otherwise, stick around.

Perhaps you are where I was at the beginning. Maybe you have been tasked with

overseeing a BIM library, to create new content, or you are looking for a job,

newly out of College, and in need of furthering your skills. In any event, my story

may help you double down on mastering your new talent, and hopefully, have the

opposite effect the bible size book had on me when I was cluelessly looking for

answers.

MY STORY.
When I first began, Revit was starting to become mainstream amongst large

Architectural firms who started requiring that their sub-contractors work in Revit to

stay competitive. I was hired straight out of College after obtaining my Bachelor of

Architecture by a California Interiors design company a couple of years before the

shift from CAD to Revit. My job was to oversee the production of Construction

Documents for private and public Universities and research facilities all around the

country and a few in Canada and overseas.

The job was demanding enough with the CAD tools the company had developed

over the past 20 years, then overnight poof!, we are switching to Revit.

So, they did what all companies do, they signed us up for a one-week basic crash

course in Revit, and sent us home with an Autodesk book half the size of the 400+

page one I already had. We still had no clue. The paradigm shift was just too big.

I’d remind you no one had worked in 3D at the time unless it was for marketing.

Eventually, we hired someone with experience and tasked him with developing new

tools in Revit, like title blocks, templates, and of course Families.

For the next few months project started to pour in, and we started to get

familiarized with the new platform. There was no time to angst about the shift;

every day was about the deadline, although our new Revit expert did an excellent

job of getting a working system up and running, which allowed the company to

move forward, the increase in overtime was noticeable.

Worse than the deadlines and increase in production time, we started getting emails

from clients complaining of floating fittings, sinks and base cabinets protruding

through benchtops.

viii

3D raised the client’s expectations for our work. Now our work was not just

producing Construction Documents, now it was that plus helping the client with

their marketing efforts. Key to their marketing material, they now demanded more

and more quality and realism from our models. We knew that we still had work to

be done. I knew that there had to be a reason why Revit was taking off. There had

to be a reason why the WHOLE industry moved in this direction. The reason I

later understood was not just 3D, but 4D. Schedules, global oversight of complex

models, and clash detection. The reason was BIM, in particular, the ‘I’ in BIM;

Information.

So, what to do? I was happy to do my job and had very little interest in the

development of content. Though, I quickly realized that if I wanted to have a 40-

hour work week, I needed to fix this, and fix this now.

I began looking at our new library and concluded that if we were to go home on

time, our library needed to be smarter, lighter, and prebuilt, e.g., a bench top that

had a sink required a nested sink and fittings. This would cut down on time as

opposed to dropping all three components separately. So, I began to develop a

considerably more complex set of formula-driven-components with nested families

that did just that. After a while, my components started to gain traction in the open

market (the office), and I began to split my time 50/50 between CD’s production

and BIM management.

95% of the families used at the company were custom-made, simply put, they were

tailored to work exactly as the demand for extreme turnarounds deemed it. In the

years that followed, I designed and implemented, dozens and dozens of

components, as well as developed the way that production worked within the

company. Storing, managing projects, details, milestone archiving, etc.

The main issue that plagued the company’s productivity was that it was impossible

to know what was going on in elevation and 3D while you were in plan-view. Going

back and forth meant loss of time. Drafter error or copying components from room

to room would often result in base cabinets protruding through the bench top, or

fittings floating above the bench top. The solution; Colors.

ix

By using colors, we could color code labels, patterns and line work to match specific

heights, e.g., black = 36”, blue = 34” (ADA), and green = 30” (sitting height). With

these three colors, we could know, with great confidence, the height of all

components at a glance. If there is a green cabinet amongst a string of black ones,

then you know the green is not the right height.

Another big issue was a growing number of types per component. One family could

harbor 20 or 30 types, confusing the user and causing delays. Through formulas,

we programmed a pull, as shown in the lit MB48 above to change width at 6”

increments and stop at a specific width. We did the same to the components heights

and virtually eliminated all types. These formulas are in the book. Hint.

While there were many hurdles more, these two were paramount to efficiency, and

productivity, and allowed the company to tackle larger and larger projects

throughout the years. Additionally, in terms of growth, I always felt that I was more

than a step ahead of my coworkers regarding BIM for merely knowing how Revit

works, from the inside out.

I strongly advise you stick with this book or at least keep it close, it will help you get

out of annoying errors, and guide you out of rookies mistakes. Take it from

someone who did them all. If you have this in your hands, you’re already miles

ahead of where I started. I commend you for your initiative. Learn, share, and be

prosperous, plus get your boss to pay for it. It is a tax-deductible expense ;)

Edgar E.B.

NCARB

Green

Blue

Black

All Black

All Blue

All Green

x

First some layout metrics; this book has been organized in (5) parts. On both ends

of the book, you have the content you need before, and after you learn parameters

and formulas. In the middle, you have parameters, formulas, and some formula

ideas. It’s that simple.

Now, while the main focus of this book is to learn parameters and formulas in an un

-intimidating format, and this is the primary goal, there is a secondary goal…

STEAL! Well not really since you did purchase the book, It’s more like COPY!

There are very useful tried and tested formulas, and formula combinations in this

book, that can help anyone. So, if you don't have time to digest all of its content,

simply copy some examples and learn that way too. There is no wrong way; the

point is to learn.

Learn either by going step by step, by trial and error, or by copying and backward

engineering formulas later. JUST LEARN. You'll be surprised that at some point

it actually becomes fun. You will quickly notice that you begin to see things that

your coworkers don't.

Furthermore, you will begin to think of modeling differently. You will find solutions

to problems by thinking, “I can write a formula to solve that.” That moment is the

aha moment. Enjoy, grow and succeed.

Oh, and if you bought a digital copy of the book, great! Though I highly recommend

you keep a pocketable hardcopy version on your desk for reference. Enjoy.

Edgar E.B.

NCARB

xi

INTENTIONAL BREAK

PART

1

PRE-PARAMETERS

AND FORMULAS

MORE OF A ‘THINGS TO KNOW’ BEFORE YOU JUMP

INTO PARAMETERS AND FORMULAS. SOME BASIC

SETUPS; AN OVERVIEW IN PREPARATION FOR THE

MAIN EVENT.

3

TR

OT

R

SP

TRIGGER PARAMETER

Symbol used to identify the trigger parameter or parameters. These

parameters are the ones you activate, modify, the ones that set the formula in

motion.

OUTPUT PARAMETER

Symbol used to identify the parameter where the final formula is being used.

This parameter is usually grayed out, and its formula is fed commands by the

trigger parameters and the support parameters. This parameter is always

connected to an extrusion, visibility, or the dimension that stretched the family

in the case of a Length parameter.

SUPPORT PARAMETER

Symbol used to identify the parameters that help the output parameter get its

job done. Let’s just say that if the output parameter is Elvis, then the support

parameters are the roadies that do all the heavy lifting behind the scenes.

RESULTS

Symbol used to highlight a result after a lengthy explanation

QUESTION MARK

Symbol used to highlight an unknown.

NUMBERS

Symbol used to highlight a specific sequential process.

LETTERS

Symbol used to organize paragraphs in no particular sequence.

e.g. = For example.

We’ll need to sort through a bit of data throughout the book. Hopefully in a

graphical manner that doesn't seem daunting. Below is a series of symbols that

were developed with this in mind. While we’ll be thorough at every step of the way

and note what each symbol means when in doubt come to this sheet for a quick

reference refresher.

1

?

A

4

INTENTIONAL BREAK

5

I have always liked metaphors to explain complex concepts. Metaphors provide a

more visual description of a concept, word, or thought that can be hard to explain

otherwise.

Below is a list of (3) of my favorite Revit metaphors which have helped, and

continue to help me visualize Revit concepts in relation to learning.

They may become more useful as you approach each topic, but merely being

exposed to them, upfront can help you grasp the topics better as you reach each one.

THE BODY

The body metaphor refers to the way families are built. Similar to the body,

families have bones, muscle, and skin. In Revit families reference planes are

bones, parameters are muscle, and geometry is skin.

Out of these (3) systems, believe it or not, the geometry is not the most critical

system. Getting the reference planes to move accurately with the parameters is

the most vital part. Once you get the bones and muscles to flex without errors

then adding geometry is easy. In fact, sometimes you can reuse the bones and

muscle and create an entirely different looking family.

The final element is the brain (formulas). While formulas really push your

families to an entirely new level of functionality, formulas can be added at any

time, even at the end.

Half or more of the book is dedicated to this important topic, see the next page

for further illustrations on the relation between the body and families.

1

6

REFEREANCE PLANES & LINES (BONES)

SOLIDS AND VOIDS - GEOMETRY (SKIN)

FORMULAS (BRAIN)

&

THIS BOOK IS ALL ABOUT THE...

PARAMETERS (MUSCLE)

7

A FEW TIPS ON MODELING
Although still on the analogy section, the body metaphor is a direct metaphor for

modeling. See below a few tips on the topic.

Make as many reference planes as you want, go crazy, just make sure of (2) things:

1. LABEL ALL YOUR REFERENCE PLANES

I wish someone had told me you could name reference planes at the beginning.

Naming your bones helps identify and keep order over the multiple RP’s you’ve

made and for what purpose they were made. Additionally, it lets you move

extrusions between the reference planes using the edit work plane button

(see below, right). Once clicked you get a list of all your RP’s and you can move

geometry, lines, and embedded families between them, a super valuable

function.

2. SET MOST REFERENCE PLANES TO BE NOT A REFERENCE

If not, when you hover over your finished model with the align tool, all the

reference planes will light up making your family confusing and dirty. You

should only have 6 reference planes set as references. The 4 perimeter ones,

and the 2 center ones.

8

THE COMPUTER VIRUS

The computer virus metaphor refers to the way formulas operate. Like a

computer virus, the formulas you write are always dormant until something

“triggers” them, similarly as when you download an infected file to your

computer. The computer is not infected until you press the .exe file and set the

virus in motion, the same is true with formulas.

2

THE IOS

The IOS metaphor refers to the way YOU build families.

The IOS operating system is famous for its elegance and simplicity. Contrary to

it’s Linux and Windows counterparts, where a user can be overwhelmed by

customizable options and access to the backend of the system. IOS hides from

the end user the day to day operations of the system and offers a hiccup-free

experience for which it’s famous for.

When making highly parametric families, the same mentality applies. You can

use formulas and parameters to restrict, control, and minimize mistakes. In

essence, you become the IOS programmer, and you must anticipate mistakes.

You will be the author of the complex backend, and offer the end user an

incredibly simple set of controls on the front end per your design.

3

9

UNITS
Before anything, it is always important to set your units. This is

particularly important in the creation of formulas where 2x3 can

be 2x3 inches or 2x3 feet.

UNITS AND SCALE
Units are synonymous with scale (which I also recommend setting

upfront), e.g., if I am modeling furniture, anything smaller than

60” to 72”, I recommend staying with inches. Furniture is usually

dimensioned in inches in most industries, anything larger should

be in feet, e.g., a crane, a car, or another big piece of equipment.

Now, in terms of scale, I always recommend working in the scale in which the model

will be used. If your model is intended to be used in enlarged plans, then I would set

the scale at 1/4”, if the model will be used in overall plans, then I would set the scale

at 1/8”. This is important because you may need to change text and dimension

scales in your family to work comfortably or find a text and dimension scale that

works for both scales.

These are things to consider when building your family templates, for now, concern-

ing formulas, we really just need to pick units, since it will affect your thought pro-

cess later down the road. I prefer and recommend inches (not the default) since

most families are small.

A note on units, when changed, they only affect the current Revit model, not the en-

tire system. This means you can have some families set to inches, and some set to

feet within the family editor. Same goes for the overall project’s environment, not

just families.

SETTING UP UNITS
To set up units, merely type UN on your keyboard

to summon the Project units interface. Alternate-

ly, under the manage tab, click on the Project Units

icon.

10

The main units we are looking for here

are the length units. Note, you can

continue the process for all units,

though, the length units and perhaps

the angle units are the most important

to change for formula creation.

Click on the length button

under the format column.

Click on the fractional

inches pull.

Select the desired units of

length to be used, note I use

fractional inches over

decimal inches.

Click Ok, Ok, and you are

done.

1

2

3

4

Note the rounding pull-down, this

lets you set the precision of the units,

e.g., if you want your dimensions to

round to the nearest 6”. I typically

don’t change this for the overall

environment. I may do it for a

specific dimension, and name it

ROUND at the end.

11

Akin to a computer programmer’s console, the family types

editor is where all parameters, types, and formulas are cre-

ated, it is essential to be comfortable with this environ-

ment.

When creating a simple family, you typically begin with

three parameters WIDTH, DEPTH, and HEIGHT. These

parameters are made in the family types editor. If you are

familiar with creating simple families, then you may al-

ready be familiar with the editor, but when making highly

parametric families, you will spend considerably more time on this screen (because

you want to, not have to). See below example of the editor in full use with more

than a dozen parameters, and formulas.

12

Make a new family

type

Sort alphabetically

Move parameters up

and down

Delete parameters

Add new parameters

Note, this button activates the

Parameter Properties interface

Edit parameters

Newly created

parameters

THE EDITOR OVERVIEW - BUTTONS
Bellow is an overview of the different functions used to cre-

ate parameters and family types. Parameters are used to

create formulas, to access the family editor go to the cre-

ate ribbon and press the family types symbol.

Family type name is grayed out until

a new family type is created

Rename family type Delete family

type

13

THE EDITOR OVERVIEW - FIELDS
Below is an overview of all the different fields, columns, and rows in the family types

editor.

TYPE NAME
The Inactive drop-down menu which becomes active once one or more types are

created. Once you have multiple family types, this drop-down box lets you change

between family types, and alter the type’s values.

SEARCH PARAMETERS BOX
Is a typical search box. Very helpful in highly parametric families once they start

getting out of hand (which is not a bad thing).

PARAMETER COLUMN
The parameter column is where all your new parameters are listed.

PARAMETER GROUPS (BLUE ROWS)
These blue groups help you lump your parameters into chunks for better readability.

Note Revit has pre-selectively organizing fields for each parameter, e.g., Dimensions

for Length parameters, Text and Materials are organized under the same name.

Some are not predetermined, and Revit will lump them under the Other group. In any

event, you have control to assign you parameters groups as you see fit. I recommend

reading the ‘Parameters organizing’ section under the ‘Post - parameters and formulas’

Part for a full explanation, and ideas.

VALUE COLUMN
Here is where the value for the parameter is given, e.g., on or off for a Y/N parameter,

or a specific Length for Length parameters.

FORMULA COLUMN
This is the area where formulas are written, see an example on the next page for

WIDTH.

LOCK COLUMN
I typically ignore these locks. What these locks do, is to restrict or allow altering the

parameter values outside of the family types editor. Let me elaborate.

If locked, and you intend to change, e.g., WIDTH outside the types editor (in plan

view), by just changing the dimension you will get an error warning. If unlocked, you

would be altering the parameter’s WIDTH as you wish without ever entering the editor.

Again, I choose not to fiddle with this.

A

B

C

D

E

F

G

14

C

E F G A B

D

15

While not a huge fan of family types, 95% of changes to families are done through

types. I go out of my way to create elaborate formulas to eliminate types, but types

are the norm, in Revit.

Family types are all the custom variations you make within a family. Let’s say you

have a family named MT (for movable table). You may need dozens of types for

each variation of the MT, e.g., MT6030, MT5430, MT4830, etc., etc. And that is

just the WIDTH, add the DEPTH changes, and you get an idea of how long types can

get. The question is, how are they created? Well, within the family types editor. See

below steps for creating a basic Length type.

1. From within the editor, Click on the new type button.

2. A name box appears, change the default name to whatever you want. Here I am

naming my type MT6030, click OK.

3. The grayed out type name: field becomes MT6030.

4. Don’t forget, you still need to change the WIDTH, and DEPTH Length parame-

ters to match your new type name.

5. Wash, rinse, repeat, and you get a nice list of types.

16

INTENTIONAL BREAK

PART

2

THE MUSCLE IN REVIT. EVERYTHING YOU NEED TO

KNOW ON PARAMETERS FOR SCHEDULING AND

FORMULA CREATION.

PARAMETERS

19

The muscle in Revit. Parameters either move something,

make something visible or not, change a Label/ Text,

change materials, etc., etc. Parameters make the difference

between something that just looks good and something that

is good. Parameters make families functional, schedula-

ble, and intuitive, hence the name parametric families.

You can make a family without parameters, in fact, many sophisticated company-

manufactured families often look good, but are no-good. Many times these

families are created in Solidworks and then dropped into the Revit family editor.

The reality is, if you need a static family, these work, the problem is, when you need

a dynamic/ parametric family, these do not work. Changes to dimensions, materi-

als, schedulability, and sortability are paramount to the “I” in BIM; information.

With no parameters to communicate the information, families at best become lim-

ited, at worst become useless. This is where your custom family creating skills over-

shadows that of the manufacturers; by adding the ‘I’ in BIM, you the builder don’t

just gain new families, you gain control. Control over Revit, and control over the

information you are already inputting into your model as you model along. This is

4D, this is the true power of the platform; information, and it all begins with pa-

rameters.

FORMULABLE PARAMETERS
Not all parameters are Formulable. Since we are focusing on learning the creation

of formulas, it is essential to know this up front. For example, you cannot use the

material parameter in a formula, or use formulas in the material parameter itself,

even though it has a formula field in front of it.

Non-formulable parameters can still be used in schedules and are highly valuable,

but there is no need to plan complex formula setups for these parameters only to

realize after hours that you couldn't use them in the first place.

A good rule of thumb is, if the parameter is number-based then you can use it in

formulas. That said, there is a couple of non-number based formulable parame-

ters. The YES/NO parameter, and the Text parameter. The text parameter can be

tricky to use though, quotation symbols need to encase the text when making text

formulas but don’t worry about the details now, there is a whole section that touches

base on text parameters. For now, just know that Text and Y/N parameters are the

few non-number based parameters that can be used in formulas.

20

NAMING PARAMETERS
Before anything, it is essential to know how to

name your parameters. Below is a list of dos and

don'ts for you to consider. Ultimately picking a

naming strategy is entirely up to you, and should

be something you are comfortable with, or some-

thing that makes sense to you.

• Revit parameters are case sensitive, meaning,

the parameter Width is an entirely different

parameter than the parameters WIDTH or WidtH.

• Do not use dashes like WIDTH-FRONT, or WIDTH-BACK. Revit can interpret

the dash as a minus sign later in formulas, instead use an underscore for a simi-

lar effect, e.g., WIDTH_FRONT or WIDTH_BACK.

• In general stay away from special characters in your naming, e.g., \,:,{,},[,], etc.

• Consider not using spaces between words. Instead, use underscores, this will

cut down on doubts like if you used spaces or not, or mistakes like accidentally

using too many spaces between words.

• Consider using all caps. Having your parameters in all capitals will help your

custom parameters stand out from the default ones used by Revit. This helps

you quickly identify your parameters in schedules vs. system parameters. An

additional benefit is that you eliminate the case sensitivity in naming parame-

ters.

• Avoid using numbers in your naming. Instead of WIDTH_1 or WIDTH_2, try

WIDTH_A or WIDTH_B. This again helps when you are writing formulas

clearly separate a parameter name from just length and integer numbers. That

said, you can use them like 120V_VISIBILITY for an outlet. Avoid numbers, but

if it makes sense to you, use them, this is not a rule, it is a suggestion.

HERE ARE SOME ADDITIONAL PERSONAL PREFERENCES.

• Be descriptive when making parameters, but keep it short.

• If you have many parameters that deal with the same element like labels; pref-

ace the parameters with LABELS, so they group together, e.g., LA-

BEL_CUSTOM, LABEL_INSIDE, LABEL_ROTATE, LABEL_VISIBILITY, etc.

• Avoid excessive abbreviating. Let’s say you have parameters that are named

WIDTH_LOW and WIDTH_HIGH, and you want to shorten them to WI_LOW

and WI_HIGH. If you can remember what WI means (3) years from now, go

for it, if not, don’t. These short sided abbreviations can cost you more grief and

time later when trying to figure out what they meant, rather than just writing

the whole thing out. Get used to longer formulas; again unless you can create a

system that works for you.

21

1 Open the family editor as we did in the previous section by going to the

create tab, then family types.

2 Press the add new parameter button on the bottom left (second icon from the

left), The parameter properties box will open.

3 For this exercise we will make

a length parameter, This is

the default type of

parameter when the box

opens.

Note, if you want to make a

different parameter, just

scroll through the drop-down

menu and change it to

another type parameter.

4
Under the name field, type

a length parameter name,

e.g., WIDTH, DEPTH, or

HEIGHT.

5 Press Ok, and you are done.

Your first parameter is

completed a length

parameter.

3

Note all the different selections on the Parameter Properties box. On the next few

pages, we will break down all the fields in detail.

22

For the most part, creating a parameter is as easy as 1 through 5 (as noted on the

previous sheet). Once you know what you are doing, you’ll be making parameters in

seconds, especially when you already know how many parameters you need, the

type of parameters they will be, and what you are going to name your parameters.

For the most part, the parameter overview fields and options are pretty straightfor-

ward, except for two:

1. The Family parameter vs. the Shared parameter option.

2. The Type vs. Instance parameter option.

In my experience, these two fields trump most creators and end users at the begin-

ning. For that reason we will break down the overview in two sections:

1. A simple pass with a brief description of all fields.

2. A detailed pass where we will circle back to these two fields for a more detailed

explanation. Just know this, you do NOT need to get this right away. For the

sake of making formulas, you can skip and move forward, but it’s always a good

idea to be exposed to tricky topics upfront, so when confronted with them and

confusion sets in, you remember this was discussed before and can circle back

for a refresher review.

23

C

B A

D

E

F

G

PARAMETER PROPERTIES OVERVIEW

(SIMPLE PASS)
Bellow is an overview of the different functions used to create parameters.

24

A

B

FAMILY OR SHARED PARAMETER OPTION
The family parameter option is selected by default, this option will create parameters

that will not appear in any schedule once loaded in your project. For formula creation,

most of your parameters will be this type.

The shared parameter option is used for scheduling purposes. When you create a pa-

rameter with this option, the parameter will appear in your project’s schedules. This

paramount for the ’I’ in BIM. We will go into great detail on these options later.

TYPE OR INSTANCE PARAMETER OPTION
The type parameter option creates a parameter which is stronger than the instance pa-

rameter option. This parameter when altered affects every family in a project. Changes

to type parameters are made within the family through the edit type button.

The instance parameter option will create a weaker parameter that when altered, it only

affects one family in the project, the one you made the change to. This option will ap-

pear outside the family in the properties pane, instance parameter changes are made

more on the fly. We will go into great detail on these two options later.

NAME
Here is where you name your parameter, e.g., a Length parameter could be named

WIDTH, DEPTH, HEIGHT, etc.

DISCIPLINE
Use this pull-down to select the discipline that most close-

ly represents your industry, what you choose here will

alter the next selection list (Type of parameter).

This list is preset by Revit and is not alterable.

TYPE OF PARAMETER
This list is where you select the parameter type you need,

e.g., a Length parameter, Number parameter, Y/N param-

eter, etc. This list is affected by the previous discipline

selection. For example, you will not find HVAC parame-

ters in the structural discipline.

C

D

E

25

F GROUP PARAMETERS UNDER
This list groups your parameters. This represents the blue

row on the family editor (letter ‘D’ on the Editor over-

view). For the most part, Revit does a pretty good job at

automatically selecting this for you, e.g., a Length parame-

ter is automatically put under the Dimensions section

without you having to assign it. If you wish to be proac-

tive, you can further sort your parameters to fit your

needs.

See below example blue group header row for Dimensions.

EDIT TOOLTIP
Although barely used, this tool is actually very helpful. This tool allows you to add a

message for the end user explaining what your parameter will do. For some parameters

this may not matter, e.g., HEIGHT might be clear enough that you may not need to ex-

plain, but what if you had a parameter named HEIGHT_B, you could add a message

describing the difference between the two, when the user hovers over HEIGHT_B, your

message will display. You may only end up using this tool a couple of times per family,

but it can be very beneficial once you develop highly parametric families that have con-

fusing, but necessary parameters that need clarification. It is a way to talk to the end

user without actually talking to the end user.

G

26

PARAMETER PROPERTIES OVERVIEW

(DETAILED PASS)
As noted earlier, there are two options when making parameters that stump most

beginner modelers, and end users:

1. The Family parameter vs. the Shared parameter option.

2. The Type parameter vs. Instance parameter option.

Lets review both in the next (2) sections. We will begin with Type vs. Instance pa-

rameters, since it is the most straightforward concept of the two, and finalize with

the Parameter vs. Shared parameter option since this explanation requires us to

make a shared parameter, which has its own challenges.

While both concepts are essential, for the sake of learning how to make formulas,

they can just be left on their respective defaults (as shown above), and you can con-

tinue, but when ready to kick it up a notch, come back and re-read this section, since

it will help you create a much more powerful system for your office.

27

INSTANCE PARAMETERS
Instance parameters distinct behavior is:

1. They affect only (1) family type at a time.

2. All the parameters live outside the family.

Let’s illustrate. Let’s say you have a project with (3) movable tables. The WIDTH

parameter for this table is an instance parameter. See below and on the next page

for steps to change the WIDTH, and the outcome effect on all types on the project

with an instance parameter.

SELECT ONE OF YOUR FAMILIES

Note the properties pane change from floor plan properties to family properties.

CHANGE THE PARAMETER VALUE

Scroll down through the family properties and look for your parameter. In this case,

since it is a length parameter, it will be located under dimensions, we will change the

CSTM_WIDTH parameter from 36” to 60”.

NOTE THE BEHAVIOR

Out of the (3) families in the project, only (1) family was affected, the one you selected,

the reason for this is that the parameter will just change the behavior for only (1)

instance in the project, not all the types throughout the project. So, you could say the

harm if an accidental change were to happen is minimal vs. a type parameter change,

which is global.

1

2

3

28

1 2

+

3

Select one of your

families

Change the

parameter value

Note the behavior

29

TYPE PARAMETERS
type parameters distinct behavior is:

1. They affect ALL family types of the altered type

throughout the project.

2. All the parameters live inside the family.

Let’s illustrate. Le’ts say you have a project with (3) movable tables. The WIDTH

parameter for this table is a type parameter. See below and on the next page for

steps to change the WIDTH, and the outcome effect on all types on the project with

a type parameter.

Note to access the type parameters (inside) there is an extra step you will not find

when altering an instance parameter.

SELECT ONE OF YOUR FAMILIES
Note the properties pane change from floor plan properties to family properties.

SELECT EDIT TYPE
This is the extra step you do not do on instance parameters. This steps grants you

access to the inside of the family.

CHANGE THE PARAMETER VALUE
Scroll down through the family properties and look for your parameter. In this case,

since it is a length parameter, it will be located under dimensions, we would change the

DEFLT_WIDTH parameter from 36” to 60”.

PRESS OK
Confirm changes.

NOTE THE BEHAVIOR
All (3) families were affected, the reason for this is that the parameter changed ALL the

behavior of the types in the project, not just one. So, you could say the harm if an

accidental change were to happen is more severe vs. an instance parameter change,

which only affects (1) type, this change is global.

1

2

3

4

5

30

1 2

5

Select one of your

families
Edit type

Note the

behavior

3

4 Press

OK

Change the

parameter

value

31

FAMILY PARAMETERS
The family parameter option which cannot appear in schedules or tags, is THE

option you will use 95% of the time, why? Because you do not need to schedule eve-

ry parameter you make.

You will schedule WIDTH, DEPTH, HEIGHT, and maybe some features, like

LOCKS, CASTERS, or other things you need to keep track of. Most families you re-

ally only need to schedule 4 or 5 parameters at a time, but you will make dozens of

non-scheduled parameters. These parameters are the ones you make for formu-

las. These parameters are the ones you make for small changes like a benchtop’s

overhang, or the height of a backsplash. Just general items.

SHARED PARAMETERS
These parameters are targeted and schedulable. When you make Shared parame-

ters, you essentially create a database of parameters you can export, insert, and

reuse. This database is housed in a .txt file you will save somewhere on your com-

puter or network. By reuse, I mean that once the database of parameters is made,

you can insert parameters to other families, so you really end up making these once

and reusing them forever. Shared parameters have (2) primary uses:

1. To make any parameter appear in schedules. Let’s say you want to keep track of

all benchtop’s backsplash heights. You merely create a Shared parameter called

BACKSPLASH_HEIGHT and apply it to the backsplash. This parameter now

will appear in your project schedules moving forward.

2. For tags. If you make a Text parameter and you want to extract the information

later in the project via a tag or keynote, the parameter needs to be a shared pa-

rameter so that the tag or keynote can connect to the text parameter. The tag

will need to be connected to the same shared parameter as the one in your fami-

ly via the shared parameter database (.txt file).

Out of these two options, for the most part, you will be making schedulable parame-

ters. Let’s go through the steps in creating shared parameters in the next section.

32

INTENTIONAL BREAK

33

WHEN YOU SELECT SHARED PARAMETER
Note the changes when you just select the shared parameter button. All parameter

fields gray out (except for type and instance). This is because from here on all these

fields will populate by the database you will create. This data once built, will populate

itself.

CLICK SELECT
Click select to begin your first shared parameter database (fancy for a list of reusable

parameters).

FIRST SCREEN
The first time you begin your shared parameters this screen can be confusing since it is

completely empty. The reason is, you haven't yet made a parameter group and a

parameter. So why do you need a parameter group and a parameter? Because when

creating your shared parameters, shared parameters can be lumped by a group for

organizing purposes. So, I can lump all my length parameters under a

LENGTH_PARAMETERS group and have dozens of Length parameters under this

group (which we will do shortly). I can make another group for TEXT_PARAMETERS,

and use that just for text as well.

CLICK EDIT
The reason it is called edit is that once you create your first database (.txt file), every

time you come back to add more parameters or groups, you will be editing the list. The

first time is weird and confusing because it is empty and there is no direction.

CLICK CREATE
Since this is your first database (txt. File), you are clicking Create, if you already had

created a .txt file, then you would click Browse to steal some previously created

parameters or to add parameters to an existing list.

LOCATE WHERE YOUR .TXT FILE WILL LIVE
Now you have a windows screen prompting you for a name and location where your

database (.txt file) will live. Find an appropriate folder on your computer or network,

name the file, and click save.

This section is tricky. Just know that mastering shared parameters is not easy, so

stick with it, and practice. What makes this section difficult is the sheer number of

steps. Try it out yourself more than once. It’s just one of those things that require

some practice.

1

2

3

4

5

6

34

1 2 3 4

5 6

35

SHARED PARAMETERS (CONTINUED)

NAME / CREATE YOUR GROUP
Once you set up your database (txt. file), you’ll be prompted for a group name. This

group name is where you’ll bundle up your shared parameters. See example for

LENGTH_PARAMERS group. Under this group, I can place all Length/ Dimension

parameters which will make it easy to find in the future vs. having them all jumbled up

with Y/N, Integer parameters, etc. Finalize, press OK.

MAKE YOUR PARAMETER
Note this window. This window is the basic properties for making a parameter (as

previously discussed). The reason the parameter fields are grayed out back in step 1, is

because the fields will be filled in by this step. In the future, you will pretty much start

at this step, if you are just adding to an existing group. Finalize, press OK.

BACK TO THE SECOND SCREEN (STEP 5)
Note this screen. You are back in step 5, except this time it’s not blank, and the fields

make sense. It is easy now to see and understand how parameters are grouped. Now

from this screen you can create more groups and add more parameters. I added a

couple more parameters so that the parameter section makes sense graphically.

Finalize, press OK.

BACK TO FIRST SCREEN (STEP 3)
When you are back to this screen it feels like you may have made a mistake since it

looks so much like the screen in step 9, it is not. In the future, once you have the groups

and parameters you need, you will not need to go further from this screen. You will just

come here and select from the premade list of parameters and groups. If you need

more, then you would press edit again and repeat step 9. Select the parameter you

need, press OK.

DONE
Look at the Parameter Data now, it is all grayed out and prefilled with the information

from the .txt file. The only remaining options you have is if you want to change the

Group parameter under option (which you do not have to and can accept the default)

and if you want your parameter to be instance vs. type (look back at the previous

section for the difference between the two). You are done, Finalize, press OK.

10

11

7

8

9

36

7 8

9

10 11

37

So, now you can make all sorts of parameters, what do we do with these parameters?

Well, it is time to learn how to associate parameters with the family. All the param-

eters you deem to be output/ connect to Dimensions, geometry, or materials need

to be connected. Let’s go through some essential elements and how they connect.

LENGTH PARAMETERS
1. Select your dimension.

2. The modify tab will light up, and a Label

pull-down will appear.

3. Pull on the label, and select the Length pa-

rameter to be associated with the dimen-

sion.

4. Now the dimension should read the same as

the parameter. At this point, flex your pa-

rameter, and the dimension will move your

reference planes.

Y/N PARAMETERS
You can associate Y/N parameters to geometry,

embedded families, labels, lines, etc. What you are looking for is this:

In the properties pane for the element, you are associating. Simply:

1. Touch the element (geometry, label, line, etc.)

2. Click on the square as noted above.

3. A list of Y/N parameters will pop-up.

4. Select the parameter you will associate.

5. Press ok, and done.

38

MATERIAL PARAMETERS
Materials are applied to geometry. The whole process is very similar to the Y/N pa-

rameter. What you are looking for is this:

In the properties pane for the element, you are as-

sociating. Simply:

1. Touch the element (geometry)

2. Click on the square as noted above.

3. A list of material pa-

rameters will pop-up.

4. Select the parameter

you will associate.

5. Press ok, and done.

Note that when associating materials there are (2) ways to do this.

1. Is the method above, where you are associating the material to a parameter, and

then the material can be altered in the project, so the geometry becomes wood,

metal, glass, etc., and you can alter at will.

2. Is where you apply the material to the geometry directly, not through a parame-

ter. In this case, you are applying the material permanently, and it will not be

alterable later in the project. I prefer the first method’s flexibility, but I can see

the second as a way to minimize material parameters. Let’s illustrate.

METHOD 2

What you are looking for is this:

The second square with (3) dots to the left of the previously used square. It is ini-

tially invisible. To make it visible merely click in the empty space between Material

and the old square, here.

Similarly as before, follow these steps:

39

1. Touch the element (geometry)

2. Click on the square as noted above

3. A list of materials will pop-up. This is

the same list that would pop-up if you

were selecting the material through the

materials parameter. Select one, and it

will be associated with the geometry,

but not to a parameter.

Note: when selecting a material, via a pa-

rameter, this method, or in the project, you

do not need to go to the material browser

shown here. If you know the materials

name, you can just type it in. This is the

reason I like my materials to be SUPER SIMPLE, e.g., E = Epoxy, or W=Wood.

Or two letters, EP = Epoxy, WO = Wood. It makes it super easy to flip materials.

Hint.

TEXT PARAMETERS
Text parameters are typically associated with Labels. A label is a symbol compo-

nent you input from Revit’s Annotations folder. This symbol, or Label, is then con-

nected to a Text parameter, and this way you can change what the Label’s Text

shows. Additionally, the label can be connected to Y/N parameters for it to be visi-

ble or not. This part though is intended for use in the former, with Text parameters.

So bring in a label into your family environment by:

1. Press the Symbol button under the Annotate tab, and locate a Label family in

Revit’s imperial library. Once in, it should say Label, or ‘?’ (question mark).

2. Touch the element (geometry)

3. Click on the square similarly as we did with other parameters, it looks like this:

4. Select from a list of available Text parameters, press OK. Note that if not associ-

ated, you can write text here, and you would have a static label, not parametric,

similar to how you can associate materials. (2) ways.

40

INTEGER PARAMETER

Integer parameters are often used with arrays. See image above. When you embed

a family into your family, in this case, an outlet, it is possible to use a command

called array. When you array an element, as shown above, you can associate the

array number to an Integer parameter, and later in your project, you can change the

number of outlets you want as you please. In this case, we have two. The steps are

as follows:

1. Make your array.

2. Touch one of the elements (in this case an outlet).

3. You will see a number light-up/ appear (see above number 2).

4. Touch that, above a label field, will appear.

5. Touch the label drop-box, and a list of Integer parameters will display.

6. Select the one you want, and done.

From here on you can change the integer parameter’s number, and the outlets will

follow.

PART

3

FORMULAS

THE BRAINS IN REVIT. AN OVERVIEW AND

EXAMPLES OF THE SYNTAX USED IN FORMULA

CREATION.

43

WHAT YOU NOW KNOW.
Let’s do a recap of where you

are now and move on from

there. Using our trusty Mova-

ble table family shown here,

let’s imagine it’s built with

some basic parameters,

WIDTH, DEPTH, and

HEIGHT. Right now you know

how to create and change these parameters effectively altering the MT’s shape. You

make duplicate types, and off you go, infinite MT sizes, so the question is:

Why formulas? In one word, CONTROL!

Formulas give you infinite control as to what the end user can change, control to

automate changes, to expand, or curtail capabilities, etc., etc. All this will become

apparent as you move through the examples, for now, let’s illustrate where you are;

cause and effect, simple parameters with one outcome. Note many people never get

past this step, so you are well on your way to knowing more than the average Revit

user:

PARAMETER VALUE FORMULA

WIDTH 60”

1 You make a parameter and associate to a

dimension.

2 You have a value, you change

from 36” to 60”, and that’s it. A

parametric family.

? What about this?

TO

44

For now, the formula box is useless, the only thing you can use it for is to freeze a

parameter. Go ahead and type in a number in the formula box, the result, it grays

out the parameter. Whenever you make a formula the parameter will gray out.

Why? Because that’s what formulas do, they take control of a parameter and render

it unchangeable by the human hand. The only thing that will change it is the formu-

la, or in other words, other parameters in the formula field.

This graying out of a single parameter is a great tool as well, but let’s circle back lat-

er, for now, let’s keep moving forward and respond the original question:

What about this formula field? Let’s analyze the anatomy of a formula. A for-

mula at it’s most basic and build on that.

PARAMETER VALUE FORMULA

WIDTH 60”

? What about this?

45

At its most basic, to create a formula you only need

two parameters, a trigger parameter, and an out-

put parameter:

• The trigger parameter activates the formula

(your manual input, you).

• The output parameter changes/ morphs the

family.

The three most common parameters in formulas are Length parameters, Yes/ No

parameters (visibility), and Text parameters. The ‘output’ parameter is the parame-

ter associated with the actual family, e.g., dimensions, geometry visibility, and la-

bels. Output parameters are typically grayed out by the formula controlling them.

The trigger parameter is never grayed out since it controls the formula that con-

trols the output parameter. Don’t get confused there’s still only (2) parameters.

Let’s illustrate:

INPUT/TRIGGER

PARAMETERS

(Can be more

than one)

FORMULA

FAMILY

• Something

turns on or off.

• Width, depth or

height changes

• Angle rotates

• etc., etc.

OUTPUT

PARAMETER

(Can only be one)

If this is not clear don’t worry, you are at the beginning, and all this will sink in or-

ganically as you move through examples. You can always circle back once you re-

view some examples.

46

INTENTIONAL BREAK

47

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH WIDTH/2 30”

1 Your trigger parameter,

or the human input, which

triggers the formula.

2 Your output parameter

connected to the family

3 A formula awaiting

change from the trigger
TR

OT R Result: A perfect

rectangles. Always

95% of the time, even on complicated formulas you will learn later, you will be using

very simple math like:

A. Summing (+)

B. Subtracting (-)

C. Multiplying (*)

D. Dividing (/)

E. Equal to (=)

F. Greater than (>)

G. Less than (<)

Now, there is the ability to use Pi, square root, logarithms, etc., etc., but for most

mortals, this basic syntax will suffice.

Let’s say you have a family (the MT in this case) and you want to control its shape

so that it’s always a perfect rectangle. You have two options:

1. You can rely on the end user to never forget to change the DEPTH to half of the

WIDTH, always (human error).

2. You make a formula to automate the DEPTH to always be half of the WIDTH

(no human error).

48

A SLIGHTLY DEEPER TABLE
Using the summing (+) function, you get a table that is always 12” deeper than it’s

WIDTH.

A SLIGHTLY SLENDER TABLE
Using the subtracting (-) function, you get a table that is always 12” less deep than it’s

WIDTH

A PERFECT SQUARE
Merely writing the parameter in the formula box, you’re guaranteed a perfect square

(=). The equal sign is implied.

TWICE AS DEEP
Using the multiplying (*) function you get a table that is always twice as deep as it’s

WIDTH

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH WIDTH+12” 72”

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH WIDTH - 12” 48”

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH WIDTH 60”

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH WIDTH*2 120”

1

2

3

4

49

Let’s say we want a pair of posts on our mov-

able table to hold the middle as WIDTH ex-

pands past a certain WIDTH. Additionally,

you want to control precisely when this

happens, at or above 8’-0”. You have two

options:

1. You can rely on the end user to never

forget to click on a Y/N parameter

(POSTS) every time the family reaches

8’-0”, and never forget (human error).

2. You write a formula to automate the pa-

rameter POST to turn on automatically

when your criteria are met (no human

error).

You will need (2) parameters, a Length pa-

rameter and a Y/N parameter.

PARAMETER FORMULA VALUE

WIDTH 96”

POST WIDTH>95”

1 Your trigger (Length

parameter), or the human input

which triggers the formula.

3 formula awaiting a

command from the

trigger

TR

2 Your output parameter (a Y/N

parameter) connected to the

post’s visibility checkbox.

OT

The WIDTH is set to trigger when WIDTH is longer than 95”. Why did I set it 1”

below the 96” (8’-0”) mark? This is because I want the post to turn on at or above

96” WIDTH. Had I set the formula to ‘WIDTH=96”’ then the post would have lit up

ONLY at 96” and then turned off after that.

50

Cycling is a method whereby merely using (1) integer parameter as your trigger,

you can cycle through infinite visibility (Y/N) parameters. Let’s illustrate:

You’ll need an integer parameter and as many Y/N parameters as you want to trig-

ger/ cycle through.

PARAMETER VALUE FORMULA

OUT_LAYT_FRNT 2

OUT_A OUT_LAYT_FRNT = 1

OUT_B OUT_LAYT_FRNT = 2

OUT_C OUT_LAYT_FRNT = 3

OUT_A

OUT_B

OUT_C

(Y/N parameters)

R Your result, the ability to cycle through infinite

extrusions or embedder families (here this is an

outlet).

3 formulas awaiting a

command from the

trigger

2 Your output parameters ((3) Y/N parameters)

connected to the outlet’s visibility checkbox
OT

1 Your trigger (Integer

parameter), the human input,

which triggers the formula.

TR

51

Complex formulas involve functions and conditional statements. NOW... just be-

cause I named this section COMPLEX FORMULAS, this does not mean that they are

hard formulas. They are actually very, very, easy once you learn to use the func-

tions and conditional statements as we did in the previous section. In reality, the

formulas just look difficult. You will quickly discover they are not.

FUNCTIONS AND CONDITIONAL STATEMENTS
I always thought of the following syntax as a little box or container that houses

your formulas/ parameters and outside there is a guy who tells the contents of the

box how to behave. Let’s quickly list all these functions, and then I’ll explain which

ones you will use 95% of the time, and which ones here and there.

IF(A,B,C) - USED 60%

By far the most important function in Revit formulas. This is

THE king of functionality. You will use this function to boss

around all other functions. This is a conditional statement,

which basically lets you turn math or code into how you think,

e.g., If (I press this button, then turn OFF, if not, then ON).

Simple, it will make sense later, just know it is important.

NOT(A) - AND(A,B) - OR(A,B) - USED 35%.

Although these functions are used independently, you ‘ll find that most of the time they

act as support for the aforementioned king, If (A,B,C).

ROUND FUNCTIONS - USED 5%.

These last (3) functions round numbers with decimals up or down. I’ve found these

three are sparingly used, though I can see their importance for some tasks.

A. If (A,B,C)

B. Not (A)

C. And (A,B)

D. Or (A,B)

E. Round (#)

F. RoundUp (#)

G. RoundDown (#)

1

2

3

52

INTENTIONAL BREAK

53

FUNCTION EXAMPLES
Let’s begin our examples from least important (Round () functions) to most im-

portant (IF () function), this way we can get the easy stuff out of the way, and we

can focus/ concentrate on the more complex, exciting, and functional aspects of for-

mulas once we reviewed the easy material.

Round functions (3) let you round numbers. This function enables you to turn any

number from a decimal number like 36.7 to a whole number 37. Easy enough, but

before you begin, there are caveats. These do not work with dimensions! And

others; the round function only works with the following parameters:

A. Number

B. Currency

C. Slope

That said..., there are ways around these caveats. You can multiply by 1, or divide by

1 to solve this issue, but for now, let’s get back to functions, and we’ll circle back to

neutralizing the horribly pesky ‘inconsistent units’ error under part 5, common er-

rors section. Don’t get discouraged, there is usually always a way around these er-

rors. On to examples.

ROUND (#)
The round function rounds a parameter up and down. From,

say, 1.1 to 1.4 it will round down to 1, and from 1.5 to 1.9 it will

round up to 2. See below example.

Note:

1. We are using a number parameter to both trigger and

output the formula.

 Either parameter can be named entirely different. It could

have easily been, parameter A & B. The critical thing is to

know who triggers the formula and who changes/ morphs

the family.

TR

OT

UP

@

.05

DN

@

.04

Round function

processing the

raw data

Final value to be outputted

Raw data

A

54

ROUNDDOWN (#)
The rounddown function rounds a parameter down. From, 1.1 to 1.9 it

will always round down to 1. See below example.

DN

TR

OT

ROUNDUP (#)
The rounddown function rounds a parameter down. From, 1.1 to 1.9 it

will always round up to 2. See below example.

TR

OT

UP

Very, very simple, and highly useful function.

When you create (2) Y/N parameters, you can set

one to always do the opposite of the other param-

eter. Basically, you get a seesaw effect.

TR OT In theory, both of these can

be output parameters

connected merely to (2)

distinct geometry. Hint.

B

C

55

The or(A,B) function lets you activate a parameter when, well an infinite amount of

things happen. Could be if either one of two or more Y/N parameter were to turn

on, or if either one of two, or more LENGTH parameters were to say be >36” or

<60”. In this case, the output parameter would not activate between 36” and 60”…

anywho, on to graphical examples, words are no fun.

Lets circle back to the simple parameters example on cycling. In that example, we

learn to cycle through Y/N parameters using an INTEGER parameter. Let’s go back

to that example and expand its capabilities with the ‘or’ function.

Here is what I want to do. I want to use an INTEGER parameter so when I press 1,

one outlet turns on, 2, two outlets turn on, 3, three outlets turn on, 4, one outlet

turns on (a different one this time), and 5, one outlet turns on (different one again).

Let’s diagram this on the table, I would typically do this on paper.

1

3

2

3

4

2

3

5 O
U

T
_

A

O
U

T
_

B

O
U

T
_

C

These numbers represent the number that we

will input in to our trigger parameter.

These represent the names of the output pa-

rameters that we will link to each outlets visi-

bility checkbox .

TR

OT

56

NOTE:

The trigger name: OUT_LAYT_FRNT, which stands for outlet layout front. This formula is

used for LEFT, RIGHT, and BACK, for a total of (4) triggers, and (12) output parameters,

e.g. OUT_LAYT_LEFT, or RIGHT. Ultimately the output parameter numbers don’t really

matter, only the trigger. The end user will just be looking for the triggers. This cycling

methods, in essence, lets you collapse (12) Y/N parameters into (4) INTEGER parameters,

fun.

RESULTS R

57

This is another straightforward function. It will activate a parameter when two

commands are met, e.g., Let’s say you have our trusty MT below. When at 36” high,

the apron is 4”, but when dropped to 30” it will need a 2” apron to avoid knee

knocking. A simple formula can change the apron height from 4” to 2” at 30” high,

now, the monkey wrench. We need to add a little scallop for when this happens, and

we have electrical outlets. A simple And() formula can fix this.

OT

OT

TR2

TR1

TR2

TR1

NOTE:

The APRON_SCALLOP output parameter needs (2) things to happen to activate. 1. HEIGHT

parameter (Length) to be smaller than 30.5” and 2. an outlet to be on, which occurs when the

integer parameter OUT_LAYT_FRNT is higher than 0 as shown on the previous example.

58

The If () function is by far THE KING of all func-

tions. As stated before, ‘by far, the most important

function in Revit formulas’. This is THE king of

functionality. You will use this function to boss

around all other functions.’ In a way, the If ()

function helps you truly turn a written plan in sim-

ple English, into functional code for Revit to un-

derstand. I know, you don’t see it yet, but pa-

tience, we will explore this a lot. You will see how

all the previous functions work together under this

function, to do some pretty interesting things. Let’s see how this function is put to-

gether, and let’s see what we can do with it.

THE ANATOMY OF THE IF () FUNCTION

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH IF (WIDTH>72” , 36” , 30”) 30”

If WIDTH is greater than 72”

Then (comma)

DEPTH will be 36”

If not! (comma)

DEPTH will be 30”

In my mind, I always think of the commas as words, (as

shown above) that help transition the conditional statement

from one to another (Hint). Note the circled last (3rd) part

of the if () function. This last piece is unique because this value closes the

conditional statement. This is the default Length; the resting Length. This value

awaits for a formula to overpower it, but until that happens, this is the default value

for the DEPTH parameter.

As we get into examples you will learn that many, many things come between if, and the

‘closer’ value, and as everything that comes before the ‘closer’ can change, and be insanely

long, one thing is always constant; you always needs a resting/ default ‘closing’ value at the

end to rest your parameter on.

TR

R Width is 60”; smaller

than 72”, so the default

30” remains.

OT

A

59

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH if(WIDTH > 35 1/2", 30", if(WIDTH > 59 1/2", 36", 24")) 36”

If WIDTH is equal or greater than 36”

Then (comma)

DEPTH will be 30”

And (comma)

If WIDTH is equal or grater than 60”

Then (comma)

DEPTH will be 36”

If not! (comma)

DEPTH will be 24” (default)

TR

OT

36”

EMBEDDING CONDITIONAL STATEMENTS

Similarly to the And (), and Or () functions, you can embed not only other If()

functions, but ALL previously discussed functions infinitely, making this one

THE most powerful function in Revit. Below is an example of the If()

function with an embedded If () function.

Note once my formulas develop a certain complexity, I will write in plain

English what I want to achieve and then set out to make it happen. This is a

great way to plan for your formulas, for example:

In English: I want a table that its default DEPTH is 24”, but:

• When the WIDTH is equal or greater than 36”, the DEPTH will be 30”.

• When the WIDTH is equal or greater than 60”, the DEPTH will be 36”.

In essence at certain widths, the table will be a predefined depth. Think of it as

if a manufacturer only sold tables in specific depths and widths. Below is the

outcome.

B

60

1. The trigger widths are 0.5” below where I want them to trigger. Why? This is

because I want the formula to trigger AT 36” and at 60”, otherwise it would

trigger above these dimensions, not equal or greater than. Hint.

2. Both if () statements contradict each other. The formula ushers a change above

36” in WIDTH. This should be the end of the discussion, right? No. It works

because formulas are read from left to right. So whatever is on the left is

more powerful, than whatever is on the right. When 36” in WIDTH hits, it

skips the 60” command, but when above 60” in WIDTH hits, then the power is

given back to the command to the left. Think about it. This is really

important to understand. This did not matter before the if () function.

3. Look at the number of parenthesis to the far right (2). As you add if ()

functions inside the parenthesis, you will notice that for every if () function you

embed, you need to add a closing parenthesis at the end. In the example above

there are (2) closing parenthesis for the (2) if() statements.

As mentioned before, many, many things come between if() and the ‘closer’ value,

and as everything that comes before the ‘closer’ can change, and be insanely long

one thing is always constant; you always need a resting/ default ‘closing’ value at

the end to rest your parameter on.

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH if(WIDTH > 35 1/2", 30", if(WIDTH > 59 1/2", 36", 24")) 36”

TR

OT

A COUPLE OF THINGS TO NOTE:

PARAMETER FORMULA VALUE

WIDTH 60”

DEPTH if(WIDTH > 35 1/2", 30", if(WIDTH > 59 1/2", 36", 24")) 36”

PART

4

FORMULA IDEAS

A SET OF TRIED AND TESTED FORMULAS AND

FORMULA COMBINATIONS THAT CAN BE TAILORED

TO OODLES OF FAMILY SCENARIOS.

63

INPUT/TRIGGER

PARAMETERS

(Can be more

than one)

FORMULA

FAMILY

• Something

turns on or off.

• Width, depth or

height changes

• Angle rotates

• etc., etc.

OUTPUT

PARAMETER

(Can only be one)

Similar to the first installment of ‘Anatomy of a formula’ at the beginning of the for-

mulas part; this second installment has been added as a guide to illustrate how

formulas grow in complexity. Again don’t fear complexity, complexity does not

mean hard. This section will introduce the concept of support parameters which

help open up formulas to greater functionality.

The next three diagrams aim to illustrate principles you will see throughout the

Formula ideas part. If it doesn't make sense yet don’t obsess, look through the

‘support and graying’ out section and then come back. These will make more sense.

The intent is to start showing these relationships up front.

ORIGINAL FORMULA ANATOMY

Below is the original Anatomy of a formula. It illustrates how the input parameters

(which can be more than one) act as the catalyst and triggers the formula within the

output parameter. The output parameter is what ultimately changes the family.

A

64

SUPPORT

PARAMETERS

(Can be more

than one)

INPUT/TRIGGER

PARAMETERS

(Can be more

than one)

FORMULA

FAMILY

• Something

turns on or off.

• Width, depth or

height changes

• Angle rotates

• etc., etc.

OUTPUT

PARAMETER

(Can only be one)

INPUT/TRIGGER

PARAMETERS

(Can be more

than one)

FORMULA

FAMILY

• Something

turns on or off.

• Width, depth or

height changes

• Angle rotates

• etc., etc.

OUTPUT

PARAMETER

(Can only be one)

FORMULA

SUPPORT

PARAMETER

(Can be more

than one)

FORMULA WITH SUPPORT PARAMETERS

In this diagram, we see the same layout as ‘A,’ except we have support parameters that

feed the output formula as well. The support parameters in this diagram are simple,

in that they are static, grayed out parameters, like a Y/N or a number that is not really

smart or dynamic, just something simple we need to abbreviate in the OT formula.

FORMULA WITH SMART SUPPORT PARAMETERS

In this diagram we see the same layout as ‘B,’ except the support parameters have

formulas that are influenced by the input parameters, and then affects the OT

parameter’s formula.

B

C

65

Proxy is the authority to represent someone else or a figure that can be used to rep-

resent the value of something else in a calculation. In essence, someone acting as

someone else. This is precisely what we will do now but with parameters and for-

mulas.

As we saw in previous examples, when you apply a

formula, it grays out a parameter. So far we have

been using the WIDTH parameter to modify the

DEPTH parameter for many examples, but what if

we wanted to use the WIDTH parameter to alter

the WIDTH parameter. What? The answer is, you

can’t. You would get an error. The solution is a

proxy parameter. One parameter telling another

parameter clone what to do.

Here is the problem we will be solving with our proxy parameter using our trusty

movable table. We need:

1. All movable tables to be 36” high (standing

height).

2. Some movable tables to be 30” high (sitting

height).

3. Per code, 5% have to be 34” high (ADA accessi-

ble).

So, the manufacturer ONLY makes these (3) heights. Now, I want to curtail the end

users from making a 27” or 40” high table. I want to control the end user’s ability

to break my family. One solution is to make the (3 height) types beforehand and

gray them out. But what if I want a typeless component and the end user to just

type-in the HEIGHT as he goes along? In other applications, I have used this meth-

od to eliminate (30+) types, and render a virtual typeless component. We will ex-

plore that later, for now, we will use this example to make a (3) height errorless

component. Don’t worry, it will make sense shortly, here is the formula:

H
E

IG
H

T

66

THE BREAKDOWN

TR

OT

Remember formulas are read from left to right, so in this formula the trigger is set

to 27”, therefore everything to the left does not meet the formula’s criteria, so it de-

faults to 30”, as the parameters of the formula are met, the functions to the right will

begin to activate in order.

The rules where design such that if above 30”, 34”, and if above 34”, 36”if not! Then

drop to 30”. Simple but powerful.

Now you can schedule your components by HEIGHT and get an accurate reading,

even if the user erroneously were to type in 27” or 40”, you would never get an un-

manufacturable table.

Another plus is if both parameters are set to instance, you do not need to make

types. Just type-in the Height you need, and you are done.

Below is another example that yields the same result. I include this example to

show how you can get to the same result with a different thought process. We all

don’t think alike. Formulas are a result of how you think. As you grow in experi-

ence, you’ll become much better at making tight and concise formulas.

Naming the parameters is entirely up to what makes sense to you. For example, I

thought of naming the HEIGHT_USE as HEIGHT_CSTM or HEIGHT. (note period

in the end), that is entirely up to you.

In this scenario the resting HEIGHT is 36”, and you sort of build to it from left to

right. The above example I like because it teaches you that the strength of the con-

ditional statement is from left to right. Very important to know.

TR

OT

67

Piggybacking off our previous example where we

controlled the end user’s ability to change a compo-

nents HEIGHT. In this example, I will teach you

how to overwrite the HEIGHT formula we wrote in

the previous section with a second instance param-

eter. THEN, overwrite both of those parameters with

a third type parameter. I know, I know, WHAT?

Basically having a HEIGHT parameter that you can

overwrite per instance or per type. The best of both worlds. Let’s illustrate.

1. Using the proxy parameter example, we have a component that can only have

(3) heights, 30”, 34”, and 36”.

2. Now I will make a second parameter named HEIGHT_INST which when higher

than 0” it will overwrite (overpower) the previous formula only once, for that

one instance.

3. Then I will make a third parameter named HEIGHT_TYPE that when higher

than 0” it will overwrite (overpower) both the original formula and

HEIGHT_INST. When HEIGHT_TYPE is greater than 0”, then

HEIGHT_TYPE will trump all other parameters. You need to make duplicates

for HEIGHT_TYPE otherwise, it will overwrite ALL formula and instance pa-

rameters. Don’t worry, if you 0” HEIGHT_TYPE again, all the other parameters

return. Don’t get it. Don’t worry, just do it, flex it, and it will make sense.

I use this method all the time. Most of my families don’t even use types anymore,

only when I want to highlight a particular type, and still, I have a wide range of ca-

pabilities. The important thing is to be able to schedule your components by

HEIGHT, WIDTH, DEPTH, on CASTERS, with DRAWERS, etc.

See below formula for this scenario. Yes, you can start to see that these can get long,

on the next page we will break down all this more legibly.

H
E

IG
H

T

68

THE BREAKDOWN

TR

OT

PARAMETER FROM PROXY PARAMETERS SECTION - INSTANCE
This whole section is nothing more than the original proxy parameter we wrote in the

previous section

INSTANCE PARAMETER

This section will overwrite (overpower) the (A) section when HEIGHT_INST is greater

than 0”.

TYPE PARAMETER

This section will overwrite (overpower) the (A) & (B) sections when HEIGHT_TYPE is

greater than 0”.

NOTE! (C) Is the only type parameter, which means that it will overwrite (overpower)

all the components throughout the project, not just one. The cool thing about this

formula is that all changes revert back merely by typing 0” again.

REVERSE PARAMETER HIERARCHY

If you reverse (C) & (B), the instance parameter will overpower the type parameter, try

it. Hint.

A

SEE BELOW FORMULAS OVERPOWERING PREDEFINED HEIGHTS.

C B

D

A

B

C

D

69

This is a very simple formula that as the title states, will make anything metric, and

of course by anything I mean any length from imperial to metric and back.

Imperial Metric

All family templates I build have this formula baked-in as a default. When you

make the trigger parameter named METRIC (a Y/N parameter) a shared param-

eter, you can create a schedule in your project that with a flick of a button, or but-

tons, will turn all your families metric. All the families that employ this formula will

automatically “shrink to metric.”

Let’s look at where the 0.984252 number comes from, the concept behind

“shrinking to metric,” and finally how to use it. The METRIC parameter is some-

thing the end user would know about and see. The MM number parameter is a sup-

port parameter that you can employ again and again once it is set up. If you just

want to know how to use the formula jump right in, otherwise read through the con-

cept behind it so you can learn what it’s doing. Note, the next section goes into

more detail as to what support parameters are and do, for now, let’s just focus on

MM (number parameter).

Not activated

(default)

Activated

FORMULA

70

SHRINKING TO METRIC AND 0.984252
The concept of “shrinking to metric” is actually straight-

forward. Let’s say you have a 60” wide table, and you want

a Y/N parameter that when turned on, will shrink your table

to 30” wide. A simple way to achieve this would be to multi-

ply the WIDTH by 0.5. In fact, by multiplying by 0.5, you

ensure that no matter what the WIDTH is, the WIDTH will

always be half the WIDTH when the Y/N parameter is activated. This is the same

concept we used to “shrink to metric.” Let’s illustrate.

IMPERIAL MILLIMETERS

12” 304.8mm

60” 1524mm

See table above. 12” or 1’-0” is exactly 304.8mm, and 60” or 5’-0” is exactly

1524mm. If the table above (MT6030) were to be built in Europe, they would not

manufacture a table at 1524mm wide. They would manufacture a table at

1500mm wide. So the conversion from imperial to metric for building-purposes is

12” or 1’-0” = 300mm. The table and your cheat sheet would look like this:

IMPERIAL MILLIMETERS (BUILDABLE)

12” 300mm

60” 1500mm

Now you see, we need the 1524mm table to “shrink to metric” by 24mm. Armed

with this knowledge and the concept of multiplying by 0.5 explained above. We

need to find a number that when multiplied by whatever number will “ shrink to

metric.” This number is... you guess it 0.984252.

IMPERIAL MILLIMETERS (BUILDABLE)

.9842519685” 25MM

The 0.984252 is actually 25MM in inches. Since 1” = 25.4mm, then 0.984252” =

25mm, or the rounded off version of the imperial number you are trying to convert.

Revit will not accept the full number noted above, though what it does recognize is

enough for the conversion. A lot of fuzz to get here but powerful stuff. The question

is; so how do you use it? Let’s illustrate.

71

HOW TO USE MM
Let’s use the formula from the ‘proxy parameters’ section and make it metric ready:

TR

OT

EXAMPLE 01

Depending on your formula you can multiply at the end by MM. When at rest it

multiplies by 1 and when active by 0.984252. Note that the whole first part of the

formula is contained within a parenthesis then multiplied by MM. I find that en-

casing formulas between parenthesis and then multiplying or dividing, keeps things

cleaner. Hint.

EXAMPLE 02

Placing MM within the formula wherever you intend the change to take place.

These are just (2) examples. The formula is simple and powerful and can be used

widely throughout. I recommend making it part of your template, so you have MM

lock, loaded and ready to use.

72

INTENTIONAL BREAK

73

SUPPORT PARAMETERS
Support parameters are parameters that

you build to help the output parameter

get the job done. Let’s just say that the

output parameter is Elvis, and the sup-

port parameters are the roadies. They

are not meant to be seen, but the show

would not go on without them.

See image above. Here are (3) examples of simple support parameters. As seen in

the previous section ‘make anything metric,’ I typically have these support parame-

ters lock and loaded in all my family templates, just because they are so universal.

The ON and OFF parameters helps when writing formulas because it allows you to

just write the syntax in English for turning a Y/N parameter ON and OFF. For ex-

ample, in the ‘Simple parameters’ section, we had a table that when wider than 96”

center support legs would turn on. The formula was:

PARAMETER FORMULA VALUE

WIDTH 96”

POST WIDTH>95”

PARAMETER FORMULA VALUE

WIDTH 96”

POST IF(WIDTH>95”, ON, OFF)

ALTERNATE PHRASING WITH SUPPORT PARAMETERS.

Now, in the first example, the IF () statement is implied, and truth be told it is more

elegant than the second example, but in the second example, it just seems like regu-

lar English. By merely having (2) Y/N parameters in your template that allow you to

just write ON to turn something on or OFF to turn something off, it really makes a

big difference when writing formulas.

Now, these (3) parameters I have in my family templates by default but in no way

are these the only ones. Depending on the task at hand, I keep adding support pa-

rameters as the components complexity demands it. They just sit and accumulate at

the bottom ignored by the end user, and eventually by me.

74

GRAYING OUT PARAMETERS
Why? Why is graying out parameters im-

portant? The answer; user error. In the

image to the right we grayed out ON and

OFF on purpose, the MM is grayed out

because of the trigger parameter. In the-

ory, you could have a slew of support pa-

rameters just sitting there not grayed out

but beware, not graying parameters out

means leaving them exposed to user

changes. If someone were to turn the ‘ON’ parameter off, for example, this could

fundamentally alter ALL the parameters where you used ‘ON.’ Catastrophic!

Graying them out protects you from this exposure.

Sometimes you may be tempted to not gray out support parameters thinking, “it

would be cool to be able to alter them on the fly in the future.” Don’t. This will bite

you in the butt. Better yet gray them out and just open the family when you need

to adjust. Simple and safe.

EXAMPLE OF GRAYING DIFFERENT TYPES OF PARAMETERS

A. For the Y/N parameters, you merely add a mathematical equation. If true, it

grays out ‘ON.’ If false, it grays out ‘OFF.’

B. For the text parameter, which we’ll go into detail later, you just add (2) quote

signs “ ” for a blank result and if you want to gray out a word, just add the word

in between the (2) quotation marks, e.g., “word here” or as shown below.

C. For all other number base parameters merely adding a number will suffice.

75

Quick disclaimer, I am a fan of long horizontal formulas, though you really do need

one of those new wide monitors to read them. When that becomes an issue is when

I begin to break them up vertically. In the previous section ‘support and graying

out parameters’ you can already see an example of vertically organized formulas

where instead of embedding 0+0=0 in the formula to turn on a Y/N parameter, you

are summoning another parameter below to get a more slender formula on your

output parameter.

See next page example for an alteration to the formula we used in the previous sec-

tion. At a simple glance, we can see that it is already becoming lengthy. Nothing

wrong with that. Lengthy formulas are actually easier to read sometimes. That said,

unless you have one of those really wide monitors previously mentioned, this can

actually start to become cumbersome. The solution is support parameters and

verticalization.

As you continue making complex formulas, you will soon realize that they can get

very, very lengthy. Now that is not necessarily a bad thing, you just need to make a

decision with some of your formulas if you are:

A. Building horizontally or

B. Building vertically

76

HORIZONTAL

VERTICAL
Break off point

A simple example, though the idea is to get you thinking where can I cut, and break

down? Now I named the parameter PROXY_HEIGHT though it could easily have

been the letter A, or PH, or anything else to further shorten the formula. As long as

you know what the abbreviation means that’s all that matters. I do prefer a more

descriptive name though.

See below two examples with the aforementioned ON/OFF support parameters

from the previous section.

HORIZONTAL

VERTICAL

A

B

A

B

77

This section will integrate most of the concepts we have

visited before. This formula (or group of formulas) is long

vertically and horizontally. It involves different types of

parameters and gosh darn it, it likes itself (SNL reference).

But seriously, it is work. Now don’t stress, you got this. If

you can follow, I think we’re done.

When I get an idea, I always write it down in plain English

to plan exactly what I want to accomplish. This is really

important, especially if you know it is complicated. Let’s

list what we want to achieve and remember, as long as the

formulas work no matter how many acrobatics you need to

do to get there, the formula only needs to work once.

And all those support parameters you end up making are

usually just for one output. It’s all about that output parameter. So, on to the

task at hand.

I want a movable table that:

A. Widens on precise intervals, e.g., every 6”, since the manufacturer only manu-

factures the table in 6” increments.

B. At it’s minimum the WIDTH will be 36” and at it’s maximum 96” wide.

C. I can overwrite it via instance and type parameters (as we showed before).

D. And, I can make it metric with a click of a button (as we showed before).

Not too much to ask for right? Below is the formula (s), before the breakdown.

YOU

THEM

78

THE BREAKDOWN
First thing first, see below. For all the hard work that will go in producing a formula

like this, the only thing that the end user will ever care about (think back to the IOS

analogy) is the trigger formulas. That is great, that is what we want, that is why we

grayed out everything. When you see it this way, it looks pretty simple. Also, note

the X’d-out/ grayed out portion. These are all support parameters except for the

output parameter WIDTH which will be ignored by the end user.

Regarding scheduling though, WIDTH is the dimension you will schedule/ keep

track of. This ultimately is the actual WIDTH of our table. Let’s illustrate.

OT

TR

OUR TRIGGERS

Probably the easiest part of the formula and the only part the end user will concern

themselves with. Our triggers consist of (4) parameters:
TR

1 A Y/N type parameter

2 A Length type parameter

3 A Length instance parameter

4 A Length instance parameter

Note, instance parameters are easily identifiable by the (default) note next to them.

SP
Support

parameters

1

79

OUR OUTPUT PARAMETER WIDTH (INSTANCE LENGTH)

Our Elvis and his roadies (the rest of the support parameters and triggers).

Our output parameter organizes all the support parameters acrobatics and the

trigger’s commands and pushes out the final WIDTH. Let’s break it up.

OT

These two are easy, they are both just our trigger parameters which basically state:

If WIDTH_INST is greater than 0” then whatever WIDTH_INST is will now be WIDTH, and

If WIDTH_TYPE is greater than 0” then whatever WIDTH_TYPE is will now be WIDTH, if

not!, then WIDTH will be WI_INTERVALS*MM. So lets now see what WI_INTERVALS

is. MM has a whole section in the book, so we already know what it’s doing here, turning

WIDTH into metric. Thus, the last piece of the puzzle is… WI_INTERVALS.

?

We already

analyzed all this.

Let’s now move on

to this

If not! Then And if Then

2

80

WIDTH_INTERVALS

WIDTH_INTERVALS is the support for WIDTH. Since it is doing all the heavy lifting

(e.g., roadies), it gets messy, dirty, and downright unreplicable, but again, a formula like

this only needs to work once, and you are set for tons of functionality. Follow below.

We are going to focus on the parameters that start with WI_ since these are the main

parameters that form WI_INTERVALS. That said, other participants help wrap up the

formula, but we will discuss when we get there.

SP

Note, all the support parameters are Length parameters except MM and

WI_INTERVALS. MM is a number parameter, and WI_INTERVALS is an

integer parameter. Also, there are (3) instance parameters which are the

parameters followed by (default). These are WI_INTERVALS, WI_INTEGER, and

WI_ROUNDED.

SP

3

81

WI_RATE (TYPE LENGTH)

This parameter sets the rate at which your table will grow, e.g., every 6”. It could

easily be changed to 3” or 12” increments.

WI_INTEGER (INSTANCE INTEGER)

This parameter takes the WIDTH_USER, or user input, and strips away the

decimals, or any other mistake the user might have made, converting it into an

integer which would eliminate any erroneous information. It then takes the

rounded number, and by dividing it by the rate (WI_RATE), you get how many

times the rate fits in the intended WIDTH. Note the *1 is there on purpose. Since

you cannot use a Length parameter within integer parameters, by multiplying or

dividing by (1) Revit accepts Length. See the “Errors” section on the back of the

book for more on this. Just know for now that this is why it’s there.

WI_ROUNDED# (INSTANCE LENGTH)

Up to now, all the work has been to achieve WI_ROUNDED#. This parameter’s

output is the 6” increment output we have been doing formula gymnastics for.

Everything down from here (WI_INTERVALS and WIDTH) are really just

organizing trigger data.

Now, by multiplying WI_RATE*WI_INTEGER, you get a perfectly rounded number

in 3”, 6”, 12”, or whatever increments you desire. Try it, make it, copy it.

Now, since this is really

the critical parameter. I

want you to analyze it at

different intervals. I will

also change the

WIDTH_USER to 39” so it

has more dynamic inputs.

AT WI_RATE = 3”

82

AT WI_RATE = 6”

AT WI_RATE = 12”

WI_INTERVALS (INSTANCE INTEGER)

So, we now have a parameter (WI_ROUNDED#) that will output a WIDTH from

0” to infinite “ at 6” increments or whatever you decide. Now, the final piece of the

puzzle, making stops at 36” for the low end and 96” for the high end. That is what

this parameter/ formula does.

If not! Then And if Then

T
h

is
 s

to
p

s
W

I_
R

O
U

N
D

E
D

#

fr
o

m
 g

o
in

g
 b

e
lo

w
 t

h
e

W
ID

T
H

_
L

O
W

 p
a

ra
m

et
er

y
o

u
 s

et
 a

b
o

v
e.

T
h

is
 s

to
p

s
W

I_
R

O
U

N
D

E
D

#

fr
o

m
 g

o
in

g
 a

b
o

v
e

th
e

W
ID

T
H

_
H

IG
H

 p
a

ra
m

et
er

y
o

u
 s

et
 a

b
o

v
e.

T
h

is
 p

a
ra

m
et

er
 g

o
es

 f
ro

m
 0

”

to
 i

n
fi

n
it

e
“

a
s

p
re

v
io

u
sl

y

es
ta

b
li

sh
ed

83

FINAL THOUGHTS
It looks like a lot of information to untangle in this formula but just use it, copy it,

change the parameter names to suit your needs and run with it. With time you can

come back and further analyze it or use some of its principles on another formula

you may be developing.

When broken down it does look like a lot but we really just wanted to show how

these come together in chunks.

When you are set on developing a new capability, you begin with writing what you

want in English. As you hit every point, it organically goes like this in sections, in

chunks. Later you may come back and add more capabilities or subtract, but the

process goes in chunks.

In this formula, the hardest chunk was to get the parameter to grow in intervals we

could control. All the other capabilities are pretty easy to come up with. Capabili-

ties like these sometimes take time, but as you get better and are exposed to other

complex formulas, it will become second nature.

Note, if you can add a formula like this to a pull, guess

what? You don’t even have to type in numbers. You just

pull on the graphic, and it jumps to the next interval and

the next interval. Oh, and you can use the align tool with

pulls for speedier changes. Hint.

Play with your component.

These pulls are generated when you use instance parameters. Type parameters do

not develop pulls. You can also use reference lines for the pull. This lets you fur-

ther control where the pull is placed. That’s how we got the pull perfectly in front of

the table in this example. Setting a reference plane to not a reference eliminates

the pull’s graphic when using instance parameters. Play around with this, you can

really make some cool stuff.

84

INTENTIONAL BREAK

85

Text parameters can be used for anything, from communi-

cating notes to future you, to sorting families by a word or

words through a schedule.

The primary uses I found for text parameters are:

• For Keynoting families.

• And in labels.

See labels above on example MT. Labels can connect to Length parameters, e.g., the

6030 for WIDTH and DEPT, and the +36” for HEIGHT. Additionally, it can con-

nect to Material parameters (E, for epoxy), and of course, Text parameters (the

MT in MT6030). The Revit label is not just dumb text. The Revit label is a powerful

family in its own right.

Additional to keynoting and communicating 3D data in a 2D plan, text parameters

can be used in formulas! For what? Well, let’s explore and illustrate.

Labels

EASY BASICS
With text it’s straightforward, you have (3) options:

1. You fill the value field, and you’re done.

2. You Gray the value empty with (2) quotation marks, “ ”.

3. You gray the value with permanent text by putting the text between (2)

quotation marks, e.g., “TEXT_GRAY”.

It is that easy. Now let’s see what we can do with these simple rules.

86

‘G’ MOVABLE BASE CABINET LABEL
Let’s introduce a new family, the ‘G’ movable base cabinet. This cabinet has a smart

label (or a regular Revit label used smartly), which reacts to 3D/Y/N parameters to

inform the user as to what is going on in 3D via the Label. See below, this cabinet is

either on CASTERS or on GLIDES. Has either a LOCK or a HASP. These (2)

“eithers” is what our formulas will center on.

LOCK or

HASP

CASTERS or

GLIDES

The movable base cabinet label consists of (3) parts. The name of the cabinet ‘G,’

the WIDTH of the cabinet 36”, and the SUFFIX. The SUFFIX outputs the cabinet’s

LOCK, HASP, CASTERS, GLIDES, or a combination of the (4). The only thing it

cannot have is a LOCK and a HASP at the same time, or a CASTER and a GLIDE at

the same time. In real life, you wouldn't order a cabinet on CASTERS and GLIDES.

So, how do we protect our selves from this ERROR? Well, let’s have the family tell

us there is an ERROR.

LOCK and

HASP

CASTERS

and GLIDES

87

FORMULA

LABEL SUFFIX MEANING

G36 NO SUFFIX (EMPTY)

G36* LOCK

G36** HASP

G36C CASTERS

G36G GLIDES

G36C* CASTERS AND LOCK

G36C** CASTERS AND HASP

G36G* GLIDES AND LOCK

G36G** GLIDES AND HASP

Now, we want a SUFFIX text parameter that will output all listed below triggered

by (4) Y/N parameters, CASTERS, GLIDES, LOCK, and HASP:

TR

OT

SP

THE BREAKDOWN
Here is our basic layout. Triggers,

output and support parameters.

88

Note, I really split this formula in two. The reality is, this formula could have

easily been one continuous horizontal formula, but perhaps it’s best to break it

in two for clarity.

In this case, the support parameter formula will output all the combinations

we organized and listed on the suffix plan. The resting text (end of formula)

will be empty (“”).

Note as well that the order from left to right matters. You want the more com-

plicated combinations to the right, and the simpler single Y/N clicks to the left

to get this formula to work.

This formula is a perfect example of just how infinite and powerful the If()

function can be. It is a basic If() function with some And () functions in the

middle.

SP

OT

This parameter is more straightforward than it looks. Like most OT parame-

ters, it’s just acting as the organizer for all the support and trigger parame-

ters to output a finished product with the added formula to signal ERROR!

SP

If not! And Or Then And

PART

5

POST-PARAMETERS

AND FORMULAS

SOME ‘BEFORE YOU GO’ TOPICS THAT WERE HARD

TO BRING UP UNTIL THE END. THINGS THAT MAY

HAVE CAUSED CONFUSION, BUT NOW YOU ARE

READY.

91

Now that you’ve seen how long and tall formula

structure can get, perhaps you’re beginning to

think of how to better organize all those trigger,

output, text, and support parameters. The solution

to organizing parameters is altering how they are

grouped.

Up to now, you are used to Revit grouping your

parameters for you, e.g., Length goes to

Dimensions, and text to Text, etc., but it does not

have to be this way. You can take control of your

groups, all you need is a plan. I’ll let you borrow mine, though it is open to change

of course. So you be you.

Now you may be thinking, why is this not under the parameters section? Well, this

is because you weren’t ready, you were a newb! And I get it, I was one once too.

You can’t begin to think of organizing dozens of parameters if you haven't seen why

you would need to organize dozens of parameters. You had to see long formulas for

that aha moment. So, that’s why it’s here. OK, got it, good, let’s go.

In general, we need to organize an distribute (3) chunks of data:

NO NEED TO ORGANIZE THESE PARAMETERS
There will be some parameters that do not need to be lumped into these (3)

categories. Letting them sit in their default groups will suffice. These parameters

are the non-formulable parameters discussed at the beginning of the book:

• URL

• Material

• Image

• <family type…>

INPUT/TRIGGER

PARAMETERS

(Can be more

than one)

OUTPUT

PARAMETERS

(Can only be one)

SUPPORT

PARAMETERS

(Can be more

than one) TR OT SP

92

INTENTIONAL BREAK

93

INPUT/TRIGGER

PARAMETERS

(Can be more

than one)

FORMULA

FAMILY

• Something

turns on or off.

• Width, depth or

height changes

• Angle rotates

• etc., etc.

OUTPUT

PARAMETER

(Can only

be one)

FORMULA

SUPPORT

PARAMETER

(Can be

More than one)

TRIGGER CHUNK

Triggers are the most crucial part of organizing parameters. This chunk is really the

only part the end user will care about. The rest is for you, the builder. I force all my

triggers under the Constraint group except for of a handful of parameters. I’ll

discuss these shortly. The parameters you group under Constraints are Y/N & Integer

parameters, since these account for 90% of what users will trigger. Also grouped here,

and with less frequency, are the angle, number, and other less used trigger

parameters. So, who doesn’t go here? Length, Text, and of course parameters that

cannot be used in formulas. Like materials. Why do I separate these two? Well,

because they too account for a significant number of trigger parameters, but mostly

because their group’s Length & Text already suit them perfectly and the end user will

appreciate them labeled separately.

DIAGRAM VS. REAL LIFE
Let’s circle back to the “anatomy of a formula part deux’ section under the

formula ideas part. Look at the diagram below, and then the parameters and

groups on the next sheet. The parameters, formulas and the family is not

important. What is important is the organization. Look back and forth. With

little explanation, you can see the way I organize my parameters is a direct

correlation to how formulas work. Think of this part as the IOS analogy. We want

to bury all the confusing parameters and formulas we used to make our complex

families and provide the end user with a clean, easy to reach set of controls

(triggers) they can just click and go. So, to that end, triggers are always placed on

top, and the remaining parameters fall below. They are grayed out and out of the

way. How is this hierarchy achieved? By using select groups that stack properly.

See below how the chunks are organized.

TR

TR

OT

SP

94

TR

OT

SP

While the Constraint group may not have been intended for this purpose, it does

always guarantee that your trigger parameters end up on top, and that is very, very,

important. The end user will not care that you have parameters placed in the

Constraint section. The end user wants to go in and out fast. Period.

OUTPUT CHUNK

For the output chunk, I like the Analysis Results group. The Analysis results

group falls right under the aforementioned groups including the Text group, and it

literally has the word results in it, which is a very accurate description of the output

parameters. Here I don’t discriminate parameters, I lump all Y/N, Integer, Length,

Text, etc. in one. Why? Because it lets me come back and see what is connected to the

family easily in one section, plus, the trigger section is meant for the end user’s clarity,

not mine. I am used to all this gobbly goop, and I can handle it. The end users need

his Length parameters nicely under Dimensions, the Text under Text, etc.

SUPPORT CHUNK

The remaining parameters are easily lumped under Other. Again, these are the least

important to the end user, and maybe even you. The Other group drags them all the

way to the bottom, or pretty close to the bottom. Out of sight and out of mind.

OT

SP

95

KISS - THOUGHTS
There is no right or wrong way to go about it, just have a strategy that works for you.

This (3) chunk strategy has been tried and true for me, and I recommend you

borrow it until you come up with your own.

I have also at times used the Title Text group for example, as my support

parameter area for making text formulas. Therefore separating text complexity

from Other. Since it has the word text, mentally it helps me lump them together.

I have also used the Data group and the Structural Analysis groups if a

particular output parameter requires too many support parameters and formulas.

This helps me lump data for just (1) output parameter. Again this is up to you. I

only go this route if it gets too messy otherwise, KISS! Keep it simple s!@#$%.

Have fun.

96

INTENTIONAL BREAK

97

Errors. The worst. Here is a list of common errors

you will encounter, their causes, and their

solutions. For the most part, errors often occur for

very straightforward reasons, e.g., you forgot a

capital letter, misspelled a parameter’s name, or

forgot to add an end parentheses ‘).’ Don’t panic,

there is often a solution to your error unless you

are trying to do something which is impossible, like

make a formula with a material. Not gonna

happen. See below and look for what is ailing you.

MISSPELL

This error occurs when you don’t write a parameter name correctly in a formula. In

this case, we are missing the ‘D’ for WIDTH, or the original is Width (case

sensitivity). Merely verify you are writing the initial parameter correctly.

CIRCULAR CHAIN

This error occurs when you write a formula in your trigger parameter. In other

words, you try writing a formula in the same parameter that will trigger said

formula.

98

TO MANY PARENTHESIS

This error occurs when you add more parenthesis that are needed, e.g., if

(WIDTH>30”,ON,OFF)). In this If() formula there is one to many parenthesis.

TO FEW PARENTHESIS

This error is the opposite of the one above. This occurs when you need to add one

or more parenthesis to finish your formula, e.g., if(WIDTH>30”,ON,OFF. In this If

() formula you need to close the formula with a final parenthesis.

INCOMPLETE IF STATEMENT

This error occurs when you haven’t finished your if () formula correctly, e.g.,

if(WIDTH>30”,ON). In this example, we need to add what happens when WIDTH

is not greater than 30” to finish the formula correctly.

99

INSTANCE WILL NOT OVERRIDE A TYPE

Instance parameters are weaker than type parameters. When this happens, make

sure that all your parameters are Instance parameters if your trigger is an instance

parameter. If your trigger is a type parameter, you should not get this error. The

type parameter is stronger than an instance parameter.

INCONSISTENT UNITS

By far the WORST of all the errors. This can happen when you trigger parameters

are different unit types than your output parameter. Let me illustrate, but before

all that, let me give you the solution up front. This can be neutralized by dividing a

parameter by one or multiplying by one. Period. Now let’s illustrate:

Here we have (3) parameters. (2) Length parameters under Dimensions and (1)

integer parameter under Analysis Results.

100

Now, what I want to do is multiply DEPTH * HEIGHT, and whatever the result is

have it automatically converted to an integer. Let’s try it. Result, ERROR.

Neutralize it. By merely dividing one of the Length parameters by one, the

formula works, and the resultant 12.5 gets rounded to the nearest integer 13.

This happened before when we were making our WI_INTEGER formula in the next

level formula section. Just know that the solution is either PARAMETER/1 or

PARAMETER*1.

HERE IS AUTODESK’S EXPLANATION, BUT THE SOLUTION IS THE

SAME:

101

Many of the tips and tricks noted here are scattered throughout the book. They are

marked by the word Hint at the end of the tip. Though, I thought it would be

helpful to corral them in this section for further clarity.

• CHANGING MATERIALS ON THE FLY.

If you know the material name, you can just type it, and Revit will find it for

you. There is no need to go through the materials properties box and scroll

through a giant list of materials to find one. In fact, if you are changing a couple

of materials frequently, make their names really simple, e.g., Epoxy = EP, or

Wood = WO. This way you just type the first (2) letters and you are done.

• PARENTHESIS-END IN EMBEDDED IF STATEMENTS -

IF(A,IF(B,C,D))

In conditional If() formulas, when you embed multiple if() functions, the

amount of if() functions directly correlates to the number of parentheses at the

end. See the example below.

If(A, if(B, if(C, D, E)))

You see, there are (3) If functions, which means you need (3) parentheses to

close the formula. This is an error that comes up often. Simply knowing this

will take some pressure off. If the formula is long and complex, I often add

extra parentheses and delete one by one until the formula takes. Hint.

• PARAMETER STRENGTH FROM LEFT TO RIGHT

Revit reads parameters from left to right. What this means is that in an

embedded IF() statement like the one above, the statement to the left will be

triggered before the ones to the right. Another way to see this is that the

statement to the left is stronger than the one to the right.

• WRITE YOUR PARAMETERS IN ENGLISH FIRST

When planning your parameters and formulas, always write them down in plain

English first. This helps you organize your thoughts before you even hit Revit.

Once in English, then try to write down what you need (parameter types) to

make your formula. Then try writing your plan with conditional statements.

You will quickly see that planning things out first will buy you time and avoid

headaches in the family editor.

102

INTENTIONAL BREAK

103

I suppose that if you are reading this, you made it through. If you just skipped to

the end well… that’s fine too. In fact, it is encouraged. Since the beginning, we’ve

invited the reader to explore through the book. To seek and find what got you to

buy the book, and run with it. In learning, there is no right or wrong, only growth.

I firmly believe that if you've read through the book, you are now miles ahead of

where I was when I began making components. If you doubt for a minute that you

can put any of it’s material to use DON’T. Just use what you need as you need it,

and with time you will find that:

A. Many examples translate directly to everyday tasks you’re doing.

B. You eventually will come up with your own version of similar formulas.

If it looks daunting, remember that it literally took years to assemble all this data, so

don’t expect to use it, or digest it all in a week. If you can, go for it.

The idea is that you’re exposed to the information. Sometimes exposure is more

important than memorizing content because, with exposure, you don’t need to

memorize; just remember. When you remember, you can just reach out to the book

on your bookshelf, and extract the information. Memorization comes with practice.

Learn by doing.

Take this knowledge, and use it to advance. I know it progressed me tremendously,

and I am happy to have shared it with you.

Sincerely.

Edgar E.B.

NCARB

To learn more about this book, and upcoming material, visit us at:

www. TheRevitFormula.com

If you would like to share insights, ideas, or if you have questions

reach out by email at:

www.ContactUs@TheRevitFormula.com

To order more copies, check our website for platform details.

Thanks for your interest, and we wish you great success.

®

THE REVIT

FORMULA

	PREFACE
	INTRODUCTION
	PART 1. PRE-PARAMETERS AND FORMULAS
	LEGEND GUIDE
	METAPHORS
	UNITS
	THE EDITOR
	CREATING FAMILY TYPES
	PART 2. PARAMETERS
	PARAMETERS - GENERAL
	CREATING YOUR FIRST PARAMETER
	PARAMETER PROPERTIES
	INSTANCE VS. TYPE PARAMETER OPTION
	FAMILY VS. SHARED PARAMETER OPTION
	CREATING YOUR FIRST SHARED PARAMETER
	ASSOCIATING PARAMETERS
	PART 3. FORMULAS
	RECAP
	ANATOMY OF A FORMULA
	SIMPLE FORMULAS
	COMPLEX FORMULAS
	PART 4. FORMULA IDEAS
	ANATOMY OF A FORMULA PART DEUX
	PROXY PARAMETERS
	INSTANCE AND TYPE PARAMETER TRICK
	MAKE ANYTHING METRIC
	SUPPORT AND GRAYING OUT PARAMETERS
	HORIZONTAL OR VERTICAL FORMULAS?
	NEXT LEVEL FORMULA WIDTH WITH INTERVALS
	TEXT FORMULAS
	PART 5. POST - PARAMETERS AND FORMULAS
	PARAMETER ORGANIZING
	COMMON ERRORS
	TIPS AND TRICKS
	FINAL THOUGHTS
	CONTACT US
	DEDICATION

		2019-02-12T05:14:22+0000
	Preflight Ticket Signature

